Skip to content

Latest commit

 

History

History
44 lines (33 loc) · 2.13 KB

KPConv.md

File metadata and controls

44 lines (33 loc) · 2.13 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

KPConv

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 60.12 56.07 47.18 54.46 103.20 87.60
Wet Ground 59.23 57.69 56.18 57.70 91.94 92.81
Snow 55.04 55.08 52.34 54.15 98.14 87.10
Motion Blur 34.60 24.84 17.65 25.70 110.76 41.34
Beam Missing 59.86 59.68 52.50 57.35 97.64 92.25
Crosstalk 42.36 58.16 59.63 53.38 111.91 85.86
Incomplete Echo 58.88 55.99 52.05 55.64 97.34 89.50
Cross-Sensor 61.06 50.38 50.31 53.91 85.43 86.71
  • Summary: $\text{mIoU}_{\text{clean}} =$ 62.17%, $\text{mCE} =$ 99.54%, $\text{mRR} =$ 82.90%.

References

@inproceedings{thomas2019kpconv,
  title = {KPConv: Flexible and Deformable Convolution for Point Clouds},
  author = {Thomas, Hugues and Qi, Charles R. and Deschaud, Jean-Emmanuel and Marcotegui, Beatriz and Goulette, Fran{\c{c}}ois and Guibas, Leonidas J.},
  booktitle = {IEEE/CVF International Conference on Computer Vision},
  year = {2019},
}