forked from cgpotts/cs224u
-
Notifications
You must be signed in to change notification settings - Fork 0
/
np_rnn_classifier.py
263 lines (211 loc) · 8.34 KB
/
np_rnn_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from collections import OrderedDict
import numpy as np
from np_model_base import NNModelBase
from utils import softmax, safe_macro_f1
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2022"
class RNNClassifier(NNModelBase):
"""
Simple Recurrent Neural Network for classification problems.
The structure of the network is as follows:
y
/|
b | W_hy
|
h_0 -- W_hh -- h_1 -- W_hh -- h_2 -- W_hh -- h_3
| | |
| W_xh | W_xh | W_xh
| | |
x_1 x_2 x_3
where x_i are the inputs, h_j are the hidden units, and y is a
one-hot vector indicating the true label for this sequence. The
parameters are W_xh, W_hh, W_hy, and the bias b. The inputs x_i
come from a user-supplied embedding space for the vocabulary. These
can either be random or pretrained. The network equations in brief:
h[t] = tanh(x[t].dot(W_xh) + h[t-1].dot(W_hh))
y = softmax(h[-1].dot(W_hy) + b)
The network will work for any kind of classification task.
Parameters
----------
vocab : list of str
This should be the vocabulary. It needs to be aligned with
`embedding` in the sense that the ith element of vocab
should be represented by the ith row of `embedding`. Ignored
if `use_embedding=False`.
embedding : np.array or None
Each row represents a word in `vocab`, as described above.
use_embedding : bool
If True, then incoming examples are presumed to be lists of
elements of the vocabulary. If False, then they are presumed
to be lists of vectors. In this case, the `embedding` and
`embed_dim` arguments are ignored, since no embedding is needed
and `embed_dim` is set by the nature of the incoming vectors.
embed_dim : int
Dimensionality for the initial embeddings. This is ignored
if `embedding` is not None, as a specified value there
determines this value. Also ignored if `use_embedding=False`.
All of the above are set as attributes. In addition, `self.embed_dim`
is set to the dimensionality of the input representations.
"""
def __init__(self,
vocab,
embedding=None,
use_embedding=True,
embed_dim=50,
**kwargs):
self.vocab = vocab
self.vocab_lookup = dict(zip(self.vocab, range(len(self.vocab))))
self.use_embedding = use_embedding
self._embed_dim = embed_dim
if self.use_embedding:
if embedding is None:
embedding = self._define_embedding_matrix(
len(self.vocab), embed_dim)
self.embedding = embedding
self._embed_dim = self.embedding.shape[1]
super().__init__(**kwargs)
self.params += ['embedding', 'embed_dim']
@property
def embed_dim(self):
return self._embed_dim
@embed_dim.setter
def embed_dim(self, value):
self._embed_dim = value
self.embedding = self._define_embedding_matrix(
len(self.vocab), value)
def fit(self, X, y):
if not self.use_embedding:
self._embed_dim = len(X[0][0])
return super().fit(X, y)
def initialize_parameters(self):
"""
Attributes
----------
output_dim : int
Set based on the length of the labels in `training_data`.
This happens in `self.prepare_output_data`.
W_xh : np.array
Dense connections between the word representations
and the hidden layers. Random initialization.
W_hh : np.array
Dense connections between the hidden representations.
Random initialization.
W_hy : np.array
Dense connections from the final hidden layer to
the output layer. Random initialization.
b : np.array
Output bias. Initialized to all 0.
"""
self.W_xh = self.weight_init(self.embed_dim, self.hidden_dim)
self.W_hh = self.weight_init(self.hidden_dim, self.hidden_dim)
self.W_hy = self.weight_init(self.hidden_dim, self.output_dim)
self.b = np.zeros(self.output_dim)
def forward_propagation(self, seq):
"""
Parameters
----------
seq : list
Variable length sequence of elements in the vocabulary.
Returns
----------
h : np.array
Each row is for a hidden representation. The first row
is an all-0 initial state. The others correspond to
the inputs in seq.
y : np.array
The vector of predictions.
"""
h = np.zeros((len(seq)+1, self.hidden_dim))
for t in range(1, len(seq)+1):
if self.use_embedding:
word_rep = self.get_word_rep(seq[t-1])
else:
word_rep = seq[t-1]
h[t] = self.hidden_activation(
word_rep.dot(self.W_xh) + h[t-1].dot(self.W_hh))
y = softmax(h[-1].dot(self.W_hy) + self.b)
return h, y
def backward_propagation(self, h, predictions, seq, labels):
"""
Parameters
----------
h : np.array, shape (m, self.hidden_dim)
Matrix of hidden states. `m` is the shape of the current
example (which is allowed to vary).
predictions : np.array, dimension `len(self.classes)`
Vector of predictions.
seq : list of lists
The original example.
labels : np.array, dimension `len(self.classes)`
One-hot vector giving the true label.
Returns
-------
tuple
The matrices of derivatives (d_W_hy, d_b, d_W_hh, d_W_xh).
"""
# Output errors:
y_err = predictions
y_err[np.argmax(labels)] -= 1
h_err = y_err.dot(self.W_hy.T) * self.d_hidden_activation(h[-1])
d_W_hy = np.outer(h[-1], y_err)
d_b = y_err
# For accumulating the gradients through time:
d_W_hh = np.zeros(self.W_hh.shape)
d_W_xh = np.zeros(self.W_xh.shape)
# Back-prop through time; the +1 is because the 0th
# hidden state is the all-0s initial state.
num_steps = len(seq)+1
for t in reversed(range(1, num_steps)):
d_W_hh += np.outer(h[t], h_err)
if self.use_embedding:
word_rep = self.get_word_rep(seq[t-1])
else:
word_rep = seq[t-1]
d_W_xh += np.outer(word_rep, h_err)
h_err = h_err.dot(self.W_hh.T) * self.d_hidden_activation(h[t])
return (d_W_hy, d_b, d_W_hh, d_W_xh)
def update_parameters(self, gradients):
d_W_hy, d_b, d_W_hh, d_W_xh = gradients
self.W_hy -= self.eta * d_W_hy
self.b -= self.eta * d_b
self.W_hh -= self.eta * d_W_hh
self.W_xh -= self.eta * d_W_xh
def score(self, X, y):
preds = self.predict(X)
return safe_macro_f1(y, preds)
def simple_example():
from sklearn.metrics import accuracy_score
import utils
utils.fix_random_seeds()
vocab = ['a', 'b', '$UNK']
# No b before an a
train = [
[list('ab'), 'good'],
[list('aab'), 'good'],
[list('abb'), 'good'],
[list('aabb'), 'good'],
[list('ba'), 'bad'],
[list('baa'), 'bad'],
[list('bba'), 'bad'],
[list('bbaa'), 'bad'],
[list('aba'), 'bad']]
test = [
[list('baaa'), 'bad'],
[list('abaa'), 'bad'],
[list('bbaa'), 'bad'],
[list('aaab'), 'good'],
[list('aaabb'), 'good']]
X_train, y_train = zip(*train)
X_test, y_test = zip(*test)
mod = RNNClassifier(vocab)
print(mod)
mod.fit(X_train, y_train)
preds = mod.predict(X_test)
print("\nPredictions:")
for ex, pred, gold in zip(X_test, preds, y_test):
score = "correct" if pred == gold else "incorrect"
print("{0:>6} - predicted: {1:>4}; actual: {2:>4} - {3}".format(
"".join(ex), pred, gold, score))
return accuracy_score(y_test, preds)
if __name__ == '__main__':
simple_example()