Skip to content

Latest commit

 

History

History
48 lines (34 loc) · 2.17 KB

Cylinder3D-TS.md

File metadata and controls

48 lines (34 loc) · 2.17 KB

Robo3D Benchmark

The following metrics are consistently used in our benchmark:

  • Mean Corruption Error (mCE):

    • The Corruption Error (CE) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{CE}_i^{\text{Model}A} = \frac{\sum((1 - \text{mIoU})^{\text{Model}A})}{\sum((1 - \text{mIoU})^{\text{Baseline}})}$.
    • The average CE for model $A$ on all $N$ corruption types, i.e., mCE, is calculated as: $\text{mCE} = \frac{1}{N}\sum\text{CE}_i$.
  • Mean Resilience Rate (mRR):

    • The Resilience Rate (RR) for model $A$ under corruption type $i$ across 3 severity levels is: $\text{RR}_i^{\text{Model}A} = \frac{\sum(\text{mIoU}^{\text{Model}A})}{3\times (\text{clean-mIoU}^{\text{Model}A})} .$
    • The average RR for model $A$ on all $N$ corruption types, i.e., mRR, is calculated as: $\text{mRR} = \frac{1}{N}\sum\text{RR}_i$.

Cylinder3D (TorchSparse)

SemanticKITTI-C

Corruption Light Moderate Heavy Average $\text{CE}_i$ $\text{RR}_i$
Fog 42.63 39.82 28.87 37.11 142.51 60.84
Wet Ground 58.22 52.18 49.79 53.40 101.28 87.54
Snow 47.13 45.53 43.52 45.39 116.89 74.41
Motion Blur 59.72 58.77 57.44 58.64 61.66 96.13
Beam Missing 59.65 57.03 53.74 56.81 98.88 93.13
Crosstalk 56.13 53.70 50.96 53.59 111.4 87.85
Incomplete Echo 57.95 55.92 50.78 54.88 99.01 89.97
Cross-Sensor 56.37 51.96 40.53 49.62 93.38 81.34
  • Summary: $\text{mIoU}_{\text{clean}} =$ 61.00%, $\text{mCE} =$ 103.13%, $\text{mRR} =$ 83.90%.

nuScenes-C

References

@inproceedings{zhu2021cylinder3d,
  title = {Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation},
  author = {Zhu, Xinge and Zhou, Hui and Wang, Tai and Hong, Fangzhou and Ma, Yuexin and Li, Wei and Li, Hongsheng and Lin, Dahua},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition}
  year = {2021}
}