-
Notifications
You must be signed in to change notification settings - Fork 1
/
generate_mask.py
143 lines (123 loc) · 3.83 KB
/
generate_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torchvision
from advertorch.utils import NormalizeByChannelMeanStd
from torch.utils.data import DataLoader, Subset
from torchvision import transforms
from torchvision.datasets import CIFAR10, CIFAR100
from models.ResNets import resnet20s
from tools.pruning_utils import *
from utils import setup_model
def generate_mask_(args, data, pruner, model_dir, save, state, gpu=0):
def prune_loop(
model,
loss,
pruner,
dataloader,
device,
sparsity,
scope,
epochs,
train_mode=False,
):
# Set model to train or eval mode
model.train()
if not train_mode:
model.eval()
# Prune model
for epoch in range(epochs):
pruner.score(model, loss, dataloader, device)
sparse = sparsity ** ((epoch + 1) / epochs)
pruner.mask(sparse, scope)
torch.cuda.set_device(int(gpu))
model = setup_model(args)
prune_conv(model)
print("loading model from {}".format(model_dir))
checkpoint = torch.load(model_dir, map_location="cpu")
if "state_dict" in checkpoint.keys():
checkpoint = checkpoint["state_dict"]
model.load_state_dict(checkpoint, strict=False)
model.cuda()
remain_weight = 0.8 ** state
if pruner == "mag":
print("Pruning with Magnitude")
pruner = Mag(masked_parameters(model))
prune_loop(
model,
None,
pruner,
None,
torch.device("cuda:{}".format(gpu)),
remain_weight,
scope=args.scope,
epochs=10,
train_mode=True,
)
current_mask = extract_mask(model.state_dict())
check_sparsity_dict(current_mask)
torch.save(current_mask, save)
elif pruner == "snip":
print("Pruning with SNIP")
criterion = nn.CrossEntropyLoss()
data_loader = DataLoader(
data, batch_size=100, shuffle=False, num_workers=2, pin_memory=True
)
pruner = SNIP(masked_parameters(model))
prune_loop(
model,
criterion,
pruner,
data_loader,
torch.device("cuda:{}".format(gpu)),
remain_weight,
scope=args.scope,
epochs=1,
train_mode=True,
)
current_mask = extract_mask(model.state_dict())
check_sparsity_dict(current_mask)
torch.save(current_mask, save)
elif pruner == "random":
print("Pruning with Magnitude")
pruner = Rand(masked_parameters(model))
prune_loop(
model,
None,
pruner,
None,
torch.device("cuda:{}".format(gpu)),
remain_weight,
scope=args.scope,
epochs=1,
train_mode=True,
)
current_mask = extract_mask(model.state_dict())
check_sparsity_dict(current_mask)
torch.save(current_mask, save)
elif pruner == "GraSP":
print("Pruning with GraSP")
criterion = nn.CrossEntropyLoss()
trainset = torchvision.datasets.CIFAR10(
args.data, train=True, download=True, transform=transforms.ToTensor()
)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=128, shuffle=True, num_workers=2
)
pruner = GraSP(masked_parameters(model))
prune_loop(
model,
criterion,
pruner,
trainloader,
torch.device("cuda:{}".format(gpu)),
remain_weight,
scope="global",
epochs=1,
train_mode=True,
)
current_mask = extract_mask(model.state_dict())
check_sparsity_dict(current_mask)
torch.save(current_mask, save)