-
Notifications
You must be signed in to change notification settings - Fork 0
/
glmnet.m
468 lines (436 loc) · 15.3 KB
/
glmnet.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
function fit = glmnet(x, y, family, options)
%--------------------------------------------------------------------------
% glmnet.m: fit an GLM with lasso or elasticnet regularization
%--------------------------------------------------------------------------
%
% DESCRIPTION:
% Fit a generalized linear model via penalized maximum likelihood. The
% regularization path is computed for the lasso or elasticnet penalty
% at a grid of values for the regularization parameter lambda. Can deal
% with all shapes of data, including very large sparse data matrices.
% Fits linear, logistic and multinomial, Poisson, and Cox regression
% models.
%
% USAGE:
% fit = glmnet(x, y)
% fit = glmnet(x, y, family)
% fit = glmnet(x, y, family, options)
% (Use empty matrix [] to apply the default value, eg. fit = glmnet(x,
% y, [], options))
%
%
% EXTERNAL FUNCTIONS:
% options = glmnetSet; provided with glmnet.m
%
% INPUT ARGUMENTS:
% x Input matrix, of dimension nobs x nvars; each row is an
% observation vector. Can be in sparse matrix format.
% y Response variable. Quantitative (column vector) for family =
% 'gaussian', or family = 'poisson'(non-negative counts). For
% family = 'binomial' should be either a column vector with two
% levels, or a two-column matrix of counts or proportions. For
% family = 'multinomial', can be a column vector of nc>=2
% levels, or a matrix with nc columns of counts or proportions.
% For family = 'cox', y should be a two-column matrix with the
% first column for time and the second for status. The latter
% is a binary variable, with 1 indicating death, and 0
% indicating right censored. For family = 'mgaussian', y is a
% matrix of quantitative responses.
% family Reponse type. (See above). Default is 'gaussian'.
% options A structure that may be set and altered by glmnetSet.
% Default values for some often used options:
% options.alpha = 1.0 (elastic-net mixing parameter)
% options.nlambda = 100 (number of lambda values)
% options.lambda depends on data, nlambda and
% lambda_min(user spplied lambda sequence)
% options.standardize = true (variable standardization)
% options.weights = all ones vector (observation weights)
% For more details, type help glmnetSet.
%
% OUTPUT ARGUMENTS:
% fit A structure.
% fit.a0 Intercept sequence of length length(fit.lambda).
% fit.beta For "elnet" and "lognet" models, a nvars x length(lambda)
% matrix of coefficients. For "multnet", a list of nc such
% matrices, one for each class.
% fit.lambda The actual sequence of lambda values used.
% fit.dev The fraction of (null) deviance explained (for "elnet", this
% is the R-square).
% fit.nulldev Null deviance (per observation).
% fit.df The number of nonzero coefficients for each value of lambda.
% For "multnet", this is the number of variables with a nonzero
% coefficient for any class.
% fit.dfmat For "multnet" only. A matrix consisting of the number of
% nonzero coefficients per class.
% fit.dim Dimension of coefficient matrix (ices).
% fit.npasses Total passes over the data summed over all lambda values.
% fit.offset a logical variable indicating whether an offset was included
% in the model.
% fit.jerr Error flag, for warnings and errors (largely for internal
% debugging).
% fit.class Type of regression - internal usage.
% fit.call a cell including the names of all the input variables in the
% parent environment.
%
% DETAILS:
% The sequence of models implied by lambda is fit by coordinate descent.
% For family='gaussian' this is the lasso sequence if alpha=1, else it
% is the elasticnet sequence. For the other families, this is a lasso or
% elasticnet regularization path for fitting the generalized linear
% regression paths, by maximizing the appropriate penalized
% log-likelihood (partial likelihood for the 'cox' model). Sometimes the
% sequence is truncated before nlambda values of lambda have been used,
% because of instabilities in the inverse link functions near a
% saturated fit. glmnet(...,family='binomial') fits a traditional
% logistic regression model for the log-odds.
% glmnet(...,family='multinomial') fits a symmetric multinomial model,
% where each class is represented by a linear model (on the log-scale).
% The penalties take care of redundancies. A two-class 'multinomial'
% model will produce the same fit as the corresponding 'binomial' model,
% except the pair of coefficient matrices will be equal in magnitude and
% opposite in sign, and half the 'binomial' values. Note that the
% objective function for 'gaussian' is
%
% 1/2 RSS / nobs + lambda * penalty,
%
% and for the logistic models it is
%
% -loglik / nobs + lambda * penalty.
%
% Note also that for 'gaussian', glmnet standardizes y to have unit
% variance before computing its lambda sequence (and then unstandardizes
% the resulting coefficients); if you wish to reproduce/compare results
% with other software, best to supply a standardized y. The latest two
% features in glmnet are the family='mgaussian' family and the
% mtype='grouped' in options for multinomial fitting. The former
% allows a multi-response gaussian model to be fit, using a "group
% -lasso" penalty on the coefficients for each variable. Tying the
% responses together like this is called "multi-task" learning in some
% domains. The grouped multinomial allows the same penalty for the
% family='multinomial' model, which is also multi-responsed. For both of
% these the penalty on the coefficient vector for variable j is
%
% (1-alpha)/2 * ||beta_j||_2^2 + alpha * ||beta_j||_2
%
% When alpha=1 this is a group-lasso penalty, and otherwise it mixes
% with quadratic just like elasticnet.
%
% LICENSE: GPL-2
%
% DATE: 30 Aug 2013
%
% AUTHORS:
% Algorithm was designed by Jerome Friedman, Trevor Hastie and Rob Tibshirani
% Fortran code was written by Jerome Friedman
% R wrapper (from which the MATLAB wrapper was adapted) was written by Trevor Hasite
% The original MATLAB wrapper was written by Hui Jiang (14 Jul 2009),
% and was updated and is maintained by Junyang Qian (30 Aug 2013) [email protected],
% Department of Statistics, Stanford University, Stanford, California, USA.
%
% REFERENCES:
% Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent,
% http://www.jstatsoft.org/v33/i01/
% Journal of Statistical Software, Vol. 33(1), 1-22 Feb 2010
%
% Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent,
% http://www.jstatsoft.org/v39/i05/
% Journal of Statistical Software, Vol. 39(5) 1-13
%
% Tibshirani, Robert., Bien, J., Friedman, J.,Hastie, T.,Simon, N.,Taylor, J. and Tibshirani, Ryan. (2010) Strong Rules for Discarding Predictors in Lasso-type Problems,
% http://www-stat.stanford.edu/~tibs/ftp/strong.pdf
% Stanford Statistics Technical Report
%
% SEE ALSO:
% glmnetPrint, glmnetPlot, glmnetCoef, glmnetPredict,
% glmnetSet, glmnetControl and cvglmnet.
%
% EXAMPLES:
% % Gaussian
% x=randn(100,20);
% y=randn(100,1);
% fit1 = glmnet(x,y);
% glmnetPrint(fit1);
% glmnetPredict(fit1,[],0.01,'coef') %extract coefficients at a single value of lambda
% glmnetPredict(fit1,x(1:10,:),[0.01,0.005]') %make predictions
%
% % Multivariate Gaussian:
% y=randn(100,3);
% fit1m=glmnet(x,y,'mgaussian');
% glmnetPlot(fit1m,[],[],'2norm');
%
% % Binomial:
% g2=randsample(2,100,true);
% fit2=glmnet(x,g2,'binomial');
%
% % Multinomial:
% g4=randsample(4,100,true);
% fit3=glmnet(x,g4,'multinomial');
% opts=struct('mtype','grouped');
% fit3a=glmnet(x,g4,'multinomial',opts);
%
% % Poisson:
% N=500; p=20;
% nzc=5;
% x=randn(N,p);
% beta=randn(nzc,1);
% f=x(:,1:nzc) * beta;
% mu=exp(f);
% y=poissrnd(mu,N,1);
% fit=glmnet(x,y,'poisson');
% glmnetPlot(fit);
% pfit=glmnetPredict(fit,x,0.001,'response');
% plot(pfit,y,'o');
%
% % Cox:
% N=1000; p=30;
% nzc=p/3;
% x=randn(N,p);
% beta=randn(nzc,1);
% fx=x(:,1:nzc)*beta/3;
% hx=exp(fx);
% ty=exprnd(1./hx,N,1);
% tcens=binornd(1,0.3,N,1);
% y=cat(2,ty,1-tcens);
% fit=glmnet(x,y,'cox');
% glmnetPlot(fit);
%
% % Sparse:
% n=10000;p=200;
% nzc=fix(p/10);
% x=randn(n,p);
% iz=randsample(n*p,n*p*0.85,false);
% x(iz)=0;
% sx=sparse(x);
% beta=randn(nzc,1);
% fx=x(:,1:nzc)*beta;
% eps=randn(n,1);
% y=fx+eps;
% px=exp(fx);
% px=px./(1+px);
% ly=binornd(1,px,length(px),1);
% tic;
% fit1=glmnet(sx,y);
% toc;
% tic;
% fit2n=glmnet(x,y);
% toc;
%
% DEVELOPMENT:
% 14 Jul 2009: Original version of glmnet.m written.
% 30 Aug 2013: Updated glmnet.m with more options and more models
% (multi-response Gaussian, cox and Poisson models) supported.
% 29 Dec 2013: Fixed a bug in the return value of CVerr.fit_preval,
% pointed out by Leon Peshkin from Harvard University.
%
% OLDER UPDATES:
% 26 Jan 2010: Fixed a bug in the description of y, pointed out by
% Peter Rijnbeek from Erasmus University.
% 09 Mar 2010: Fixed a bug of printing "ka = 2", pointed out by
% Ramon Casanova from Wake Forest University.
% 25 Mar 2010: Fixed a bug when p > n in multinomial fitting, pointed
% out by Gerald Quon from University of Toronto
% 25 Jul 2010: Check for input matrix format and size
% 27 Sep 2010: Fixed a bug of undefined "df" in multinomial fitting,
% pointed by Jeff Howbert from Insilicos.
if nargin < 2
error('more input arguments needed.');
end
if nargin < 3 || isempty(family)
family = 'gaussian';
end
if nargin < 4 || isempty(options)
options = glmnetSet;
end
%Get the names of input variables
out_x = inputname(1); out_y = inputname(2);
out_family = mat2str([]); out_options = mat2str([]);
if nargin > 2
if ~isempty(inputname(3))
out_family = inputname(3);
else
out_family = family;
end
end
if nargin > 3
if ~isempty(inputname(4))
out_options = inputname(4);
end
end
%match the family, abbreviation allowed
fambase = {'gaussian','binomial','poisson','multinomial','cox','mgaussian'};
famind = find(strncmp(family,fambase,length(family)),1);
if isempty(famind)
error('family should be one of ''gaussian'', ''binomial'', ''poisson'', ''multinomial'', ''cox'', ''mgaussian''');
else
family = fambase{famind};
end
% Prepare parameters
options = glmnetSet(options);
if (options.alpha > 1)
warning('alpha >1; set to 1');
options.alpha = 1;
end
if (options.alpha < 0)
warning('alpha <0; set to 0');
options.alpha = 0;
end
parm = options.alpha;
nlam = options.nlambda;
[nobs,nvars] = size(x);
weights = options.weights;
if isempty(weights)
weights = ones(nobs,1);
else
if (length(weights) ~= nobs)
error('number of elements in weights (%d) not equal to the number of rows of x (%d)',length(weights),nobs);
end
end
nrowy = size(y, 1);
if (nrowy ~= nobs)
error('number of observations in y (%d) not equal to the number of rows of x (%d)',nrowy,nobs);
end
ne = options.dfmax;
if isempty(ne)
ne = nvars + 1;
end
nx = options.pmax;
if isempty(nx)
nx = min(ne * 2 + 20, nvars);
end
exclude = options.exclude;
if ~isempty(exclude)
exclude = unique(exclude);
if ~all(exclude > 0 & exclude <= nvars)
error('Some excluded variables out of range');
end
jd = [length(exclude); exclude];
else
jd = 0;
end
vp = options.penalty_factor;
if isempty(vp)
vp = ones(1,nvars);
end
inparms = glmnetControl();
cl = options.cl;
if any(cl(1,:) > 0)
error ('The lower bound should be non-positive');
end
if any(cl(2,:) < 0)
error ('The lower bound should be non-negative');
end
cl(1,cl(1,:)==-Inf) = -inparms.big;
cl(2,cl(2,:)==Inf) = inparms.big;
if (size(cl,2) < nvars)
if (size(cl,2) == 1)
cl = cl * ones(1,nvars);
else
error('Require length 1 or nvars lower and upper limits');
end
else
cl = cl(:,1:nvars);
end
exit_rec = 0;
if (any(cl(:)==0))
fdev = inparms.fdev;
if (fdev ~= 0)
optset.fdev = 0;
glmnetControl(optset);
exit_rec = 1;
end
end
isd = double(options.standardize);
intr = double(options.intr);
if (intr == true) && (strcmp(family, 'cox'))
warning('Cox model has no intercept');
end
jsd = options.standardize_resp;
thresh = options.thresh;
lambda = options.lambda;
lambda_min = options.lambda_min;
if isempty(lambda_min)
if nobs < nvars
lambda_min = 0.01;
else
lambda_min = 1e-4;
end
end
lempty = isempty(lambda);
if lempty
if (lambda_min >= 1)
error('lambda_min should be less than 1');
end
flmin = lambda_min;
ulam = 0.0;
else
flmin = 1.0;
if any(lambda < 0)
error ('lambdas should be non-negative');
end
ulam = sort(lambda,'descend');
nlam = length(lambda);
end
maxit = options.maxit;
gtype = options.gtype;
if isempty(gtype)
if (nvars < 500)
gtype = 'covariance';
else
gtype = 'naive';
end
end
ltype = options.ltype;
indl = find(strncmp(ltype,{'Newton','modified.Newton'},length(ltype)),1);
if (isempty(indl))
error('ltype should be one of ''Newton'', ''modified.Newton''');
else
kopt = indl - 1;
end
if strcmp(family,'multinomial')
mtype = options.mtype;
indm = find(strncmp(mtype,{'ungrouped','grouped'},length(mtype)),1);
if (isempty(indm))
error('mtype should be one of ''ungrouped'', ''grouped''');
else
if (indm == 2)
kopt = 2;
end
end
end
offset = options.offset;
is_sparse = false;
if issparse(x)
is_sparse = true;
[irs, jcs, x] = find(x);
pcs = [0;cumsum(histc(jcs, 1:nvars))] + 1;
else
irs = []; pcs = [];
end
if issparse(y)
y = full(y);
end
switch family
case 'gaussian'
fit = elnet(x,is_sparse,irs,pcs,y,weights,offset,gtype,parm,lempty,...
nvars,jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,intr,maxit,family);
case {'binomial', 'multinomial'}
fit = lognet(x,is_sparse,irs,pcs,y,weights,offset,parm,nobs,nvars,...
jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,intr,maxit,kopt,family);
case 'cox'
fit = coxnet(x,is_sparse,irs,pcs,y,weights,offset,parm,nobs,nvars,...
jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,maxit,family);
case 'mgaussian'
fit = mrelnet(x,is_sparse,irs,pcs,y,weights,offset,parm,nobs,nvars,...
jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,jsd,intr,maxit,family);
case 'poisson'
fit = fishnet(x,is_sparse,irs,pcs,y,weights,offset,parm,nobs,nvars,...
jd,vp,cl,ne,nx,nlam,flmin,ulam,thresh,isd,intr,maxit,family);
end
fit.call = {out_x, out_y, out_family, out_options};
if (exit_rec == 1)
optset.fdev = fdev;
glmnetControl(optset);
end
%------------------------------------------------------------------
% End function glmnet
%------------------------------------------------------------------