The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 60.12 | 56.07 | 47.18 | 54.46 | 103.20 | 87.60 |
Wet Ground | 59.23 | 57.69 | 56.18 | 57.70 | 91.94 | 92.81 |
Snow | 55.04 | 55.08 | 52.34 | 54.15 | 98.14 | 87.10 |
Motion Blur | 34.60 | 24.84 | 17.65 | 25.70 | 110.76 | 41.34 |
Beam Missing | 59.86 | 59.68 | 52.50 | 57.35 | 97.64 | 92.25 |
Crosstalk | 42.36 | 58.16 | 59.63 | 53.38 | 111.91 | 85.86 |
Incomplete Echo | 58.88 | 55.99 | 52.05 | 55.64 | 97.34 | 89.50 |
Cross-Sensor | 61.06 | 50.38 | 50.31 | 53.91 | 85.43 | 86.71 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 62.17%,$\text{mCE} =$ 99.54%,$\text{mRR} =$ 82.90%.
@inproceedings{thomas2019kpconv,
title = {KPConv: Flexible and Deformable Convolution for Point Clouds},
author = {Thomas, Hugues and Qi, Charles R. and Deschaud, Jean-Emmanuel and Marcotegui, Beatriz and Goulette, Fran{\c{c}}ois and Guibas, Leonidas J.},
booktitle = {IEEE/CVF International Conference on Computer Vision},
year = {2019},
}