-
-
Notifications
You must be signed in to change notification settings - Fork 68
/
Copy pathscanpic.m
227 lines (219 loc) · 6.3 KB
/
scanpic.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
clear;
setup;
% Load the CNN learned before
net12 = load('data/12net-experiment/f12net.mat') ;
net12_c = load('data/12netc-experiment/f12net_c.mat') ;
net24 = load('data/24net-experiment/f24net.mat') ;
net24_c = load('data/24netc-experiment/f24net_c.mat') ;
% Load the sentence
origin_im = imread('data/find.jpg');
win_count = 0;
[oh,ow,oc] = size(origin_im);
count=1;
%calibration 打表
xn = [-0.17,0,0.17];
yn = [-0.17,0,0.17];
sn = [0.83,0.91,1.0,1.10,1.21];
chang_count = 1;
for m = 1:5 %adverse
for n = 1:3
for k = 1:3
chang(:,chang_count)=[xn(k),yn(n),sn(m)];
chang_count = chang_count + 1;
end
end
end
%-------------------12net-------------------
for k=1:39
ss = 12/(oh/20+oh*(k-1)/40);% oh/20<f<oh
im = imresize(origin_im,ss);
[h, w ,c] = size(im);
i=1; j=1;
while (i+11<=h)
while (j+11<=w)
win_count = win_count+1;% count windows totally
owin = im(i:i+11,j:j+11,:);
win = im2single(owin) ;
win = 256 * (win - net12.imageMean) ;
res12 = vl_simplenn(net12, win) ;
[value,index]=max(res12(8).x);
if(index==1&&value>0)
%12-net-c
%imshow(owin)
win = im2single(owin) ;
win = 256 * (win - net12_c.imageMean) ;
res_c = vl_simplenn(net12_c, win) ;
[value,index]=max(res_c(8).x);
xn = chang(1,index);
yn = chang(2,index);
sn = chang(3,index);
ci = i - xn*12/sn; % 在压缩比是ss的图片上移动12*12的窗口
cj = j - yn*12/sn;
cw = 12/sn;
win12(:,count)= [ci/ss,cj/ss,cw/ss,ss,value,1];
count = count + 1;
end
j = j+4;
end
i = i+4;
j = 1;
end
end
%-------------------nms---------------------
tic
win12 = sortrows(win12',-5); %%530 429 100430
win12 = win12';
toc
ttimes=1;%52853 46600
tic
s = size(win12);
for i=1:s(2)
if(win12(6,i)==0 ) continue;end
win1_true = zeros(oh,ow);
x1 = round(win12(1,i));
y1 = round(win12(2,i));
w = win12(3,i);
x2 = round(x1+w);
y2 = round(y1+w);
if(x2>oh) x2=oh;end
if(y2>ow) y2=ow;end
if(x1<1) x1=1;end
if(y1<1) y1=1;end
win1_true(x1:x2,y1:y2)= 1;
length = i + s(2)/5;
if(length>s(2)) length=s(2); end
for j=i+1:length
if(win12(6,j)==0 ) continue;end
win2_true = zeros(oh,ow);
x1 = round(win12(1,j));
y1 = round(win12(2,j));
w = win12(3,j);
x2 = round(x1+w);
y2 = round(y1+w);
if(x2>oh) x2=oh;end
if(y2>ow) y2=ow;end
if(x1<1) x1=1;end
if(y1<1) y1=1;end
win2_true(x1:x2,y1:y2)= 1;
overlap = win1_true&win2_true;
maxwin = max(sum(sum(win1_true)),sum(sum(win2_true)));
proportion = sum(sum(overlap))/maxwin;
%if(proportion==0) % due to spacial cluster
% break;
%end
ttimes=ttimes+1;
if(proportion>0.8)
% if(win12(5,i)>win12(5,j)) %compare value
win12(6,j)=0;
%else win12(6,i)=0;
%end
end
end
end
toc
%24net
count = 1;
imshow(origin_im);
for i=1:s(2)
if(win12(6,i)==1)%nms剩下的有效窗口
ss=win12(4,i);
x1 = round(win12(1,i));
y1 = round(win12(2,i));
w = win12(3,i);
x2 = round(x1 + w);
y2 = round(y1 + w);
if(x2>oh) x2 = oh;end;
if(y2>ow) y2 = ow;end;
if(x1<1) x1 = 1;end;
if(y1<1) y1 = 1; end;
win = origin_im(x1:x2,y1:y2,:);
if( isempty(win) )
continue;
end;
% here we get window on original image x1 y1 win~
save_win = win;
win = imresize(win,[24 24]);
win = im2single(win) ;
win = 256 * (win - net24.imageMean) ;
res24 = vl_simplenn(net24, win) ;
[value,index]=max(res24(8).x);
if(index==1&&value>0)%24net
win = save_win;
win = imresize(win,[24 24]);
win = im2single(win) ;
win = 256 * (win - net24_c.imageMean) ;
res_c = vl_simplenn(net24_c, win) ;
[value,index]=max(res_c(8).x);
% here we get window on 24*24 prediction on(ss*2) image
xn = chang(1,index);%change parameter
yn = chang(2,index);%
sn = chang(3,index);%
ss = ss*2;%%%%this is important
ci = x1*ss - xn*24/sn;
cj = y1*ss - yn*24/sn;
cw = 24/sn;
win24(:,count)= [ci/ss,cj/ss,cw/ss,ss,value,1];
count = count + 1;
end
end
end
%nms before 530 after 504
s = size(win24);
for i=1:s(2)
if(win24(6,i)==0 ) continue;end
win1_true = zeros(oh,ow);
ss=win24(4,i);
x1 = round(win24(1,i));
y1 = round(win24(2,i));
w = win24(3,i);
x2 = round(x1+w);
y2 = round(y1+w);
if(x2>oh) x2=oh;end
if(y2>ow) y2=ow;end
if(x1<1) x1=1;end
if(y1<1) y1=1;end
win1_true(x1:x2,y1:y2)= 1;
for j=i+1:s(2)
if(win24(6,j)==0 ) continue;end
win2_true = zeros(oh,ow);
ss=win24(4,j);
x1 = round(win24(1,j));
y1 = round(win24(2,j));
w = win24(3,j);
x2 = round(x1+w);
y2 = round(y1+w);
if(x2>oh) x2=oh;end
if(y2>ow) y2=ow;end
if(x1<1) x1=1;end
if(y1<1) y1=1;end
win2_true(x1:x2,y1:y2)= 1;
overlap = win1_true&win2_true;
maxwin = max(sum(sum(win1_true)),sum(sum(win2_true)));
proportion = sum(sum(overlap))/maxwin;
%if(proportion==0) % due to spacial cluster
% break;
%end
if(proportion>0.8)
if(win24(5,i)>win24(5,j)) %compare value
win24(6,j)=0;
else win24(6,i)=0;
end
end
end
end
%show
s = size(win24);
for i=1:s(2)
if(win24(6,i)==1 )
x1 = win24(1,i);
y1 = win24(2,i);
w = win24(3,i);
x2 = round(x1 + w);
y2 = round(y1 + w);
if(x2>oh) x2 = oh;end;
if(y2>ow) y2 = ow;end;
if(x1<1) x1 = 1;end;
if(y1<1) y1 = 1; end;
rectangle('Position',[y1,x1,y2-y1,x2-x1],'LineWidth',2,'EdgeColor','b');
end
end