-
DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior
Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, Chao Dong
[arXiv 2308] [Project] [Pytorch-Code]
[DiffBIR] 🔥 -
Exploiting Diffusion Prior for Real-World Image Super-Resolution
Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C.K. Chan, Chen Change Loy
[arXiv 2305] [Project] [Pytorch-Code]
[StableSR] 🔥 -
Lightweight Image Super-Resolution with Superpixel Token Interaction
Aiping Zhang, Wenqi Ren, Yi Liu, Xiaochun Cao
[ICCV 2023] [Pytorch-Code]
[SPIN] -
SRFormer: Permuted Self-Attention for Single Image Super-Resolution
Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, Qibin Hou
[ICCV 2023] [Pytorch-Code] -
Dual Aggregation Transformer for Image Super-Resolution
Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, Fisher Yu
[ICCV 2023] [Pytorch-Code]
[DAT] -
Spatially-Adaptive Feature Modulation for Efficient Image Super-Resolution
Long Sun, Jiangxin Dong, Jinhui Tang, Jinshan Pan
[ICCV 2023] [Project] [Pytorch-Code]
[SAFMN] -
DLGSANet: Lightweight Dynamic Local and Global Self-Attention Networks for Image Super-Resolutionn
Xiang Li, Jinshan Pan, Jinhui Tang, Jiangxin Dong
[ICCV 2023] [Pytorch-Code]
[SAFMN] -
QuickSRNet: Plain Single-Image Super-Resolution Architecture for Faster Inference on Mobile Platforms
Guillaume Berger, Manik Dhingra, Antoine Mercier, Yashesh Savani, Sunny Panchal, Fatih Porikli
[CVPRW 2023]
[★☆] 高通, 轻量级SR, 去掉残差模块 -
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
Liangbin Xie, Xintao Wang, Xiangyu Chen, Gen Li, Ying Shan, Jiantao Zhou, Chao Dong
[ICLR 2023] [Pytorch-Code]
[DeSRA] -
Activating More Pixels in Image Super-Resolution Transformer
Xiangyu Chen, Xintao Wang, Jiantao Zhou, Chao Dong
[CVPR 2023] [Pytorch-Code]
[HAT] 🔥 提出了OCAB(Overlapping Cross-Attention Block), 增强了窗口间的信息交互. 与自注意力, 通道注意力一起使用, 设计的网络实现了sota. -
Simple Baselines for Image Restoration
Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, Jian Sun
[arXiv 2204] [Pytorch-Code]
[NAFNet] -
Efficient Long-Range Attention Network for Image Super-resolution
Xindong Zhang, Hui Zeng, Shi Guo, Lei Zhang
[arXiv 2203] [Pytorch-Code]
[ELAN] -
Revisiting RCAN: Improved Training for Image Super-Resolution
Zudi Lin, Prateek Garg, Atmadeep Banerjee, Salma Abdel Magid, Deqing Sun, Yulun Zhang, Luc Van Gool, Donglai Wei, Hanspeter Pfister
[arXiv 2201] [Pytorch-Code] -
Fast Nearest Convolution for Real-Time Efficient Image Super-Resolution
Ziwei Luo, Youwei Li, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, Shuaicheng Liu
[ECCVW 2022] [Pytorch-Code] -
Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration
Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte
[ECCVW 2022] [Pytorch-Code] -
From Face to Natural Image: Learning Real Degradation for Blind Image Super-Resolution
Xiaoming Li, Chaofeng Chen, Xianhui Lin, Wangmeng Zuo, Lei Zhang
[ECCV 2022] [Pytorch-Code]
[ReDegNet] -
Self-Supervised Learning for Real-World Super-Resolution from Dual Zoomed Observations
Zhilu Zhang, Ruohao Wang, Hongzhi Zhang, Yunjin Chen, Wangmeng Zuo
[ECCV 2022] [Pytorch-Code]
[SelfDZSR] -
Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution
Jie Liang, Hui Zeng, Shi Guo, Lei Zhang
[ECCV 2022] [Pytorch-Code]
[DASR] -
Efficient Long-Range Attention Network for Image Super-resolution
Xindong Zhang, Hui Zeng, Shi Guo, Lei Zhang
[ECCV 2022] [Pytorch-Code]
[ELAN] -
Learning Series-Parallel Lookup Tables for Efficient Image Super-Resolution
Cheng Ma, Jingyi Zhang, Jie Zhou, Jiwen Lu
[ECCV 2022] [Pytorch-Code]
[SPLUT] -
MuLUT: Cooperating Mulitple Look-Up Tables for Efficient Image Super-Resolution
Jiacheng Li, Chang Chen, Zhen Cheng, Zhiwei Xiong
[ECCV 2022] [Project] [Pytorch-Code] -
Adaptive Patch Exiting for Scalable Single Image Super-Resolution
Shizun Wang, Jiaming Liu, Kaixin Chen, Xiaoqi Li, Ming Lu, Yandong Guo
[ECCV 2022 Oral] [Pytorch-Code]
[APE] -
Reference-based Image Super-Resolution with Deformable Attention Transformer
Jiezhang Cao, Jingyun Liang, Kai Zhang, Yawei Li, Yulun Zhang, Wenguan Wang, Luc Van Gool
[ECCV 2022] [Pytorch-Code]
[DATSR] -
Super-Resolution by Predicting Offsets: An Ultra-Efficient Super-Resolution Network for Rasterized Images
Jinjin Gu, Haoming Cai, Chenyu Dong, Ruofan Zhang, Yulun Zhang, Wenming Yang, Chun Yuan
[ECCV 2022] [Pytorch-Code]
[SRPO] -
D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution
Youwei Li, Haibin Huang, Lanpeng Jia, Haoqiang Fan, Shuaicheng Liu
[ECCV 2022] [Code] -
MM-RealSR: Metric Learning based Interactive Modulation for Real-World Super-Resolution
Chong Mou, Yanze Wu, Xintao Wang, Chao Dong, Jian Zhang, Ying Shan
[ECCV 2022] [Pytorch-Code] -
Restore Globally, Refine Locally: A Mask-Guided Scheme to Accelerate Super-Resolution Networks
Xiaotao Hu, Jun Xu, Shuhang Gu, Ming-Ming Cheng, Li Liu
[ECCV 2022 Oral] [Pytorch-Code] -
RepSR: Training Efficient VGG-style Super-Resolution Networks with Structural Re-Parameterization and Batch Normalization
Xintao Wang, Chao Dong, Ying Shan
[MM 2022] [Pytorch-Code] -
Discrete Cosine Transform Network for Guided Depth Map Super-Resolution
Zixiang Zhao, Jiangshe Zhang, Shuang Xu, Zudi Lin, Hanspeter Pfister
[CVPR 2022 Oral] [Pytorch-Code] -
Dual Adversarial Adaptation for Cross-Device Real-World Image Super-Resolution
Xiaoqian Xu, Pengxu Wei, Weikai Chen, Mingzhi Mao, Liang Lin, Guanbin Li
[CVPR 2022] [Pytorch-Code] -
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel
Zongsheng Yue, Qian Zhao, Jianwen Xie, Lei Zhang, Deyu Meng, Kwan-Yee K. Wong
[CVPR 2022] [Pytorch-Code] -
Deep Constrained Least Squares for Blind Image Super-Resolution
Ziwei Luo, Haibin Huang, Lei Yu, Youwei Li, Haoqiang Fan, Shuaicheng Liu
[CVPR 2022] [Pytorch-Code] -
Learning the Degradation Distribution for Blind Image Super-Resolution
Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan
[CVPR 2022] [Pytorch-Code] -
Reflash Dropout in Image Super-Resolution
Xiangtao Kong, Xina Liu, Jinjin Gu, Yu Qiao, Chao Dong
[CVPR 2022] [Pytorch-Code] -
Learning To Zoom Inside Camera Imaging Pipeline
Chengzhou Tang, Yuqiang Yang, Bing Zeng, Ping Tan, Shuaicheng Liu
[CVPR 2022] [Pytorch-Code] -
Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution
Jie Liang, Hui Zeng, Lei Zhang
[CVPR 2022 Oral] [Pytorch-Code]
[LDL] -
Learning the Degradation Distribution for Blind Image Super-Resolution
Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan
[CVPR 2022] [Pytorch-Code]
[PDM-SR] -
Deep Constrained Least Squares for Blind Image Super-Resolution
Ziwei Luo, Haibin Huang, Lei Yu, Youwei Li, Haoqiang Fan, Shuaicheng Liu
[CVPR 2022] [Pytorch-Code]
[DCLS-SR] -
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution
Jianqi Ma, Zhetong Liang, Lei Zhang
[CVPR 2022] [Pytorch-Code]
[TATT] OPPO -
ARM: Any-Time Super-Resolution Method
Bohong Chen, Mingbao Lin, Kekai Sheng, Mengdan Zhang, Peixian Chen, Ke Li, Liujuan Cao, Rongrong Ji
[CVPR 2022] [Pytorch-Code] -
Detail-Preserving Transformer for Light Field Image Super-Resolution
Shunzhou Wang, Tianfei Zhou, Yao Lu, Huijun Di
[AAAI 2022] [Pytorch-Code]
[DPT] -
Finding Discriminative Filters for Specific Degradations in Blind Super-Resolution
Liangbin Xie, Xintao Wang, Chao Dong, Zhongang Qi, Ying Shan
[NIPS 2021 Spotlight] [Pytorch-Code]
[FAIG] -
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Xintao Wang, Liangbie Xie, Chao Dong, Ying Shan
[arXiv 2107] [Pytorch-Code] -
GhostSR: Learning Ghost Features for Efficient Image Super-Resolution
Ying Nie, Kai Han, Zhenhua Liu, An Xiao, Yiping Deng, Chunjing Xu, Yunhe Wang
[arXiv 2101]
[★☆] 轻量级超分. 使用pixel shift的思想做超分 -
SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices
Xin Liu, Yuang Li, Josh Fromm, Yuntao Wang, Ziheng Jiang, Alex Mariakakis, Shwetak Patel
[arXiv 2101] [Unofficial-Pytorch-Code]
[★☆] (轻量级超分) 提出了一个轻量级residual block结构: SplitSRBlock -
About Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices
Xindong Zhang, Hui Zeng, Lei Zhang
[MM 2021 Oral] [Pytorch-Code]
[ECBSR] [★★] 重参数化, 并行卷积模块+sobel/laplacian算子 -
Deep Reparametrization of Multi-Frame Super-Resolution and Denoising
Goutam Bhat, Martin Danelljan, Fisher Yu, Luc Van Gool, Radu Timofte
[ICCV 2021 Oral] -
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution
Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte
[ICCV 2021] [Pytorch-Code]
[BSRGAN] [★★] 通过随机排列的退化(模糊, 下采, 加噪等)生成训练数据, 并在此基础上训练了一个盲超分模型. Novelty貌似不太多, 但比较实用. -
Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution
Jingyun Liang, Guolei Sun, Kai Zhang, Luc Van Gool, Radu Timofte
[ICCV 2021] [Pytorch-Code]
[MANet] -
Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling
Jingyun Liang, Andreas Lugmayr, Kai Zhang, Martin Danelljan, Luc Van Gool, Radu Timofte
[ICCV 2021] [Pytorch-Code]
[HCFlow] -
Dual-Camera Super-Resolution with Aligned Attention Modules
Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, Qifeng Chen
[ICCV 2021 Oral] [Project] [Pytorch-Code]
[DCSR] -
Learning A Single Network for Scale-Arbitrary Super-Resolution
Longguang Wang, Yingqian Wang, Zaiping Lin, Jungang Yang, Wei An, Yulan Guo
[ICCV 2021] [Project] [Pytorch-Code]
[ArbSR] -
Fast Bayesian Uncertainty Estimation and reduction of Batch Normalized Single Image Super-Resolution Network
Aupendu Kar, Prabir Kumar Biswas
[CVPR 2021] [Project] [Pytorch-Code] -
Unsupervised Real-World Image Super Resolution via Domain-Distance Aware Training
Yunxuan Wei, Shuhang Gu, Yawei Li, Longcun Jin
[CVPR 2021] [Pytorch-Code]
[DASR] -
Image Super-Resolution With Non-Local Sparse Attention
Yiqun Mei, Yuchen Fan, Yuqian Zhou
[CVPR 2021] [Pytorch-Code] -
KOALAnet: Blind Super-Resolution using Kernel-Oriented Adaptive Local Adjustment
Soo Ye Kim, Hyeonjun Sim, [Munchurl Kim]https://www.viclab.kaist.ac.kr/)
[CVPR 2021] [Pytorch-Code] -
Tackling the Ill-Posedness of Super-Resolution through Adaptive Target Generation
Younghyun Jo, [Seoung Wug Oh], Peter Vajda, Seon Joo Kim
[CVPR 2021] [Pytorch-Code]
认为在SR任务中, HR和LR位置并不是完全对应的, 因此设计了一个ART模块, 对GT patch进行仿射变换, 使LR和HRpair更加匹配 [AdaTarget] [★] -
Single Pair Cross-Modality Super Resolution
Guy Shacht, Dov Danon, Sharon Fogel, Daniel Cohen-Or
[CVPR 2021] -
Practical Single-Image Super-Resolution Using Look-Up Table
Younghyun Jo, Seon Joo Kim
[CVPR 2021] [Pytorch-Code]
[SR-LUT] -
SRFlow-DA: Super-Resolution Using Normalizing Flow with Deep Convolutional Block
Younghyun Jo, Sejong Yang, Seon Joo Kim
[CVPRW 2021] [Pytorch-Code] -
SRWarp: Generalized Image Super-Resolution under Arbitrary Transformation
Sanghyun Son, Kyoung Mu Lee
[CVPR 2021] [Pytorch-Code] -
Interpreting Super-Resolution Networks with Local Attribution Maps
Jinjin Gu, Chao Dong
[CVPR 2021] [Project]
[LAM] -
Flow-based Kernel Prior with Application to Blind Super-Resolution
Jingyun Liang, Kai Zhang, Shuhang Gu, Luc Van Gool, Radu Timofte
[CVPR 2021] [Pytorch-Code]
[FKP] -
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution
Liying Lu, Wenbo Li, Xin Tao, Jiangbo Lu, Jiaya Jia
[CVPR 2021] [Pytorch-Code] -
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
Kelvin C.K. Chan, Xintao Wang, Xiangyu Xu, Jinwei Gu, Chen Change Loy
[CVPR 2021 Oral] [Project] -
Learning Continuous Image Representation with Local Implicit Image Function
Yinbo Chen, Sifei Liu, Xiaolong Wang
[CVPR 2021 Oral] [Project] [Pytorch-Code]
[LIIF] -
LAU-Net: Latitude Adaptive Upscaling Network for Omnidirectional Image Super-resolution
Yinbo Chen, Sifei Liu, Xiaolong Wang
[CVPR 2021] [Pytorch-Code] -
Cross-MPI: Cross-scale Stereo for Image Super-Resolution using Multiplane Images
Yuemei Zhou, Gaochang Wu, Ying Fu, Kun Li, Yebin Liu
[CVPR 2021] [Project] -
ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong
[CVPR 2021] [Pytorch-Code] -
Exploring Sparsity in Image Super-Resolution for Efficient Inference
Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, Yulan Guo
[CVPR 2021] [Pytorch-Code]
[SMSR] -
Robust Reference-based Super-Resolution via C²-Matching
Yuming Jiang, Kelvin C.K. Chan, Xintao Wang, Chen Change Loy, Ziwei Liu
[CVPR 2021] [Project] [Pytorch-Code] -
AdderSR: Towards Energy Efficient Image Super-Resolution
Dehua Song, Yunhe Wang, Hanting Chen, Chang Xu, Chunjing Xu, Dacheng Tao
[CVPR 2021]
[★] 使用加法做SR -
Data-Free Knowledge Distillation For Image Super-Resolution
Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, Yunhe Wang
[CVPR 2021] -
Learning the Non-Differentiable Optimization for Blind Super-Resolution
Zheng Hui, Jie Li, Xiumei Wang, Xinbo Gao
[CVPR 2021]
[AMNet] -
Frequency Consistent Adaptation for RealWorld Super Resolution
Xiaozhong Ji, Guangpin Tao, Yun Cao, Ying Tai, Tong Lu, Chengjie Wang, Jilin Li, Feiyue Huang
[AAAI 2021]
[FCA] [★] -
Ultra Lightweight Image Super-Resolution with Multi-Attention Layers
Abdul Muqeet, Jiwon Hwang, Subin Yang, Jung Heum Kang, Yongwoo Kim, Sung-Ho Bae
[arXiv 2008] [Code]
[MAFFSRN] [★☆] 轻量级超分网络 -
Residual Feature Distillation Network for Lightweight Image Super-Resolution
Jie Liu, Jie Tang, Gangshan Wu
[arXiv 2009] [Pytorch-Code]
[RFDN] [★☆] AIM2020-ESR冠军方案, 基于IDN提出了几点改善. -
Lightweight Single-Image Super-Resolution Network with Attentive Auxiliary Feature Learning
Xuehui Wang, Qing Wang, Yuzhi Zhao, Junchi Yan, Lei Fan, [Long Chen](
[ACCV 2020] [Project]
[A2F] [★] 轻量级超分. 使用attention和dense connection思想 -
Investigating loss functions for extreme super-resolution
Younghyun Jo, Sejong Yang, Seon Joo Kim
[CVPRW 2020] [Pytorch-Code] -
Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
Yong Guo, Jian Chen, Jingdong Wang, Qi Chen, Jiezhang Cao, Zeshuai Deng, Yanwu Xu, Mingkui Tan
[CVPR 2020] [Pytorch-Code]
[DRN] [★] 训练时引入HR->LR的映射, 对LR图像进行额外的约束. 大致浏览. -
Deep Unfolding Network for Image Super-Resolution
Kai Zhang, Luc Van Gool, Radu Timofte
[CVPR 2020] [Pytorch-Code]
[USRNet] [★] 大致浏览, 通过变量分解迭代求解, 一部分用FFT直接求解, 一部分用网络训练. -
Residual Feature Aggregation Network for Image Super-resolution
Jie Liu, Wenjie Zhang, Yuting Tang, Jie Tang, Gangshan Wu
[CVPR 2020] [Code]
[RFANet] [★] 设计了一个残差聚合和attention模块 -
mage Super-Resolution with Cross-Scale Non-Local Attention and Exhaustive Self-Exemplars Mining
Yiqun Mei, Yuchen Fan, Yuqian Zhou, Lichao Huang, Thomas S. Huang, Humphrey Shi
[CVPR 2020] [Pytorch-Code]
[★☆] 设计了LR到降采样LR的attention, 挖掘不同尺度下的non-local相似性 -
TTSR: Learning Texture Transformer Network for Image Super-Resolution
Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, Baining Guo
[CVPR 2020] [Pytorch-Code]
[★★] 使用transformer从参考图像获取纹理信息 -
Unpaired Image Super-Resolution using Pseudo-Supervision
Shunta Maeda
[CVPR 2020]
[★] 大致浏览, 类似CycleGAN的结构 -
Structure-Preserving Super Resolution with Gradient Guidance
Cheng Ma, Yongming Rao, Yean Cheng, Ce Chen, Jiwen Lu, Jie Zhou
[CVPR 2020] [Pytorch-Code]
[SPSR] [★] 在常规超分分支外加入一个gradient分支 -
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
Sachit Menon, Alexandru Damian, Shijia Hu, Nikhil Ravi, Cynthia Rudin
[CVPR 2020] [Pytorch-Code]
[★★] (无监督SR) 通过在LR空间优化latent vector使生成的HR图像符合LR图像的内容. 思路很有意思. -
Correction Filter for Single Image Super-Resolution: Robustifying Off-the-Shelf Deep Super-Resolvers
Shady Abu Hussein, Tom Tirer, Raja Giryes
[CVPR 2020 Oral] [Pytorch-Code] -
Meta-Transfer Learning for Zero-Shot Super-Resolution
Jae Woong Soh, Sunwoo Cho, Nam Ik Cho
[CVPR 2020] [TF-Code]
[MZSR] -
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
Jaejun Yoo, Namhyuk Ahn, Kyung-Ah Sohn
[CVPR 2020] [Pytorch-Code]
[CutBlur] [★] (数据增强方法) 提出随机置换HR和LR中某一区域, 使网络能够判断哪些区域需要增强, 对过度锐化方面貌似有所改善 -
Guided Frequency Separation Network for Real-World Super-Resolution
Yuanbo Zhou, Wei Deng, Tong Tong, Qinquan Gao
[CVPR 2020] [Pytorch-Code]
[CARB] [★☆] 使用一套基于GAN的无监督方案生成真实LR图像对, 在该方案中提出了所谓颜色引导生成器网络, 用于产生AdaIn中的参数. -
Real-World Super-Resolution via Kernel Estimation and Noise Injection
Xiaozhong Ji,Yun Cao,Ying Tai,Chengjie Wang,Jilin Li,Feiyue Huang
[CVPRW 2020] [Pytorch-Code]
[REAL-SR] [★★] 设计了一个退化图像的流程, 通过随机模糊核和注入噪声, 生成接近于真实的样本, 在NTIRE 2020超分竞赛中取得了第一名, 并且在真实数据上表现良好 -
Journey towards tiny perceptual superresolution
Royson Lee, Łukasz Dudziak, Mohamed Abdelfattah, Stylianos I. Venieris, Hyeji Kim, Hongkai Wen, Nicholas D. Lane
[ECCV 2020]
[TPSR] [★] -
Multi-objective reinforced evolution in mobile neural architecture search
Xiangxiang Chu, Bo Zhang, Ruijun Xu, Hailong Ma
[ECCV 2020]
[MoreMNAS] [★] (NAS, Mobile SR) -
Component Divide-and-Conquer for Real-World Image Super-Resolution
Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, Liang Lin Lin
[ECCV 2020] [Pytorch-Code]
[CDC] -
Learning the Super-Resolution Space with Normalizing Flow
Andreas Lugmayr, Martin Danelljan, Luc Van Gool, Radu Timofte
[ECCV 2020] [Pytorch-Code]
[SRFlow] -
Single Image Super-Resolution via a Holistic Attention Network
Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, Haifeng Shen
[ECCV 2020] [Pytorch-Code]
[HAN] -
Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks
Majed El Helou, Ruofan Zhou, Sabine Süsstrunk
[ECCV 2020] [Pytorch-Code]
[SFM] [★] 随机去掉某些频率的信号, 减小degradation-kernel overfitting, 以提升测试集上的性能. -
VarSR: Variational Super-Resolution Network for Very Low Resolution Images
Sangeek Hyun, Jae-Pil Heo
[ECCV 2020]
[VarSR] -
Learning with Privileged Information for Efficient Image Super-Resolution
Junghyup Lee, Dohyung Kim, Wonkyung Lee, Bumbsub Ham
[ECCV 2020] [Project]
[Pytorch-Code]
[PISR] [★] T以HR为输入, 训练一个auto encoder. AE的decoder部分作为S的SR网络. 设计了互信息loss等一系列方法训练. -
Efficient Super Resolution Using Binarized Neural Network
Yinglan Ma, Hongyu Xiong, Zhe Hu, Lizhuang Ma
[ECCV 2020] -
Towards Content-independent Multi-Reference Super-Resolution: Adaptive Pattern Matching and Feature Aggregation
Xu Yan, Weibing Zhao, Kun Yuan, Ruimao Zhang, Zhen Li, Shuguang Cui
[ECCV 2020] -
Zero-Shot Image Super-Resolution with Depth Guided Internal Degradation Learning
Xi Cheng, Zhenyong Fu, Jian Yang
[ECCV 2020] -
Fast Adaptation to Super-Resolution Networks via Meta-Learning
Xi Cheng, Zhenyong Fu, Jian Yang
[ECCV 2020] [TF-Code]
[MLSR] -
LatticeNet: Towards Lightweight Image Super-Resolution with Lattice Block
Xiaotong Luo, Yuan Xie, Yulun Zhang, Yanyun Qu, Cuihua Li, Yun Fu
[ECCV 2020]
[★] 轻量级超分 -
Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-resolution and Beyond
Wenbo Li, Kun Zhou, Lu Qi, Nianjuan Jiang, Jiangbo Lu, Jiaya Jia
[NIPS 2020] [Pytorch-Code]
[LAPAR] [★☆] 预先定义L个滤波器, 滤波器是不同方向的高斯核和DoG核, 对LR进行bicubic插值, 用一个网络预测滤波器的系数. -
Cross-Scale Internal Graph Neural Network for Image Super-Resolution
Shangchen Zhou, Jiawei Zhang, Wangmeng Zuo, Chen Change Loy
[NIPS 2020] [Pytorch-Code]
[IGNN] -
Unfolding the Alternating Optimization for Blind Super Resolution
Zhengxiong Luo, Yan Huang, Shang Li, Liang Wang, Tieniu Tan
[NIPS 2020] [Pytorch-Code]
[DAN] -
Zoom to Learn, Learn to Zoom
Xuaner Zhang, Qifeng Chen, Ren Ng, Vladlen Koltun
[CVPR 2019] [Project] [TF-Code]
[★★] 提出了考虑空间距离的bilateral contextual loss. 提出了一个由光学zoom图像对组成的raw超分数据集 -
Towards Real Scene Super-Resolution with Raw Images
Xiangyu Xu, Yongrui Ma, Wenxiu Sun
[CVPR 2019] [Project]
[★] 大致浏览, 利用Raw做细节恢复, 用RGB做Color校正. -
Blind Super-Resolution with Iterative Kernel Correction
Jinjin Gu, Hannan Lu, Wangmeng Zuo, Chao Dong
[CVPR 2019] [Project]
[SFTMD] [★] 1) 粗读, 提出一个基于深度学习的交替预测blur kernel和预测超分结果的模型, 对给定的blur有很好的效果; 2) 文中提出的预测blur kernel并用其辅助超分的思路很有意思, 但对真实图像而言无法获得真实的blur kernel用于训练, 另外论文似乎假设一张图像只有一种blur kernel, 感觉不太合理 -
Camera Lens Super-Resolution
Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha, Feng Wu
[CVPR 2019] [Code & Data]
[CameraSR] [★] 文章认为普通的插值退化不能模拟由于焦距-FOV变化带来的退化 (其实这是一个无论从分析上还是工程中都很明显的事实...). 最重要的贡献是提出了一个真实DSLR和手机的数据集, 但是在生成单反数据集时, 貌似没有考虑焦距变化带来的景深变化. -
Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels
Kai Zhang, Wangmeng Zuo, Lei Zhang
[CVPR 2019] [Pytorch-Code] [Pytorch-IR-Toolbox]
[DPSR] [★★] 1. 把HR到LR的退化解释成bicubic降采样+非盲blur kernel退化+加性高斯白噪声的过程. 2. 将求解过程用HQS变量分裂法分解为去模糊和超分+去噪两步, 第一步在频谱域求闭式解, 避免了模糊现象; 第二步可以使用现有的SR方法, 只需额外加入一噪声level. 采用迭代的形式交替求解. 3. 非盲kernel这个先验其实挺强的, 而且只在生成的数据集上做了实验. 但是实际效果来看, 在真实图像上的效果的确很不错. -
Image Super-Resolution by Neural Texture Transfer
Zhifei Zhang, Zhaowen Wang, Zhe Lin, Hairong Qi
[CVPR 2019] [Project] [TF-Code]
[SRNTT] [★] (借助参考图的超分) 选出参考图中与当前patch最相近的patch, 再与LR一起处理 -
Blind Super-Resolution Kernel Estimation using an Internal-GAN
Sefi Bell-Kligler, Assaf Shocher, Michal Irani
[NIPS 2019 Oral] [Project] [Pytorch-Code]
[KernelGAN] [★★] 无监督预测降质核并进行超分的方法. 使用若干个现象卷积层的GAN预测降质kernel, 训练的的GAN可以合成一个kernel, 作为该图形的降质核, 网络训练采用LSGAN和若干正则项构成. 预测的模糊核作为ZSSR的降质核, 再无监督地预测超分结果 -
Enhanced Super-Resolution Generative Adversarial Networks
Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, Chen Change Loy
[ECCV 2018 workshop] [Pytorch-Code]
[ESRGAN] -
To learn image super-resolution, use a GAN to learn how to do image degradation first
Adrian Bulat, Jing Yang, Georgios Tzimiropoulos
[ECCV 2018] [Pytorch-Code]
[★★] 使用GAN的无监督学习降质 -
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network
Namhyuk Ahn, Byungkon Kang, Kyung-Ah Sohn
[ECCV 2018] [Pytorch-Code]
[CARN] [★☆] 轻量级超分. 在block内部使用group conv和skip connection, 使用全局和局部的跳连. 在低分辨率上处理, 用PixelShuffle上采样. -
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, Yun Fu
[ECCV 2018] [Pytorch-Code]
[RCAN] [★☆] residual + 通道attention -
"Zero Shot" Super-Resolution using Deep Internal Learning
Assaf Shocher, Nadav Cohen, Michal Irani
[CVPR 2018] [Project] [Pytorch-Code]
[★☆] DL Zero shot超分较早的一篇, 使用LR内部patch将采样后作为训练输入, 对应的LR patch作为输出, 训练网络. 网络收敛后用来预测LR图像的超分结果. -
Deep Back-Projection Networks For Super-Resolution
Muhammad Haris, Greg Shakhnarovich, Norimichi Ukita
[CVPR 2018] [Project]
[DBPN] [★★] 提出在神经网络中引入back-projection思想, 引入HR到LR的反馈信息. 这个思路或许可以用在其他形式的网络中, 替代加或乘的特征融合方式. -
Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform
Xintao Wang, Ke Yu, Chao Dong, Chen Change Loy
[CVPR 2018] [Pytorch-Code]
[SFTGAN] [★★] (结合语义的超分) 从分割图中提取特征作为超分网络feature的scale和shift -
Residual Dense Network for Image Super-Resolution
Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, Yun Fu
[CVPR 2018] [Pytorch-Code]
[RDN] [★☆] 提出Residual Dense Block(RDB) -
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi
[CVPR 2017] [TF-Code]
[SRGAN] -
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
Chao Dong, Chen Change Loy, Xiaoou Tang
[ECCV 2016] [Project]
[★☆] SRCNN的加速版本, 在小分辨率上处理,用deconv升分辨率.
-
Towards Real-World Burst Image Super-Resolution: Benchmark and Method
Pengxu Wei, Yujing Sun, Xingbei Guo, Chang Liu, Guanbin Li, Jie Chen, Xiangyang Ji, Liang Lin
[ICCV 2023] [Pytorch-Code] -
BSRT: Improving Burst Super-Resolution with Swin Transformer and Flow-Guided Deformable Alignment
Zhengxiong Luo, Youwei Li, Shen Cheng, Lei Yu, Qi Wu, Zhihong Wen, Haoqiang Fan, Jian Sun, Shuaicheng Liu
[CVPRW 2022] [Pytorch-Code] -
Deep Burst Super-Resolution
Goutam Bhat, Martin Danelljan, Luc Van Gool, Radu Timofte
[CVPR 2021] [Pytorch-Code]
[BURSTSR] -
Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts
Bruno Lecouat, Jean Ponce, Julien Mairal
[ICCV 2021] [Project]