-
Notifications
You must be signed in to change notification settings - Fork 39
/
main.py
91 lines (77 loc) · 3.39 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os, sys
import cv2
from PIL import Image
import numpy as np
import glob
import warnings
import argparse
from cloths_segmentation.pre_trained_models import create_model
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--background', type=bool, default=True, help='Define removing background or not')
opt = parser.parse_args()
# Read input image
img=cv2.imread("./static/origin_web.jpg")
ori_img=cv2.resize(img,(768,1024))
cv2.imwrite("./origin.jpg",ori_img)
# Resize input image
img=cv2.imread('origin.jpg')
img=cv2.resize(img,(384,512))
cv2.imwrite('resized_img.jpg',img)
# Get mask of cloth
print("Get mask of cloth\n")
terminnal_command = "python get_cloth_mask.py"
os.system(terminnal_command)
# Get openpose coordinate using posenet
print("Get openpose coordinate using posenet\n")
terminnal_command = "python posenet.py"
os.system(terminnal_command)
# Generate semantic segmentation using Graphonomy-Master library
print("Generate semantic segmentation using Graphonomy-Master library\n")
os.chdir("./Graphonomy-master")
terminnal_command ="python exp/inference/inference.py --loadmodel ./inference.pth --img_path ../resized_img.jpg --output_path ../ --output_name /resized_segmentation_img"
os.system(terminnal_command)
os.chdir("../")
# Remove background image using semantic segmentation mask
mask_img=cv2.imread('./resized_segmentation_img.png',cv2.IMREAD_GRAYSCALE)
mask_img=cv2.resize(mask_img,(768,1024))
k = cv2.getStructuringElement(cv2.MORPH_RECT, (3,3))
mask_img = cv2.erode(mask_img, k)
img_seg=cv2.bitwise_and(ori_img,ori_img,mask=mask_img)
back_ground=ori_img-img_seg
img_seg=np.where(img_seg==0,215,img_seg)
cv2.imwrite("./seg_img.png",img_seg)
img=cv2.resize(img_seg,(768,1024))
cv2.imwrite('./HR-VITON-main/test/test/image/00001_00.jpg',img)
# Generate grayscale semantic segmentation image
terminnal_command ="python get_seg_grayscale.py"
os.system(terminnal_command)
# Generate Densepose image using detectron2 library
print("\nGenerate Densepose image using detectron2 library\n")
terminnal_command ="python detectron2/projects/DensePose/apply_net.py dump detectron2/projects/DensePose/configs/densepose_rcnn_R_50_FPN_s1x.yaml \
https://dl.fbaipublicfiles.com/densepose/densepose_rcnn_R_50_FPN_s1x/165712039/model_final_162be9.pkl \
origin.jpg --output output.pkl -v"
os.system(terminnal_command)
terminnal_command ="python get_densepose.py"
os.system(terminnal_command)
# Run HR-VITON to generate final image
print("\nRun HR-VITON to generate final image\n")
os.chdir("./HR-VITON-main")
terminnal_command = "python3 test_generator.py --cuda True --test_name test1 --tocg_checkpoint mtviton.pth --gpu_ids 0 --gen_checkpoint gen.pth --datasetting unpaired --data_list t2.txt --dataroot ./test"
os.system(terminnal_command)
# Add Background or Not
l=glob.glob("./Output/*.png")
# Add Background
if opt.background:
for i in l:
img=cv2.imread(i)
img=cv2.bitwise_and(img,img,mask=mask_img)
img=img+back_ground
cv2.imwrite(i,img)
# Remove Background
else:
for i in l:
img=cv2.imread(i)
cv2.imwrite(i,img)
os.chdir("../")
cv2.imwrite("./static/finalimg.png", img)