-
Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, Liwei Wang
[NeurIPS 2024 Oral] [Pytorch-Code]
[VAR] 🔥 -
Adding Conditional Control to Text-to-Image Diffusion Models
Lvmin Zhang, Anyi Rao, Maneesh Agrawala
[ICCV 2023 Oral] [Project] [Pytorch-Code]
[ControlNet] 🔥 -
Disentangling Writer and Character Styles for Handwriting Generation
Shilin Lu, Yanzhu Liu, Adams Wai-Kin Kong
[ICCV 2023] [Project] [Pytorch-Code] -
Disentangling Writer and Character Styles for Handwriting Generation
Gang Dai, Yifan Zhang, Qingfeng Wang, Qing Du, Zhuliang Yu, Zhuoman Liu, Shuangping Huang [CVPR 2023] [Pytorch-Code] -
All are Worth Words: A ViT Backbone for Diffusion Models
Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, Jun Zhu
[CVPR 2023] [Pytorch-Code] -
Wavelet Diffusion Models are fast and scalable Image Generators
Hao Phung, Quan Dao, Anh Tran
[CVPR 2023] [Pytorch-Code] -
LayoutDiffusion: Controllable Diffusion Model for Layout-to-image Generation
Guangcong Zheng, Xianpan Zhou, Xuewei Li, Zhongang Qi, Ying Shan, Xi Li
[CVPR 2023] [Pytorch-Code] -
MAGE: MAsked Generative Encoder to Unify Representation Learning and Image Synthesis
Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, Dilip Krishnan
[CVPR 2023] [Pytorch-Code] -
Person Image Synthesis via Denoising Diffusion Model
Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal, Rao Muhammad Anwer, Jorma Laaksonen, Mubarak Shah, Fahad Shahbaz Khan
[CVPR 2023] [Project] [Pytorch-Code] -
Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
Narek Tumanyan, Michal Geyer, Shai Bagon, Tali Dekel
[CVPR 2023] [Project] [Pytorch-Code] -
Collaborative Diffusion for Multi-Modal Face Generation and Editing
Ziqi Huang, Kelvin C.K. Chan, Yuming Jiang, Ziwei Liu
[CVPR 2023] [Project] [Pytorch-Code] -
DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation
Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, Kfir Aberman
[CVPR 2023] [Project]
Google -
Custom Diffusion: Multi-Concept Customization of Text-to-Image Diffusion
Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, Jun-Yan Zhu
[CVPR 2023] [Project] [Pytorch-Code]
🔥 -
GLIGEN: Open-Set Grounded Text-to-Image Generation
Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, Yong Jae Lee
[CVPR 2023] [Project] [Pytorch-Code]
🔥 -
Scaling up GANs for Text-to-Image Synthesis
Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, Taesung Park
[CVPR 2023] [Project]
Adobe -
GALIP: Generative Adversarial CLIPs for Text-to-Image Synthesis
Ming Tao, Bing-Kun Bao, Hao Tang, Changsheng Xu
[CVPR 2023] [Pytorch-Code] -
Multimodal Image Synthesis and Editing: A Survey
Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Lingjie Liu, Adam Kortylewsk, Christian Theobalt, Eric Xing
[arXiv 2112] [Pytorch-Code] -
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer
[CVPR 2022 Oral] [Project] [Pytorch-Code]
[Stable Difussion] 🔥 -
LAFITE: Towards Language-Free Training for Text-to-Image Generation
Yufan Zhou, Ruiyi Zhang, Changyou Chen, Chunyuan Li, Chris Tensmeyer, Tong Yu, Jiuxiang Gu, Jinhui Xu, Tong Sun
[CVPR 2022] [Pytorch-Code] -
Text to Image Generation with Semantic-Spatial Aware GAN
Kai Hu, Wentong Liao, Michael Ying Yang, Bodo Rosenhahn
[CVPR 2022] [Pytorch-Code] -
HyperInverter: Improving StyleGAN Inversion via Hypernetwork
Tan M. Dinh, Anh Tran, Rang Nguyen, Binh-Son Hua
[CVPR 2022] [Pytorch-Code] -
NeRF in the Dark: High Dynamic Range View Synthesis from Noisy Raw Images
Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul Srinivasan, Jonathan Barron
[CVPR 2022 Oral] [Project] [TF-Code] -
Im2Vec Synthesizing Vector Graphics without Vector Supervision
Sheng-Yu Wang, David Bau, Jun-Yan Zhu
[ICCV 2021] [Project] [Pytorch-Code] -
Im2Vec Synthesizing Vector Graphics without Vector Supervision
Pradyumna Reddy, Michael Gharbi, Michal Lukac, Niloy J. Mitra
[CVPR 2021 Oral] [Project] [Pytorch-Code] -
Image Generators with Conditionally-Independent Pixel Synthesis
Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb Sterkin, Victor Lempitsky, Denis Korzhenkov
[CVPR 2021 Oral] [Pytorch-Code]
[CIPS] -
Anycost GANs for Interactive Image Synthesis and Editing
Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zhu
[CVPR 2021] [Project] [Pytorch-Code] -
Generative Hierarchical Features from Synthesizing Images
Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, Bolei Zhou
[CVPR 2021 Oral] [Project] [TF-Code]
[GH-Feat] -
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
Peihao Zhu, Rameen Abdal, Yipeng Qin, Peter Wonka
[CVPR 2020 Oral] [Project] [PyTorch-Code]
[★] 与SPADE类似, 不过提取了每个语义类别的style信息, 并与语义mask一起, 通过AdaIN的形式控制生成器的activation -
A U-Net Based Discriminator for Generative Adversarial Networks
Edgar Sch ̈onfeld, Bernt Schiele
[CVPR 2020] [PyTorch-Code]
[★] 采用UNet形式的判别器, 可以用CutMix等数据增强策略 -
Semantic Pyramid for Image Generation
Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William T. Freeman, Tali Dekel
[CVPR 2020 Oral] [Project]
[★☆] 提出一个通用的图像生成框架, 将预训练的多尺度特征融合进生成网络中, 实现对不同语义层次图像内容的生成控制, 融合时使用mask选择特定区域的生成. 论文思路简单清晰, 适用于多种任务 -
Few-shot Image Generation with Elastic Weight Consolidation
Yijun Li, Richard Zhang, Jingwan Lu, Eli Shechtman
[NeurIPS 2020] [Project] -
Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila
[CVPR 2020] [TF-Code]
[★☆] 对StyleGAN做了一些改进, 如去掉减均值操作 -
Training Generative Adversarial Networks with Limited Data
Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, Timo Aila
[arXiv 2006] [TF-Code] [Pytorch-Code]
[StyleGAN2-ADA] -
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis
Xihui Liu, Guojun Yin, Jing Shao, Xiaogang Wang, Hongsheng Li
[NIPS 2019] [Pytorch-Code]
[CC-FPSE] [★] 使用分割图通过一个网络预测每个pixel我的卷积参数, 虽然使用的depthwise卷积, 但参数量仍然非常庞大, 所以生成的图像较小. -
Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan
[ICLR 2019] [Pytorch-Code]
[BigGAN] [★☆] 加大网络复杂度和训练batch size, 另外使用了截断等一些trick, 大幅提升了生成效果 -
SinGAN: Learning a generative model from a single natural image
Tamar Rott Shaham, Tali Dekel, Tomer Michaeli
[ICCV 2019 Best Paper] [Project] [Pytorch-Code] -
Dynamic-Net: Tuning the Objective Without Re-training for Synthesis Tasks
Alon Shoshan, Roey Mechrez, Lihi Zelnik-Manor
[ICCV 2019] [Project] [PyTorch-Code]
[★☆] 先以Objective 0训练主干网络, 之后固定主干网络以Objective 1训练tuning block. 测试时手动指定插值系数, 达到在O0和O1之间的输出效果. 论文思路和实现都很简单, 分析论述方式值得学习 -
Semantic Image Synthesis with Spatially-Adaptive Normalization
Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu
[CVPR 2019 Oral] [Project] [PyTorch-Code]
[SPADE] [★★] 提出一个与AdaIN结构相似的SPADE模块, 用于将语义信息嵌入到生成模型中 -
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras, Samuli Laine, Timo Aila
[CVPR 2019] [TF-Code]
[StyleGAN] [★★☆] 通过若干FC层得到中间向量, 使用AdaIn的形式将中间向量作用在生成器上 -
Image Generation From Layout
Bo Zhao, Lili Meng, Weidong Yin, Leonid Sigal
[CVPR 2019 Oral] [Pytorch-Code] -
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Qifeng Chen, Vladlen Koltun
[CVPR 2018] [Project] [TF-Code] -
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs
Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, Bryan Catanzaro
[CVPR 2018] [Project] [Pytorch-Code]
[pix2pixHD] [★☆] 生成2048 x 1024的高清图像, 提出了一个local到global的多尺度生成器结构, 使用多尺度的判别器, 提出使用判别器的中间层feature相似度作为一个loss -
Progressive Growing of GANs for Improved Quality, Stability, and Variation
Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen
[ICLR 2018] [Pytorch-Code]
[★★☆]
-
MonoPix - Contrastive Monotonic Pixel-Level Modulation
Kun Lu, Rongpeng Li, Honggang Zhang
[ECCV 2022 Oral] [Pytorch-Code] -
Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Model
Niv Granot, Ben Feinstein, Assaf Shocher, Shai Bagon, Michal Irani
[CVPR 2022] [Project] [Pytorch-Code] -
Day-to-Night Image Synthesis for Training Nighttime Neural ISPs
Abhijith Punnappurath, Abdullah Abuolaim, Abdelrahman Abdelhamed, Alex Levinshtein, Michael S. Brown
[CVPR 2022 Oral] [Code] -
Neural Texture Extraction and Distribution for Controllable Person Image Synthesis
Yurui Ren, Xiaoqing Fan, Ge Li, Shan Liu, Thomas H. Li
[CVPR 2022 Oral] [Pytorch-Code] -
Exploring Patch-wise Semantic Relation for Contrastive Learning in Image-to-Image Translation Tasks
Chanyong Jung, Gihyun Kwon, Jong Chul Ye
[CVPR 2022] [Pytorch-Code] -
Unsupervised Image-to-Image Translation with Generative Prior
Shuai Yang, Liming Jiang, Ziwei Liu, Chen Change Loy
[CVPR 2022] [Project] [Pytorch-Code]
[GP-UNIT] -
Marginal Contrastive Correspondence for Guided Image Generation
Fangneng Zhan, Yingchen Yu, Rongliang Wu, Jiahui Zhang, Shijian Lu, Changgong Zhang
[CVPR 2022] [Pytorch-Code] -
QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation
Xueqi Hu, Xinyue Zhou, Qiusheng Huang, Zhengyi Shi, Li Sun, Qingli Li
[CVPR 2022] [Pytorch-Code] -
A Style-aware Discriminator for Controllable Image Translation
Kunhee Kim, Sanghun Park, Eunyeong Jeon, Taehun Kim, Daijin Kim
[CVPR 2022] [Pytorch-Code] -
Maximum Spatial Perturbation for Image-to-Image Translation
Yanwu Xu, Shaoan Xie, Wenhao Wu, Kun Zhang, Mingming Gong, Kayhan Batmanghelich
[CVPR 2022] [Pytorch-Code]
[MSPC] -
AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning
Guoxian Song, Linjie Luo, Jing Liu, Wan-Chun Ma, Chunpong Lai, Chuanxia Zheng, Tat-Jen Cham
[SIGGRAPH 2021] [Project] -
The Spatially-Correlative Loss for Various Image Translation Tasks
Chuanxia Zheng, Tat-Jen Cham, Jianfei Cai
[CVPR 2021] [Project] [Pytorch-Code] -
Unpaired Image-to-Image Translation via Latent Energy Transport
Yang Zhao, Jianwen Xie, Ping Li
[CVPR 2021] [Pytorch-Code] -
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
Xingran Zhou, Bo Zhang, Ting Zhang, Pan Zhang, Jianmin Bao, Dong Chen, Zhongfei Zhang, Fang Wen
[CVPR 2021 Oral] [Pytorch-Code] -
High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network
Tamar Rott Shaham, Michaël Gharbi, Richard Zhang, Eli Shechtman, Tomer Michaeli
[CVPR 2021] [Pytorch-Code]
[LPTN] [★] 把大多数计算放在laplacian金字塔低分辨率层 -
Spatially-Adaptive Pixelwise Networks for Fast Image Translation
Tamar Rott Shaham, Michaël Gharbi, Richard Zhang, Eli Shechtman, Tomer Michaeli
[CVPR 2021] [Project]
[ASAPNet] [★★] (快速图像生成) 在小分辨率(降32倍)上预测每个pixel的MLP映射系数, 将位置信息编码为不同频率的sin, cosine信息, 提升了生成图像的细节. 论文很有实际意义, 值得学习. -
Few-shot Image Generation via Cross-domain Correspondence
Utkarsh Ojha , Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zhang
[CVPR 2021] [Project] [Pytorch-Code] -
Unsupervised Image Transformation Learning via Generative Adversarial Networks
Kaiwen Zha, Yujun Shen, Bolei Zhou
[arXiv 2103] [Project]
[TrGAN] -
COCO-FUNIT: Few-Shot Unsupervised Image Translation with a Content Conditioned Style Encoder
Kuniaki Saito, Kate Saenko, Ming-Yu Liu
[ECCV 2020] [Pytorch-Code] -
Contrastive Learning for Unpaired Image-to-Image Translation
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu
[ECCV 2020] [Project] [Pytorch-Code]
[CUT] -
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs
Yaxing Wang, Lu Yu, Joost van de Weijer
[NeurIPS 2020] [Pytorch-Code] -
Mask Based Unsupervised Content Transfer
Ron Mokady, Sagie Benaim, Lior Wolf, Amit Bermano
[ICLR 2020] [Pytorch-Code] -
STGAN: A Unified Selective Transfer Network for Arbitrary Image Attribute Editing
Ming Liu, Yukang Ding, Min Xia, Xiao Liu, Errui Ding, Wangmeng Zuo, Shilei Wen
[CVPR 2019] [Pytorch-Code] -
RelGAN: Multi-Domain Image-to-Image Translation via Relative Attributes
Po-Wei Wu, Yu-Jing Lin, Che-Han Chang, Edward Y. Chang, Shih-Wei Liao
[Pytorch-Code] -
Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer
Ori Press, Tomer Galanti, Sagie Benaim, Lior Wolf
[ICLR 2019] [Pytorch-Code] -
StarGAN v2: Diverse Image Synthesis for Multiple Domains
Yunjey Choi, Youngjung Uh, Jaejun Yoo, Jung-Woo Ha
[CVPR 2020] [Pytorch-Code] -
StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation
Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, Jaegul Choo
[CVPR 2018 Oral] [Pytorch-Code] -
Multimodal Unsupervised Image-to-image Translation
Xun Huang, Ming-Yu Liu, Serge Belongie, Jan Kautz
[ECCV 2018] [Pytorch-Code]
[MUNIT] -
DRIT++: Diverse Image-to-Image Translation via Disentangled Representations
Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang, Yu-Ding Lu, Maneesh Kumar Singh, Ming-Hsuan Yang
[IJCV 2020] [Pytorch-Code] -
Diverse Image-to-Image Translation via Disentangled Representations
Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Kumar Singh, Ming-Hsuan Yang
[ECCV 2018 Oral]
[DRIT] -
Image-to-Image Translation with Conditional Adversarial Nets
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros
[CVPR 2017] [Project]
[pix2pix] [★★☆] 使用patchGAN的图像迁移的经典方法 -
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros
[ICCV 2017] [Project]
[CycleGAN] [★★★] 无监督图像迁移 -
Toward Multimodal Image-to-Image Translation
Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A. Efros, Oliver Wang, Eli Shechtman
[NIPS 2017] [Pytorch-Code]
[BicycleGAN] -
Unsupervised image-to-image translation networks
Ming-Yu Liu, Thomas Breuel, Jan Kautz
[NIPS 2017] [Pytorch-Code]
[UNIT]
-
EDICT: Exact Diffusion Inversion via Coupled Transformations
Qinghe Wang, Xu Jia, Xiaomin Li, Taiqing Li, Liqian Ma, Yunzhi Zhuge, Huchuan Lu
[arXiv 2401] [Project] [Pytorch-Code] -
HairCLIPv2: Unifying Hair Editing via Proxy Feature Blending
Tianyi Wei, Dongdong Chen, Wenbo Zhou, Jing Liao, Weiming Zhang, Gang Hua, Nenghai Yu
[ICCV 2023] [Pytorch-Code] -
MasaCtrl: Tuning-free Mutual Self-Attention Control for Consistent Image Synthesis and Editing
Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, Yinqiang Zheng
[ICCV 2023] [Pytorch-Code] -
Multimodal Garment Designer: Human-Centric Latent Diffusion Models for Fashion Image Editing
Alberto Baldrati, Davide Morelli, Giuseppe Cartella, Marcella Cornia, Marco Bertini, Rita Cucchiara
[ICCV 2023] [Pytorch-Code] -
EDICT: Exact Diffusion Inversion via Coupled Transformations
Bram Wallace, Akash Gokul, Nikhil Naik
[CVPR 2023] [Pytorch-Code] -
DeltaEdit: Exploring Text-free Training for Text-Driven Image Manipulation
Yueming Lyu, Tianwei Lin, Fu Li, Dongliang He, Jing Dong, Tieniu Tan
[CVPR 2023] [Pytorch-Code] -
InstructPix2Pix: Learning to Follow Image Editing Instructions
Tim Brooks, Aleksander Holynski, Alexei A. Efros
[CVPR 2023] [Project] [Pytorch-Code]
🔥 -
Delving StyleGAN Inversion for Image Editing: A Foundation Latent Space Viewpoint
Hongyu Liu, Yibing Song, Qifeng Chen>
[CVPR 2023] [Project] [Pytorch-Code] -
StyleRes: Transforming the Residuals for Real Image Editing With StyleGAN
Hamza Pehlivan, Yusuf Dalva, Aysegul Dundar
[CVPR 2023] [Project] [Pytorch-Code] -
Prompt-to-Prompt Image Editing with Cross-Attention Control
Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, Daniel Cohen-Or
[ICLR 2023] [Project] [Pytorch-Code]
🔥 -
Null-text Inversion for Editing Real Images using Guided Diffusion Models
Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, Daniel Cohen-Or
[CVPR 2023] [Project] [Pytorch-Code]
🔥 -
Paint by Example: Exemplar-based Image Editing with Diffusion Models
Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, Fang Wen
[CVPR 2023] [Pytorch-Code] -
DiffusionRig: Learning Personalized Priors for Facial Appearance Editing
Zheng Ding, Xuaner Zhang, Zhihao Xia, Lars Jebe Zhuowen Tu, Xiuming Zhang
[CVPR 2023] [Project] [Pytorch-Code] -
SINgle Image Editing with Text-to-Image Diffusion Models
Zhixing Zhang, Ligong Han, Arnab Ghosh, Dimitris Metaxas, Jian Ren
[CVPR 2023] [Project] [Pytorch-Code]
[SINE] -
Spatially-Adaptive Multilayer Selection for GAN Inversion and Editing
Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-Yan Zhu, Krishna Kumar Singh
[CVPR 2022] [Project] [Pytorch-Code] -
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches
Yu Zeng, Zhe Lin, Vishal M. Patel
[CVPR 2022] [Project] [Pytorch-Code] -
HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing
Yuval Alaluf, Omer Tov, Ron Mokady, Rinon Gal, Amit H. Bermano
[CVPR 2022] [Project] [Pytorch-Code] -
High-Fidelity GAN Inversion for Image Attribute Editing
Tengfei Wang, Yong Zhang, Yanbo Fan, Jue Wang, Qifeng Chen
[CVPR 2022] [Project] [Pytorch-Code]
[HFGI] -
Blended Diffusion for Text-driven Editing of Natural Images
Omri Avrahami, Dani Lischinski, Ohad Fried
[CVPR 2022] [Pytorch-Code] -
Style Transformer for Image Inversion and Editing
Xueqi Hu, Qiusheng Huang, Zhengyi Shi, Siyuan Li, Changxin Gao, Li Sun, Qingli Li
[CVPR 2022] [Pytorch-Code] -
DeFLOCNet: Deep Image Editing via Flexible Low-level Controls
Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong Han , Jing Liao, Bin Jiang, Wei Liu
[CVPR 2021] [Pytorch-Code] -
HiSD: Image-to-image Translation via Hierarchical Style Disentanglement
Xinyang Li, Shengchuan Zhang, Jie Hu, Liujuan Cao, Xiaopeng Hong, Xudong Mao, Feiyue Huang, Yongjian Wu, Rongrong Ji
[CVPR 2021 Oral] [Pytorch-Code]
[★★] 大致浏览, 可将人脸各属性解耦, 并实现准确控制. 将CelebA的属性信息进一步划分为相互独立的tags(如刘海, 眼镜)和互斥的attributes(如黑发和棕发),并为每个tag和attribute分别构造模块. 论文整体思路很清晰, 代码也很友好, 可以仔细研究一下. -
Closed-Form Factorization of Latent Semantics in GANs
Yujun Shen, Bolei Zhou
[CVPR 2021 Oral] [Project] [Pytorch-Code]
[SeFa] -
IDInvert:In-Domain GAN Inversion for Real Image Editing
Jiapeng Zhu, Yujun Shen, Deli Zhao, Bolei Zhou
[ECCV 2020] [Project] [TF-Code] -
Collaborative Learning for Faster StyleGAN Embedding
Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue Huang, Xiaokang Yang
[arXiv 2007]
[★] (latent code embedding) -
Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?
Rameen Abdal, Yipeng Qin, Peter Wonka
[ICCV 2019] [TF-Code]
[★☆] (latent code embedding)
-
Neural-based 3D Lookup Tables for Video Photorealistic Style Transfer
Yaosen Chen, Han Yang, Yuexin Yang, Yuegen Liu, Wei Wang, Xuming Wen, Chaoping Xie
[arXiv 2303] [Pytorch-Code]
[★] [NLUT] -
Inversion-Based Style Transfer with Diffusion Models
Yuxin Zhang, Nisha Huang, Fan Tang, Haibin Huang, Chongyang Ma, Weiming Dong, Changsheng Xu
[CVPR 2023] [Pytorch-Code]
[InST] -
QuantArt: Quantizing Image Style Transfer Towards High Visual Fidelity
Siyu Huang, Jie An, Donglai Wei, Jiebo Luo, Hanspeter Pfister
[CVPR 2023] [Pytorch-Code] -
Fix the Noise: Disentangling Source Feature for Controllable Domain Translation
Dongyeun Lee, Jae Young Lee, Doyeon Kim, Jaehyun Choi, Jaejun Yoo, Junmo Kim
[CVPR 2023] [Pytorch-Code] -
Neural Preset for Color Style Transfer
Zhanghan Ke, Yuhao Liu, Lei Zhu, Nanxuan Zhao, Rynson W.H. Lau
[CVPR 2023] [Pytorch-Code]
[NeuralPreset] -
Pastiche Master: Exemplar-Based High-Resolution Portrait Style Transfer
Shuai Yang, Liming Jiang, Ziwei Liu, Chen Change Loy
[CVPR 2021] [Pytorch-Code]
[DualStyleGAN] -
Industrial Style Transfer with Large-scale Geometric Warping and Content Preservation
Jinchao Yang, Fei Guo, Shuo Chen, Jun Li, Jian Yang
[CVPR 2021] [Pytorch-Code]
[InST] -
Exact Feature Distribution Matching for Arbitrary Style Transfer and Domain Generalization
Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, Lei Zhang
[CVPR 2021 Oral] [Pytorch-Code] -
Style-ERD: Responsive and Coherent Online Motion Style Transfer
Tianxin Tao, Xiaohang Zhan, Zhongquan Chen, Michiel van de Panne
[CVPR 2021] [Pytorch-Code] -
CLIPstyler:Image Style Transfer with a Single Text Condition
Gihyun Kwon, Jong Chul Ye
[CVPR 2021] [Pytorch-Code] -
Rethinking and Improving the Robustness of Image Style Transfer
Pei Wang, Yijun Li, Nuno Vasconcelos
[CVPR 2021 Oral] [Pytorch-Code]
[SWAG] [★] 实验说明resnet等网络使用的shotcut结构会产生大激活值和小的层间entropy, 不利于基于gram矩阵的loss计算. 因此提出了用softmax平滑激活值, 再用来计算loss. -
Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, Jiawen Chen
[ECCV 2020] [Unoffical-Pytorch-Code]
[★★] 基于HDRNet的实时风格迁移, 创新点尽管不是很多, 但是工作很有价值