The following metrics are consistently used in our benchmark:
-
Mean Corruption Error (mCE):
- The Corruption Error (CE) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$ . - The average CE for model
$A$ on all$N$ corruption types, i.e., mCE, is calculated as:$\text{mCE} = \frac{1}{N}\sum\text{CE}_i$ .
- The Corruption Error (CE) for model
-
Mean Resilience Rate (mRR):
- The Resilience Rate (RR) for model
$A$ under corruption type$i$ across 3 severity levels is:$\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$ - The average RR for model
$A$ on all$N$ corruption types, i.e., mRR, is calculated as:$\text{mRR} = \frac{1}{N}\sum\text{RR}_i$ .
- The Resilience Rate (RR) for model
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 45.49 | 44.98 | 40.51 | 43.66 | 127.67 | 74.25 |
Wet Ground | 55.67 | 50.22 | 48.99 | 51.63 | 105.13 | 87.81 |
Snow | 48.10 | 49.82 | 51.11 | 49.68 | 107.71 | 84.49 |
Motion Blur | 45.18 | 40.37 | 35.59 | 40.38 | 88.88 | 68.67 |
Beam Missing | 55.65 | 49.31 | 43.00 | 49.32 | 116.03 | 83.88 |
Crosstalk | 51.77 | 49.43 | 47.18 | 49.46 | 121.32 | 84.12 |
Incomplete Echo | 49.46 | 48.29 | 46.77 | 48.17 | 113.74 | 81.92 |
Cross-Sensor | 40.85 | 30.73 | 17.97 | 29.85 | 130.03 | 50.77 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 58.80%,$\text{mCE} =$ 113.81%,$\text{mRR} =$ 76.99%.
Corruption | Light | Moderate | Heavy | Average | ||
---|---|---|---|---|---|---|
Fog | 66.31 | 65.56 | 62.52 | 64.80 | ||
Wet Ground | 69.65 | 68.44 | 65.98 | 68.02 | ||
Snow | ||||||
Motion Blur | 58.53 | 48.80 | 39.38 | 48.90 | ||
Beam Missing | 57.44 | 47.42 | 39.56 | 48.14 | ||
Crosstalk | ||||||
Incomplete Echo | 52.08 | 48.47 | 45.73 | 48.76 | ||
Cross-Sensor | 29.91 | 20.83 |
-
Summary:
$\text{mIoU}_{\text{clean}} =$ 71.38%,$\text{mCE} =$ %,$\text{mRR} =$ %.
@inproceedings{zhao2021fidnet,
title = {FIDNet: LiDAR Point Cloud Semantic Segmentation with Fully Interpolation Decoding},
author = {Zhao, Yiming and Bai, Lin and Huang, Xinming},
booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems},
year = {2021},
}