Skip to content

Latest commit

 

History

History
261 lines (197 loc) · 20.8 KB

Denoising.md

File metadata and controls

261 lines (197 loc) · 20.8 KB

Denoising

Image Denoising

Raw Denoising

  • Learnability Enhancement for Low-light Raw Denoising: Where Paired Real Data Meets Noise Modeling
    Hansen Feng, Lizhi Wang, Yuzhi Wang, Hua Huang
    [MM 2022] [Pytorch-Code]
    [PMN]

  • Efficient Burst Raw Denoising with Variance Stabilization and Multi-frequency Denoising Network
    Dasong Li, Yi Zhang, Ka Lung Law, Xiaogang Wang, Hongwei Qin, Hongsheng Li
    [IJCV 2022]
    [★★] 1) 提出将输入进行变换, 从Poisson-Gaussian distribution变换到与gain和信号强度无关的固定方差高斯分布; 2) 提出了一个轻量级的上/下采样去噪网络, 序列化地处理N个输入帧, 使网络能在端侧运行; 3) 对齐部分使用block-matching和homography flow, 在4级金字塔上corase-to-fine进行; 4) 从实验结果上看, 提出的变换与直接concat噪声map和k-sigma方法相比, 指标稍高一点, 可视化结果细节保留更多.

  • Rethinking Noise Synthesis and Modeling in Raw Denoising
    Yi Zhang, Hongwei Qin, Xiaogang Wang, Hongsheng Li
    [ICCV 2021] [Pytorch-Code]
    [★] 将噪声源分解为信号相关和信号无关两部分, 信号相关部分用一般方法建模为泊松噪声, 信号无关方法从black帧种采样, 并证明采样时采用高bit数据更好.

  • A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising
    Kaixuan Wei, Ying Fu, Jiaolong Yang, Hua Huang
    [CVPR 2020 Oral] [Pytorch-Code & Dataset]
    [ELD] [★★] 较为全面的分析了相机噪声来源, 并据此提出了一个高度模拟真实的噪声生成模型.

  • Basis Prediction Networks for Effective Burst Denoising with Large Kernels
    Zhihao Xia, Federico Perazzi, Michael Gharbi, Kalyan Sunkavalli, Ayan Chakrabarti
    [CVPR 2020] [Project]
    [BPN]

  • Practical Deep Raw Image Denoising on Mobile Devices
    Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun Liu, Jue Wang
    [ECCV 2020 Spotlight] [Pytorch-Code]
    [PMRID] [★★] 分析了噪声来源, 提出用k-sigma变换消除iso对噪声水平的影响, 并提出了标定相机噪声参数的方法.

  • Unprocessing Images for Learned Raw Denoising
    Tim Brooks, Ben Mildenhall, Tianfan Xue, Jiawen Chen, Dillon Sharlet, Jonathan T. Barron
    [CVPR 2019] [TF-Code]
    [★☆] 1) 提出了一个通过unprocess ISP流程而生成更真实去噪样本的框架, 可以用任意图像生成真实的训练样本, 以提高模型性能. 2) 对于sRGB图像, 根据ISP流程, 将其逐步逆运算位raw image, 在此基础上加的噪声更符合真实噪声. 3) 推断时, 要先把sRGB转换为raw image, 再经过网络处理, 最后再进行正向的ISP恢复为sRGB.

  • Burst Denoising with Kernel Prediction Networks
    Ben Mildenhall, Jonathan T. Barron, Jiawen Chen, Dillon Sharlet, Ren Ng, Robert Carroll
    [CVPR 2018 Oral] [Project] [TF-Code] [Unofficial-Pytorch-Code]
    [KPN] [★★] 1) 提出了一个从普通RGB通过逆ISP, 加噪等流程生成raw burst denoise数据对的流程 (KPN数据集); 2) 提出将输入与噪声map(标准差)一起输入网络, 改善了性能; 3) 提出了一个预测kernel的网络, 对每个位置预测若然个去噪核, 并集成得到去噪结果.

Video Denoising

  • Dancing under the stars: video denoising in starlight
    Kristina Monakhova, Stephan R. Richter, Laura Waller, Vladlen Koltun
    [CVPR 2022 Oral] [Project] [Pytorch-Code]

  • Patch Craft: Video Denoising by Deep Modeling and Patch Matching
    Gregory Vaksman, Michael Elad, Peyman Milanfar
    [ICCV 2021] [Pytorch-Code]
    [PaCNet] [★] 大致浏览. 在前后帧提取相似patch作为网络输入, 后面加了一个时域滤波网络保证时间一致性, 可能速度会很慢?

  • Efficient Multi-Stage Video Denoising with Recurrent Spatio-Temporal Fusion
    Matteo Maggioni, Yibin Huang, Cheng Li, Shuai Xiao, Zhongqian Fu, Fenglong Song
    [CVPR 2021] [Unofficial-Pytorch-Code]
    [EMVD] [★★] 轻量级视频去噪, 效果与复杂模型效果相当. 首先用线性变换将raw图像在颜色-亮度和频率上分解; 第二步利用前一帧去噪结果与当前帧融合, 初步去噪; 第三步对初步去噪的图像再次进行去噪; 第四步将两次去噪的结果结合进行refine. 融合和refine是通过预测fusion map完成的.

  • FastDVDnet: A Very Fast Deep Video Denoising algorithm
    Matias Tassano, Julie Delon, Thomas Veit
    [CVPR 2020] [Pytorch-Code]

  • Supervised Raw Video Denoising With a Benchmark Dataset on Dynamic Scenes
    Huanjing Yue, Cong Cao, Lei Liao, Ronghe Chu, Jingyu Yang
    [CVPR 2020] [Pytorch-Code]
    [RViDeNet] [★★] 提出了CRVD dataset, 用于Raw去噪.

Signal Processing Based

  • Practical Signal-Dependent Noise Parameter Estimation From a Single Noisy Image
    Xinhao Liu, Masayuki Tanaka, Masatoshi Okutomi
    [TIP 2014]
    [★★] 将噪声模型建模为异方差高斯分布, 并通过小波和最小二乘求得噪声参数, 并分析了clipping对噪声建模的影响.

  • Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data
    Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, Karen Egiazarian
    [TIP 2008]
    [★★] 统计方差和均值, 从单张图像种拟合出噪声参数