-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy path.tensorflow.bazelrc
562 lines (466 loc) · 27.1 KB
/
.tensorflow.bazelrc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
################################################################
# Config from TensorFlow's .bazelrc. #
# #
# This is copied directly, with some irrelevant parts removed. #
################################################################
# Default build options. These are applied first and unconditionally.
# For projects which use TensorFlow as part of a Bazel build process, putting
# nothing in a bazelrc will default to a monolithic build. The following line
# opts in to modular op registration support by default.
build --define framework_shared_object=true
build --define tsl_protobuf_header_only=true
build --define=use_fast_cpp_protos=true
build --define=allow_oversize_protos=true
build --spawn_strategy=standalone
build -c opt
# Make Bazel print out all options from rc files.
build --announce_rc
build --define=grpc_no_ares=true
build --noincompatible_remove_legacy_whole_archive
build --features=-force_no_whole_archive
build --enable_platform_specific_config
# Enable XLA support by default.
build --define=with_xla_support=true
build --config=short_logs
build --config=v2
# Disable AWS/HDFS support by default
build --define=no_aws_support=true
build --define=no_hdfs_support=true
# TF now has `cc_shared_library` targets, so it needs the experimental flag
# TODO(rostam): Remove when `cc_shared_library` is enabled by default
build --experimental_cc_shared_library
# cc_shared_library ensures no library is linked statically more than once.
build --experimental_link_static_libraries_once=false
# Prevent regressions on those two incompatible changes
# TODO: remove those flags when they are flipped in the default Bazel version TF uses.
build --incompatible_enforce_config_setting_visibility
# Default options should come above this line.
# Android configs. Bazel needs to have --cpu and --fat_apk_cpu both set to the
# target CPU to build transient dependencies correctly. See
# https://docs.bazel.build/versions/master/user-manual.html#flag--fat_apk_cpu
build:android --crosstool_top=//external:android/crosstool
build:android --host_crosstool_top=@bazel_tools//tools/cpp:toolchain
build:android_arm --config=android
build:android_arm --cpu=armeabi-v7a
build:android_arm --fat_apk_cpu=armeabi-v7a
build:android_arm64 --config=android
build:android_arm64 --cpu=arm64-v8a
build:android_arm64 --fat_apk_cpu=arm64-v8a
build:android_x86 --config=android
build:android_x86 --cpu=x86
build:android_x86 --fat_apk_cpu=x86
build:android_x86_64 --config=android
build:android_x86_64 --cpu=x86_64
build:android_x86_64 --fat_apk_cpu=x86_64
# Build everything statically for Android since all static libs are later
# bundled together into a single .so for deployment.
build:android --dynamic_mode=off
# Sets the default Apple platform to macOS.
build:macos --apple_platform_type=macos
# gRPC on MacOS requires this #define
build:macos --copt=-DGRPC_BAZEL_BUILD
# Avoid hitting command line argument limit
build:macos --features=archive_param_file
# Settings for MacOS on ARM CPUs.
build:macos_arm64 --cpu=darwin_arm64
build:macos_arm64 --macos_minimum_os=11.0
# Config to use a mostly-static build and disable modular op registration
# support (this will revert to loading TensorFlow with RTLD_GLOBAL in Python).
# By default, TensorFlow will build with a dependence on
# //tensorflow:libtensorflow_framework.so.
build:monolithic --define framework_shared_object=false
build:monolithic --define tsl_protobuf_header_only=false
build:monolithic --experimental_link_static_libraries_once=false # b/229868128
# Please note that MKL on MacOS is still not supported.
# If you would like to use a local MKL instead of downloading, please set the
# environment variable "TF_MKL_ROOT" every time before build.
build:mkl --define=build_with_mkl=true --define=enable_mkl=true
build:mkl --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl --define=build_with_openmp=true
build:mkl -c opt
# config to build OneDNN backend with a user specified threadpool.
build:mkl_threadpool --define=build_with_mkl=true --define=enable_mkl=true
build:mkl_threadpool --define=tensorflow_mkldnn_contraction_kernel=0
build:mkl_threadpool --define=build_with_mkl_opensource=true
build:mkl_threadpool -c opt
# Config setting to build oneDNN with Compute Library for the Arm Architecture (ACL).
build:mkl_aarch64 --define=build_with_mkl_aarch64=true
build:mkl_aarch64 --define=build_with_openmp=true
build:mkl_aarch64 --define=build_with_acl=true
build:mkl_aarch64 -c opt
# Config setting to build oneDNN with Compute Library for the Arm Architecture (ACL).
# with Eigen threadpool support
build:mkl_aarch64_threadpool --define=build_with_mkl_aarch64=true
build:mkl_aarch64_threadpool -c opt
# CUDA: This config refers to building CUDA op kernels with nvcc.
build:cuda --repo_env TF_NEED_CUDA=1
build:cuda --crosstool_top=@local_config_cuda//crosstool:toolchain
build:cuda --@local_config_cuda//:enable_cuda
# CUDA: This config refers to building CUDA op kernels with clang.
build:cuda_clang --config=cuda
# Enable TensorRT optimizations https://developer.nvidia.com/tensorrt
build:cuda_clang --config=tensorrt
build:cuda_clang --action_env=TF_CUDA_CLANG="1"
build:cuda_clang --@local_config_cuda//:cuda_compiler=clang
# Select supported compute capabilities (supported graphics cards).
# This is the same as the official TensorFlow builds.
# See https://developer.nvidia.com/cuda-gpus#compute
# `compute_XY` enables PTX embedding in addition to SASS. PTX
# is forward compatible beyond the current compute capability major
# release while SASS is only forward compatible inside the current
# major release. Example: sm_80 kernels can run on sm_89 GPUs but
# not on sm_90 GPUs. compute_80 kernels though can also run on sm_90 GPUs.
build:cuda_clang --repo_env=TF_CUDA_COMPUTE_CAPABILITIES="sm_50,sm_60,sm_70,sm_80,compute_90"
# Set up compilation CUDA version and paths and use the CUDA Clang toolchain.
build:cuda_clang_official --config=cuda_clang
build:cuda_clang_official --action_env=TF_CUDA_VERSION="12"
build:cuda_clang_official --action_env=TF_CUDNN_VERSION="8"
build:cuda_clang_official --action_env=CUDA_TOOLKIT_PATH="/usr/local/cuda-12.3"
build:cuda_clang_official --action_env=GCC_HOST_COMPILER_PATH="/dt9/usr/bin/gcc"
build:cuda_clang_official --action_env=CLANG_CUDA_COMPILER_PATH="/usr/lib/llvm-17/bin/clang"
build:cuda_clang_official --action_env=LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
build:cuda_clang_official --crosstool_top="@sigbuild-r2.16-clang_config_cuda//crosstool:toolchain"
# Build with nvcc for CUDA and clang for host
build:nvcc_clang --config=cuda
# Unfortunately, cuda_configure.bzl demands this for using nvcc + clang
build:nvcc_clang --action_env=TF_CUDA_CLANG="1"
build:nvcc_clang --action_env=TF_NVCC_CLANG="1"
build:nvcc_clang --@local_config_cuda//:cuda_compiler=nvcc
# Debug config
build:dbg -c dbg
# Only include debug info for files under tensorflow/, excluding kernels, to
# reduce the size of the debug info in the binary. This is because if the debug
# sections in the ELF binary are too large, errors can occur. See
# https://github.com/tensorflow/tensorflow/issues/48919.
# Users can still include debug info for a specific kernel, e.g. with:
# --config=dbg --per_file_copt=+tensorflow/core/kernels/identity_op.*@-g
# Since this .bazelrc file is synced between the tensorflow/tensorflow repo and
# the openxla/xla repo, also include debug info for files under xla/.
build:dbg --per_file_copt=+.*,-tensorflow.*,-xla.*@-g0
build:dbg --per_file_copt=+tensorflow/core/kernels.*@-g0
# for now, disable arm_neon. see: https://github.com/tensorflow/tensorflow/issues/33360
build:dbg --cxxopt -DTF_LITE_DISABLE_X86_NEON
# AWS SDK must be compiled in release mode. see: https://github.com/tensorflow/tensorflow/issues/37498
build:dbg --copt -DDEBUG_BUILD
# Config to build TF TPU
build:tpu --define=with_tpu_support=true
build:tpu --define=framework_shared_object=true
build:tpu --copt=-DLIBTPU_ON_GCE
build:tpu --define=enable_mlir_bridge=true
build:tensorrt --repo_env TF_NEED_TENSORRT=1
build:rocm --crosstool_top=@local_config_rocm//crosstool:toolchain
build:rocm --define=using_rocm_hipcc=true
build:rocm --define=tensorflow_mkldnn_contraction_kernel=0
build:rocm --repo_env TF_NEED_ROCM=1
# Options to disable default on features
build:noaws --define=no_aws_support=true
build:nogcp --define=no_gcp_support=true
build:nohdfs --define=no_hdfs_support=true
build:nonccl --define=no_nccl_support=true
# Modular TF build options
build:dynamic_kernels --define=dynamic_loaded_kernels=true
build:dynamic_kernels --copt=-DAUTOLOAD_DYNAMIC_KERNELS
# Don't trigger --config=<host platform> when cross-compiling.
build:android --noenable_platform_specific_config
build:ios --noenable_platform_specific_config
# Suppress all C++ compiler warnings, otherwise build logs become 10s of MBs.
build:android --copt=-w
build:ios --copt=-w
build:linux --host_copt=-w
build:macos --copt=-w
build:windows --copt=/W0
build:windows --host_copt=/W0
# Suppress most C++ compiler warnings to reduce log size but allow
# for specific warnings to still be present.
build:linux --copt="-Wno-all"
build:linux --copt="-Wno-extra"
build:linux --copt="-Wno-deprecated"
build:linux --copt="-Wno-deprecated-declarations"
build:linux --copt="-Wno-ignored-attributes"
build:linux --copt="-Wno-array-bounds"
# Add unused-result as an error on Linux.
build:linux --copt="-Wunused-result"
build:linux --copt="-Werror=unused-result"
# Add switch as an error on Linux.
build:linux --copt="-Wswitch"
build:linux --copt="-Werror=switch"
# Required for building with clang
build:linux --copt="-Wno-error=unused-but-set-variable"
# Linux ARM64 specific options
build:linux_arm64 --copt="-mtune=generic" --copt="-march=armv8-a" --copt="-O3"
# On Windows, `__cplusplus` is wrongly defined without this switch
# See https://devblogs.microsoft.com/cppblog/msvc-now-correctly-reports-__cplusplus/
build:windows --copt=/Zc:__cplusplus
build:windows --host_copt=/Zc:__cplusplus
# Tensorflow uses M_* math constants that only get defined by MSVC headers if
# _USE_MATH_DEFINES is defined.
build:windows --copt=/D_USE_MATH_DEFINES
build:windows --host_copt=/D_USE_MATH_DEFINES
# Windows has a relatively short command line limit, which TF has begun to hit.
# See https://docs.bazel.build/versions/main/windows.html
build:windows --features=compiler_param_file
build:windows --features=archive_param_file
# Speed Windows compile times. Available in VS 16.4 (we are on 16.11). See
# https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion
build:windows --copt=/d2ReducedOptimizeHugeFunctions
build:windows --host_copt=/d2ReducedOptimizeHugeFunctions
# Enable the runfiles symlink tree on Windows. This makes it possible to build
# the pip package on Windows without an intermediate data-file archive, as the
# build_pip_package script in its current form (as of Aug 2023) uses the
# runfiles symlink tree to decide what to put into the Python wheel.
startup --windows_enable_symlinks
build:windows --enable_runfiles
# Default paths for TF_SYSTEM_LIBS
build:linux --define=PREFIX=/usr
build:linux --define=LIBDIR=$(PREFIX)/lib
build:linux --define=INCLUDEDIR=$(PREFIX)/include
build:linux --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include
build:macos --define=PREFIX=/usr
build:macos --define=LIBDIR=$(PREFIX)/lib
build:macos --define=INCLUDEDIR=$(PREFIX)/include
build:macos --define=PROTOBUF_INCLUDE_PATH=$(PREFIX)/include
# TF_SYSTEM_LIBS do not work on windows.
# By default, build TF in C++ 17 mode.
build:android --cxxopt=-std=c++17
build:android --host_cxxopt=-std=c++17
build:linux --cxxopt=-std=c++17
build:linux --host_cxxopt=-std=c++17
build:macos --cxxopt=-std=c++17
build:macos --host_cxxopt=-std=c++17
build:windows --cxxopt=/std:c++17
build:windows --host_cxxopt=/std:c++17
# On windows, we still link everything into a single DLL.
build:windows --config=monolithic
# On linux, we dynamically link small amount of kernels
build:linux --config=dynamic_kernels
# Make sure to include as little of windows.h as possible
build:windows --copt=-DWIN32_LEAN_AND_MEAN
build:windows --host_copt=-DWIN32_LEAN_AND_MEAN
build:windows --copt=-DNOGDI
build:windows --host_copt=-DNOGDI
# MSVC (Windows): Standards-conformant preprocessor mode
# See https://docs.microsoft.com/en-us/cpp/preprocessor/preprocessor-experimental-overview
build:windows --copt=/Zc:preprocessor
build:windows --host_copt=/Zc:preprocessor
# Misc build options we need for windows.
build:windows --linkopt=/DEBUG
build:windows --host_linkopt=/DEBUG
build:windows --linkopt=/OPT:REF
build:windows --host_linkopt=/OPT:REF
build:windows --linkopt=/OPT:ICF
build:windows --host_linkopt=/OPT:ICF
# Verbose failure logs when something goes wrong
build:windows --verbose_failures
# Work around potential issues with large command lines on windows.
# See: https://github.com/bazelbuild/bazel/issues/5163
build:windows --features=compiler_param_file
# Do not risk cache corruption. See:
# https://github.com/bazelbuild/bazel/issues/3360
build:linux --experimental_guard_against_concurrent_changes
# Configure short or long logs
build:short_logs --output_filter=DONT_MATCH_ANYTHING
build:verbose_logs --output_filter=
# Instruction set optimizations
# TODO(gunan): Create a feature in toolchains for avx/avx2 to
# avoid having to define linux/win separately.
build:avx_linux --copt=-mavx
build:avx_linux --host_copt=-mavx
build:avx_win --copt=/arch:AVX
# Use Clang-cl compiler on Windows
build:win_clang --copt=/clang:-Weverything
build:win_clang --extra_toolchains=@local_config_cc//:cc-toolchain-x64_windows-clang-cl
build:win_clang --extra_execution_platforms=//tensorflow/tools/toolchains/win:x64_windows-clang-cl
build:win_clang --host_platform=//tensorflow/tools/toolchains/win:x64_windows-clang-cl
build:win_clang --compiler=clang-cl
build:win_clang --linkopt=/FORCE:MULTIPLE
build:win_clang --host_linkopt=/FORCE:MULTIPLE
test:win_clang --linkopt=/FORCE:MULTIPLE
test:win_clang --host_linkopt=/FORCE:MULTIPLE
# Options to build TensorFlow 1.x or 2.x.
# TODO(kanglan): Change v2's define to default behavior
build:v2 --define=tf_api_version=2 --action_env=TF2_BEHAVIOR=1
# Disable XLA on mobile.
build:xla --define=with_xla_support=true # TODO: remove, it's on by default.
build:android --define=with_xla_support=false
build:ios --define=with_xla_support=false
# Flag to enable remote config
common --experimental_repo_remote_exec
# TFLite build configs for generic embedded Linux
build:elinux --crosstool_top=@local_config_embedded_arm//:toolchain
build:elinux --host_crosstool_top=@bazel_tools//tools/cpp:toolchain
build:elinux_aarch64 --config=elinux
build:elinux_aarch64 --cpu=aarch64
build:elinux_armhf --config=elinux
build:elinux_armhf --cpu=armhf
build:elinux_armhf --copt -mfp16-format=ieee
# Config-specific options should come above this line.
# Load rc file written by ./configure.
try-import %workspace%/.tf_configure.bazelrc
try-import %workspace%/xla_configure.bazelrc
# Here are bazelrc configs for release builds
# Build TensorFlow v2.
test:release_base --test_size_filters=small,medium
test:release_base --flaky_test_attempts=3
# Target the AVX instruction set
build:release_linux_base --config=avx_linux
# Disable clang extension that rejects type definitions within offsetof.
# This was added in clang-16 by https://reviews.llvm.org/D133574.
# Can be removed once upb is updated, since a type definition is used within
# offset of in the current version of ubp.
# See https://github.com/protocolbuffers/upb/blob/9effcbcb27f0a665f9f345030188c0b291e32482/upb/upb.c#L183.
build:release_linux_base --copt=-Wno-gnu-offsetof-extensions
build:release_linux_base --copt=-Wno-error=array-parameter
build:release_linux_base --copt=-Wno-error=unused-command-line-argument
# Set lld as the linker.
build:release_linux_base --linkopt="-fuse-ld=lld"
build:release_linux_base --linkopt="-lm"
# We have some invalid linker scripts in the build,
# so we need to disable this check
build:release_linux_base --linkopt=-Wl,--undefined-version
# Container environment settings below this point.
# Use Python 3.X as installed in container image
build:release_linux_base --action_env PYTHON_BIN_PATH="/usr/bin/python3"
build:release_linux_base --action_env PYTHON_LIB_PATH="/usr/lib/tf_python"
build:release_linux_base --python_path="/usr/bin/python3"
# Set Clang as compiler. Use the actual path to clang installed in container.
build:release_cpu_linux_base --repo_env=CC="/usr/lib/llvm-17/bin/clang"
build:release_cpu_linux_base --repo_env=BAZEL_COMPILER="/usr/lib/llvm-17/bin/clang"
# Test-related settings below this point.
test:release_linux_base --build_tests_only --keep_going --test_output=errors --verbose_failures=true
test:release_linux_base --local_test_jobs=HOST_CPUS
test:release_linux_base --test_env=LD_LIBRARY_PATH
# Give only the list of failed tests at the end of the log
test:release_linux_base --test_summary=short
# Use the Clang toolchain to compile
build:release_cpu_linux --config=release_linux_base
build:release_cpu_linux --crosstool_top="@sigbuild-r2.16-clang_config_cuda//crosstool:toolchain"
build:release_gpu_linux --config=release_cpu_linux
# Set up compilation CUDA version and paths and use the CUDA Clang toolchain.
# Note that linux cpu and cuda builds share the same toolchain now.
build:release_gpu_linux --config=cuda_clang_official
test:release_gpu_linux --test_env=LD_LIBRARY_PATH="/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
# Local test jobs has to be 4 because parallel_gpu_execute is fragile, I think
test:release_gpu_linux --test_timeout=300,450,1200,3600 --local_test_jobs=4 --run_under=//tensorflow/tools/ci_build/gpu_build:parallel_gpu_execute
build:release_arm64_linux --config=release_linux_base
build:release_arm64_linux --config=linux_arm64
build:release_arm64_linux --crosstool_top="@ml2014_clang_aarch64_config_aarch64//crosstool:toolchain"
build:release_arm64_linux --config=mkl_aarch64_threadpool
build:release_arm64_linux --copt=-flax-vector-conversions
test:release_arm64_linux --flaky_test_attempts=3
# The old gcc linux build options are preserved in the unsupported_*_linux
# configs. If your project fails to build with Clang, you can use these
# unsupported flags to replace the release flags in your build command.
# However, please note that the old toolchain is no longer officially supported
# by TensorFlow and the unsupported configs will be removed soon b/299962977. We
# strongly recommend that you migrate to Clang as your compiler for TensorFlow
# Linux builds. Instructions are available in the official documentation:
# https://www.tensorflow.org/install/source#install_clang_recommended_linux_only
# Another good option is to use our Docker containers to build and test TF:
# https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles.
build:unsupported_cpu_linux --config=avx_linux
build:unsupported_cpu_linux --crosstool_top="@ubuntu20.04-gcc9_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain"
test:unsupported_cpu_linux --test_env=LD_LIBRARY_PATH
test:unsupported_cpu_linux --config=release_base
build:unsupported_gpu_linux --config=cuda
build:unsupported_gpu_linux --config=unsupported_cpu_linux
build:unsupported_gpu_linux --action_env=TF_CUDA_VERSION="11"
build:unsupported_gpu_linux --action_env=TF_CUDNN_VERSION="8"
build:unsupported_gpu_linux --repo_env=TF_CUDA_COMPUTE_CAPABILITIES="sm_35,sm_50,sm_60,sm_70,sm_75,compute_80"
build:unsupported_gpu_linux --config=tensorrt
build:unsupported_gpu_linux --action_env=CUDA_TOOLKIT_PATH="/usr/local/cuda-11.2"
build:unsupported_gpu_linux --action_env=LD_LIBRARY_PATH="/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda-11.1/lib64:/usr/local/tensorrt/lib"
build:unsupported_gpu_linux --action_env=GCC_HOST_COMPILER_PATH="/dt9/usr/bin/gcc"
build:unsupported_gpu_linux [email protected]_manylinux2014-cuda11.2-cudnn8.1-tensorrt7.2_config_cuda//crosstool:toolchain
build:release_cpu_macos --config=avx_linux
test:release_cpu_macos --config=release_base
# Base build configs for macOS
build:release_macos_base --action_env DEVELOPER_DIR=/Applications/Xcode.app/Contents/Developer
build:release_macos_base --define=no_nccl_support=true --output_filter=^$
# Build configs for macOS x86
build:release_macos_x86 --config=release_macos_base
# Build with the AVX instruction set when on macOS x86
build:release_macos_x86 --config=avx_linux
build:release_macos_x86 --cpu=darwin
# Target Catalina as the minimum compatible OS version
build:release_macos_x86 --macos_minimum_os=10.15
build:release_macos_x86 --action_env MACOSX_DEPLOYMENT_TARGET=10.15
# Build configs for macOS Arm64
build:release_macos_arm64 --config=release_macos_base
build:release_macos_arm64 --cpu=darwin_arm64
build:release_macos_arm64 --define=tensorflow_mkldnn_contraction_kernel=0
# Target Moneterey as the minimum compatible OS version
build:release_macos_arm64 --macos_minimum_os=12.0
build:release_macos_arm64 --action_env MACOSX_DEPLOYMENT_TARGET=12.0
# Base test configs for macOS
test:release_macos_base --verbose_failures=true --local_test_jobs=HOST_CPUS
test:release_macos_base --test_timeout=300,450,1200,3600 --test_output=errors
test:release_macos_base --build_tests_only --keep_going
test:release_macos_base --flaky_test_attempts=3
# Test configs for macOS x86
test:release_macos_x86 --config=release_macos_base
# Test configs for macOS Arm64
test:release_macos_arm64 --config=release_macos_base
# TODO(kanglan): Update windows configs after b/289091160 is fixed
build:release_cpu_windows --config=avx_win
build:release_cpu_windows --define=no_tensorflow_py_deps=true
test:release_cpu_windows --config=release_base
# Exclude TFRT integration for anything but Linux.
build:android --config=no_tfrt
build:macos --config=no_tfrt
build:windows --config=no_tfrt
build:rocm --config=no_tfrt
build:no_tfrt --deleted_packages=tensorflow/compiler/mlir/tfrt,tensorflow/compiler/mlir/tfrt/benchmarks,tensorflow/compiler/mlir/tfrt/ir,tensorflow/compiler/mlir/tfrt/ir/mlrt,tensorflow/compiler/mlir/tfrt/jit/python_binding,tensorflow/compiler/mlir/tfrt/jit/transforms,tensorflow/compiler/mlir/tfrt/python_tests,tensorflow/compiler/mlir/tfrt/tests,tensorflow/compiler/mlir/tfrt/tests/ifrt,tensorflow/compiler/mlir/tfrt/tests/mlrt,tensorflow/compiler/mlir/tfrt/tests/ir,tensorflow/compiler/mlir/tfrt/tests/analysis,tensorflow/compiler/mlir/tfrt/tests/jit,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_tfrt,tensorflow/compiler/mlir/tfrt/tests/lhlo_to_jitrt,tensorflow/compiler/mlir/tfrt/tests/tf_to_corert,tensorflow/compiler/mlir/tfrt/tests/tf_to_tfrt_data,tensorflow/compiler/mlir/tfrt/tests/saved_model,tensorflow/compiler/mlir/tfrt/transforms/lhlo_gpu_to_tfrt_gpu,tensorflow/compiler/mlir/tfrt/transforms/mlrt,tensorflow/core/runtime_fallback,tensorflow/core/runtime_fallback/conversion,tensorflow/core/runtime_fallback/kernel,tensorflow/core/runtime_fallback/opdefs,tensorflow/core/runtime_fallback/runtime,tensorflow/core/runtime_fallback/util,tensorflow/core/runtime_fallback/test,tensorflow/core/runtime_fallback/test/gpu,tensorflow/core/runtime_fallback/test/saved_model,tensorflow/core/runtime_fallback/test/testdata,tensorflow/core/tfrt/stubs,tensorflow/core/tfrt/tfrt_session,tensorflow/core/tfrt/mlrt,tensorflow/core/tfrt/mlrt/attribute,tensorflow/core/tfrt/mlrt/kernel,tensorflow/core/tfrt/mlrt/bytecode,tensorflow/core/tfrt/mlrt/interpreter,tensorflow/compiler/mlir/tfrt/translate/mlrt,tensorflow/compiler/mlir/tfrt/translate/mlrt/testdata,tensorflow/core/tfrt/gpu,tensorflow/core/tfrt/run_handler_thread_pool,tensorflow/core/tfrt/runtime,tensorflow/core/tfrt/saved_model,tensorflow/core/tfrt/graph_executor,tensorflow/core/tfrt/saved_model/tests,tensorflow/core/tfrt/tpu,tensorflow/core/tfrt/utils,tensorflow/core/tfrt/utils/debug,tensorflow/core/tfrt/saved_model/python,tensorflow/core/tfrt/graph_executor/python,tensorflow/core/tfrt/saved_model/utils
# START CROSS-COMPILE CONFIGS
# Set execution platform to Linux x86
# Note: Lot of the "host_" flags such as "host_cpu" and "host_crosstool_top"
# flags seem to be actually used to specify the execution platform details. It
# seems it is this way because these flags are old and predate the distinction
# between host and execution platform.
build:cross_compile_base --host_cpu=k8
build:cross_compile_base --host_crosstool_top=//tensorflow/tools/toolchains/cross_compile/cc:cross_compile_toolchain_suite
build:cross_compile_base --extra_execution_platforms=//tensorflow/tools/toolchains/cross_compile/config:linux_x86_64
build:rbe_cross_compile_base --config=rbe_base
build:rbe_cross_compile_base --remote_instance_name=projects/tensorflow-testing/instances/default_instance
# Test-related settings below this point
# We cannot run cross-compiled tests on the remote Linux x86 VMs so we need to
# force all tests to run locally on the Aarch64 host.
test:rbe_cross_compile_base --strategy=TestRunner=local --build_tests_only
test:rbe_cross_compile_base --verbose_failures=true --local_test_jobs=HOST_CPUS --test_output=errors
# START LINUX AARCH64 CROSS-COMPILE CONFIGS
build:cross_compile_linux_arm64 --config=cross_compile_base
# Set the target CPU to Aarch64
build:cross_compile_linux_arm64 --platforms=//tensorflow/tools/toolchains/cross_compile/config:linux_aarch64
build:cross_compile_linux_arm64 --cpu=aarch64
build:cross_compile_linux_arm64 --crosstool_top=//tensorflow/tools/toolchains/cross_compile/cc:cross_compile_toolchain_suite
# RBE cross-compile configs for Linux Aarch64
build:rbe_cross_compile_linux_arm64 --config=cross_compile_linux_arm64
build:rbe_cross_compile_linux_arm64 --config=rbe_cross_compile_base
test:rbe_cross_compile_linux_arm64 --config=rbe_cross_compile_base
# END LINUX AARCH64 CROSS-COMPILE CONFIGS
# START MACOS CROSS-COMPILE CONFIGS
build:cross_compile_macos_x86 --config=cross_compile_base
build:cross_compile_macos_x86 --config=nonccl
# Target Catalina (10.15) as the minimum supported OS
build:cross_compile_macos_x86 --action_env MACOSX_DEPLOYMENT_TARGET=10.15
# Set the target CPU to Darwin x86
build:cross_compile_macos_x86 --platforms=//tensorflow/tools/toolchains/cross_compile/config:darwin_x86_64
build:cross_compile_macos_x86 --cpu=darwin
build:cross_compile_macos_x86 --crosstool_top=//tensorflow/tools/toolchains/cross_compile/cc:cross_compile_toolchain_suite
# When RBE cross-compiling for macOS, we need to explicitly register the
# toolchain. Otherwise, oddly, RBE complains that a "docker container must be
# specified".
build:cross_compile_macos_x86 --extra_toolchains=//tensorflow/tools/toolchains/cross_compile/config:macos-x86-cross-compile-cc-toolchain
# Map --platforms=darwin_x86_64 to --cpu=darwin and vice-versa to make selects()
# and transistions that use these flags work.
build:cross_compile_macos_x86 --platform_mappings=tensorflow/tools/toolchains/cross_compile/config/platform_mappings
# RBE cross-compile configs for Darwin x86
build:rbe_cross_compile_macos_x86 --config=cross_compile_macos_x86
build:rbe_cross_compile_macos_x86 --config=rbe_cross_compile_base
test:rbe_cross_compile_macos_x86 --config=rbe_cross_compile_base
# Increase the test timeout as tests often take longer on mac.
test:rbe_cross_compile_macos_x86 --test_timeout=300,450,1200,3600
# Limit jobs to 100 to avoid running into "out of memory" issues (b/316266643)
build:rbe_cross_compile_macos_x86 --jobs=100
test:rbe_cross_compile_macos_x86 --jobs=100
# END MACOS CROSS-COMPILE CONFIGS
# END CROSS-COMPILE CONFIGS