Face Restoration and Super-Resolution and other related topics. Archived
-
DR2: Diffusion-based Robust Degradation Remover for Blind Face Restoration
Zhixin Wang, Xiaoyun Zhang, Ziying Zhang, Huangjie Zheng, Mingyuan Zhou, Ya Zhang, Yanfeng Wang
[CVPR 2023] [Pytorch-Code] -
Towards Robust Blind Face Restoration with Codebook Lookup Transformer
Shangchen Zhou, Kelvin C.K. Chan, Chongyi Li, Chen Change Loy
[NeuralIPS 2022] [Project] [Pytorch-Code]
[CodeFormer] 🔥 -
VQFR: Blind Face Restoration with Vector-Quantized Dictionary and Parallel Decoder
Yuchao Gu, Xintao Wang, Liangbin Xie, Chao Dong, Gen Li, Ying Shan, Ming-Ming Cheng
[ECCV 2022 Oral] [Project] [Pytorch-Code] -
RestoreFormer: High-Quality Blind Face Restoration from Undegraded Key-Value Pairs
Zhouxia Wang, Jiawei Zhang, Runjian Chen, Wenping Wang, Ping Luo
[CVPR 2022] [Pytorch-Code] -
Progressive Semantic-Aware Style Transformation for Blind Face Restoration
Chaofeng Chen, Xiaoming Li, Lingbo Yang, Xianhui Lin, Lei Zhang, Kwan-Yee K. Wong
[CVPR 2021] [Pytorch-Code]
[★] 用人脸图像和人脸解析结果预测scale和bias, 整体和SPADE的思路十分相似. 实测效果貌似不如HiFaceGAN. -
GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior
Xintao Wang, Yu Li, Honglun Zhang, Ying Shan
[CVPR 2021] [Project] [Pytorch-Code]
[★] 用预训练的人脸GAN网络提取的特征作为先验, 一个UNet型网络作为degradation removal模块, 从该模块中提取空间特征, 并用SFT的思想结合到先验特征上. 对五官分别使用了判别器. -
Blind Face Restoration via Deep Multi-scale Component Dictionaries
Xiaoming Li, Chaofeng Chen, Shangchen Zhou, Xianhui Lin, Wangmeng Zuo, Lei Zhang
[ECCV 2020] [Pytorch-Code]
[★★] (构建字典, 匹配最近邻特征) 对眼睛鼻子嘴建立字典, inference时通过匹配最相似的feature找到相似的高清特征并做替换. 字典通过VGG网络提特征和聚类实现. 实测对五官的增强效果不错, 不过对于头发皮肤等部分效果不明显. -
Enhanced Blind Face Restoration With Multi-Exemplar Images and Adaptive Spatial Feature Fusion
Xiaoming Li, Wenyu Li, Dongwei Ren, Hongzhi Zhang, Meng Wang, Wangmeng Zuo
[CVPR 2020 Oral] [Code]
[★] (基于同一张脸的exemplar做恢复) 通过关键点从数张同一人的examplar图像中选出最相思的图像, 使用moving least-square和AdaIn进行空间和亮度的对齐, 提出了ASFF模块通过预测attention map将引导图和LR图的特征融合 -
HiFaceGAN: Face Renovation via Collaborative Suppression and Replenishment
Lingbo Yang, Chang Liu, Pan Wang, Shanshe Wang, Peiran Ren, Siwei Ma, Wen Gao
[MM 2020] [Project] [Pytorch-Code]
[★☆] 通过不同提取不同尺度的语义信息作为指导, 实现人脸修复, 对真实照片效果也还可以. -
(CVPR 2018) Deep semantic face deblurring
Ziyi Shen, Wei-Sheng Lai , Tingfa Xu, Jan Kautz, Ming-Hsuan Yang
[CVPR 2018] [Project] [Matlab-Code]
[★] 用一个人脸解析网络得到五官mask, 再把mask与输入结合, 分64和128两个分辨率尺度做deblur -
Learning Warped Guidance for Blind Face Restoration
Xiaoming Li, Ming Liu, Yuting Ye, Wangmeng Zuo, Liang Lin, Ruigang Yang
[CVPR 2018] [Torch-Code]
[★] (基于同一张脸的exemplar做恢复) 设计了WrapNet做对齐和RecNet做修复. WrapNet以exemplar和LR做输入, 关键点距离作为loss. RecNet接受LR和对齐后的exemplar, 使用全局和局部的gan loss以及VGG loss -
Deep face deblurring
Grigorios Chrysos, Stefanos Zafeiriou
[CVPRW 2017]
[☆]
-
Spatial-Frequency Mutual Learning for Face Super-Resolution
Chenyang Wang, Junjun Jiang, Zhiwei Zhong, Xianming Liu
[CVPR 2023] [Pytorch-Code] -
Learning Spatial Attention for Face Super-Resolution
Chaofeng Chen, Dihong Gong, Hao Wang, Zhifeng Li, Kwan-Yee K. Wong
[TIP 2020] [Pytorch-Code]
[SPARNet] [★☆] 无语义先验的基于attention的人脸超分 -
Deep Face Super-Resolution with Iterative Collaboration between Attentive Recovery and Landmark Estimation
Cheng Ma, Zhenyu Jiang, Yongming Rao, Jiwen Lu, Jie Zhou
[CVPR 2020] [Pytorch-Code]
[★☆] 迭代训练人脸超分和关键点网络, 并利用两个任务的信息, 相互优化 -
Learning to Have an Ear for Face Super-Resolution
Givi Meishvili, Simon Jenni, Paolo Favaro
[CVPR 2020] [Project] -
Face Super-Resolution Guided by 3D Facial Priors
Xiaobin Hu, Wenqi Ren, John LaMaster, Xiaochun Cao, Xiaoming Li, Zechao Li, Bjoern Menze, Wei Liu
[ECCV 2020] -
Component Attention Guided Face Super-Resolution Network: CAGFace
Ratheesh Kalarot, Tao Li, Fatih Porikli
[WACV 2020] [Pytorch-Code]
[★] 利用人脸解析mask作为attention map的两阶段人脸超分 -
Progressive Face Super-Resolution via Attention to Facial Landmark
Deokyun Kim, Minseon Kim, Gihyun Kwon, Dae-Shik Kim
[BMVC 2019] [Pytorch-Code]
[★☆] 一个结构简洁的渐进式人脸超分网络, 使用了额外的关键点检测网络作为计算loss的attention. -
Exemplar Guided Face Image Super-Resolution without Facial Landmarks
Berk Dogan, Shuhang Gu, Radu Timofte
[CVPRW 2019] [Pytorch-Code]
[★] 用一张相同人的照片作为引导图, 将引导图通过一个可学习的warp net与输入图像对齐, 之后将原图和warped guidance经过一个网络生成超分结果. 使用了GAN loss, VGG loss以及identity loss等. -
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
Yu Chen, Ying Tai, Xiaoming Liu, Chunhua Shen, Jian Yang
[CVPR 2018] [Torch-Code]
[★] 一个分支预测lanmark和分割结果, 辅助人脸超分 -
Super-FAN: Integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs
Adrian Bulat, Georgios Tzimiropoulos
[CVPR 2018] [Pytorch-Code]
[★] 同时做SR和关键点检测 -
To learn image super-resolution, use a GAN to learn how to do image degradation first
Adrian Bulat, Jing Yang, Georgios Tzimiropoulos
[ECCV 2018] [Pytorch-Code]
[★] 先用GAN预测一个降质网络, 估计真实LR数据, 再训练超分模型 -
Face Super-resolution Guided by Facial Component Heatmaps
Xin Yu, Basura Fernando, Bernard Ghanem, Fatih Porikli, Richard Hartley
[ECCV 2018]
[★] 结合人脸关键点的heapmap信息做人脸超分 -
Attention-Aware Face Hallucination via Deep Reinforcement Learning
Qingxing Cao, Liang Lin, Yukai Shi, Xiaodan Liang, Guanbin Li
[CVPR 2017] [Torch-Code] -
Learning to Super-resolve Blurry Face and Text Images
Xiangyu Xu, Deqing Sun, Jinshan Pan, Yujin Zhang, Hanspeter Pfister, Ming-Hsuan Yang
[ICCV 2017] [Project]
-
TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing
Yanbo Xu, Yueqin Yin, Liming Jiang, Qianyi Wu, Chengyao Zheng, Chen Change Loy, Bo Dai, Wayne Wu
[CVPR 2022] [Project] [Pytorch-Code] -
MaskGAN: Towards Diverse and Interactive Facial Image Manipulation
Cheng-Han Lee, Ziwei Liu, Lingyun Wu, Ping Luo
[CVPR 2020] [Pytorch-Code & Dataset]
[★] 大致浏览, 基于语义的人脸操作. 提供了CelebAmask-HQ数据集 -
Interpreting the Latent Space of GANs for Semantic Face Editing
Yujun Shen, Jinjin Gu, Xiaoou Tang, Bolei Zhou
[CVPR 2020] [Project] [Pytorch-Code]
[InterFaceGAN] -
MichiGAN: Multi-Input-Conditioned Hair Image Generation for Portrait Editing
Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu, Lu Yuan, Sergey Tulyakov, Nenghai Yu
[SIGGRAPH 2020] [Pytorch-Code]
[★] -
AttGAN: Facial Attribute Editing by Only Changing What You Want
Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, Xilin Chen
[TIP 2019] [TF-Code]
-
E4S: Fine-grained Face Swapping via Regional GAN Inversion
Zhian Liu, Maomao Li, Yong Zhang, Cairong Wang, Qi Zhang, Jue Wang, Yongwei Nie
[CVPR 2023] [Project] [Pytorch-Code] -
HairCLIP: Design Your Hair by Text and Reference Image
Tianyi Wei, Dongdong Chen, Wenbo Zhou, Jing Liao, Zhentao Tan, Lu Yuan, Weiming Zhang, Nenghai Yu
[CVPR 2022] [Pytorch-Code] -
Intuitive, Interactive Beard and Hair Synthesis With Generative Models
Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria, Zhili Chen, Weikai Chen, Hao Li**
[CVPR 2020 Oral] [Project
[HairGen] [★] 交互式脸部毛发生成, 结构为两个UNet -
FabSoften: Face Beautification via Dynamic Skin Smoothing, Guided Feathering, and Texture Restoration
Sudha Velusamy, Rishubh Parihar, Raviprasad Kini, Aniket Rege
[CVPRW 2020]
[HairGen] [☆] 提出了一个人脸美化的流程, 速度应该不会快