-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgrid_world.py
333 lines (283 loc) · 13.5 KB
/
grid_world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import gym
from gym import spaces
import numpy as np
import pygame
from pyreason_gym.pyreason_grid_world.pyreason_grid_world import PyReasonGridWorld
class GridWorldEnv(gym.Env):
metadata = {"render_modes": ["human", "rgb_array"], "render_fps": 4}
def __init__(self, grid_size=8, num_agents_per_team=1, render_mode=None, graph=None, rules=None):
"""Initialize grid world
:param render_mode: whether to render in human viewable format or not, defaults to None
:param grid_size: size of the grid world square, defaults to 8
:param num_agents_per_team: number of agents in each team, defaults to 1
:param render_mode: how to render the environment, defaults to None
"""
super(GridWorldEnv, self).__init__()
self.grid_size = grid_size
self.render_mode = render_mode
self.window_size = 512
# Initialize the PyReason gridworld
self.pyreason_grid_world = PyReasonGridWorld(grid_size, num_agents_per_team, graph, rules)
# Get the position of obstacles for the render function
self.obstacle_positions = None
self.base_positions = None
# The observation space consists of the positions of the agents as well as their state (health etc.)
# It also contains information about bullet positions as well as direction
# Length of the sequence = num_agents_per_team
self.observation_space = spaces.Dict(
{
'red_team': spaces.Sequence(spaces.Dict({'pos': spaces.Box(0, grid_size-1, shape=(2,), dtype=int), 'health': spaces.Box(0, 1, dtype=np.float32), 'killed': spaces.Sequence(spaces.Discrete(num_agents_per_team+1))})),
'blue_team': spaces.Sequence(spaces.Dict({'pos': spaces.Box(0, grid_size-1, shape=(2,), dtype=int), 'health': spaces.Box(0, 1, dtype=np.float32), 'killed': spaces.Sequence(spaces.Discrete(num_agents_per_team+1))})),
'red_bullets': spaces.Sequence(spaces.Dict({'pos': spaces.Box(0, grid_size-1, shape=(2,), dtype=int), 'dir': spaces.Discrete(4)})),
'blue_bullets': spaces.Sequence(spaces.Dict({'pos': spaces.Box(0, grid_size-1, shape=(2,), dtype=int), 'dir': spaces.Discrete(4)}))
}
)
# We have 9 actions, corresponding to "up", "down", "left", "right", "shootUp", "shootDown", "shootLeft", "shootRight", "doNothing"
self.action_space = spaces.Dict(
{
'red_team': spaces.MultiDiscrete([9]*num_agents_per_team),
'blue_team': spaces.MultiDiscrete([9]*num_agents_per_team)
}
)
self.actions = {0: 'up', 1: 'down', 2: 'left', 3: 'right', 4: 'shootUp', 5: 'shootDown', 6: 'shootLeft', 7: 'shootRight'}
self.current_observation = None
assert render_mode is None or render_mode in self.metadata["render_modes"]
# If human-rendering is used, `self.window` will be a reference
# to the window that we draw to. `self.clock` will be a clock that is used
# to ensure that the environment is rendered at the correct framerate in
# human-mode. They will remain `None` until human-mode is used for the
# first time.
self.window = None
self.clock = None
def _get_obs(self):
self.current_observation = self.pyreason_grid_world.get_obs()
return self.current_observation
def _get_info(self):
return {}
def _get_rew(self):
return 0
def reset(self, seed=None, options=None):
"""Resets the environment to the initial conditions
:param seed: random seed if there is a random component, defaults to None
:param options: defaults to None
"""
# We need the following line to seed self.np_random
super().reset(seed=seed)
self.pyreason_grid_world.reset()
# Get the position of obstacles for the render function
self.obstacle_positions = self.pyreason_grid_world.get_obstacle_locations()
self.base_positions = self.pyreason_grid_world.get_base_locations()
observation = self._get_obs()
info = self._get_info()
# Render if necessary
if self.render_mode == "human":
self._render_frame(observation)
return observation, info
def step(self, action):
self.pyreason_grid_world.move(action)
observation = self._get_obs()
info = self._get_info()
# Get reward
rew = self._get_rew()
# End of game
done = self.is_done(observation)
# Render if necessary
if self.render_mode == "human":
self._render_frame(observation)
return observation, rew, done, False, info
def render(self):
if self.render_mode == "rgb_array":
return self._render_frame(self.current_observation)
def _render_frame(self, observation):
if self.window is None and self.render_mode=="human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and self.render_mode=="human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
# The size of a single grid square in pixels
pix_square_size = (
self.window_size / self.grid_size
)
# First draw both bases
pygame.draw.rect(
canvas,
(100, 0, 0),
pygame.Rect(
pix_square_size * self.to_pygame_coords(self.base_positions[0]),
(pix_square_size, pix_square_size),
),
)
pygame.draw.rect(
canvas,
(0, 0, 100),
pygame.Rect(
pix_square_size * self.to_pygame_coords(self.base_positions[1]),
(pix_square_size, pix_square_size),
),
)
# Draw the obstacles
for i in self.obstacle_positions:
triangle_coords = [pix_square_size * self.to_pygame_coords(i), pix_square_size * self.to_pygame_coords(i), pix_square_size * self.to_pygame_coords(i)]
triangle_coords[0][0] += pix_square_size/2
triangle_coords[1][1] += pix_square_size
triangle_coords[2][0] += pix_square_size
triangle_coords[2][1] += pix_square_size
pygame.draw.polygon(
canvas,
(0, 0, 0),
triangle_coords,
)
# Draw the agents according to the observation
for i in observation['red_team']:
if i['health'][0] != 0:
pos = self.to_pygame_coords(i['pos']) * pix_square_size
pos += int(pix_square_size/2)
# Draw circle and border
pygame.draw.circle(
canvas,
(255, 0, 0),
pos,
pix_square_size/3,
)
for i in observation['blue_team']:
if i['health'][0] != 0:
pos = self.to_pygame_coords(i['pos']) * pix_square_size
pos += int(pix_square_size/2)
# Draw circle and border
pygame.draw.circle(
canvas,
(0, 0, 255),
pos,
pix_square_size/3,
)
# Add active bullets to the grid (currently we don't display direction)
direction_map = {0: 'up', 1: 'down', 2: 'left', 3: 'right'}
for bullet in observation['red_bullets']:
red_pos = bullet['pos']
red_dir = bullet['dir']
# Which dir the bullet should point
if direction_map[red_dir] == 'up' or direction_map[red_dir] == 'down':
idx = 1
elif direction_map[red_dir] == 'left' or direction_map[red_dir] == 'right':
idx = 0
start_pos = self.to_pygame_coords(red_pos) * pix_square_size + int(pix_square_size/2)
end_pos = self.to_pygame_coords(red_pos) * pix_square_size + int(pix_square_size/2)
start_pos[idx] -= pix_square_size/5
end_pos[idx] += pix_square_size/5
pygame.draw.line(
canvas,
(255, 0, 0),
start_pos,
end_pos,
10
)
# Draw triangles at the end of each bullet
if direction_map[red_dir] == 'up':
tri_1 = [start_pos[0], start_pos[1] - pix_square_size / 8]
tri_2 = [start_pos[0] + pix_square_size / 8, start_pos[1]]
tri_3 = [start_pos[0] - pix_square_size / 8, start_pos[1]]
elif direction_map[red_dir] == 'down':
tri_1 = [end_pos[0], end_pos[1] + pix_square_size / 8]
tri_2 = [end_pos[0] + pix_square_size / 8, end_pos[1]]
tri_3 = [end_pos[0] - pix_square_size / 8, end_pos[1]]
elif direction_map[red_dir] == 'left':
tri_1 = [start_pos[0] - pix_square_size / 8, start_pos[1]]
tri_2 = [start_pos[0], start_pos[1] + pix_square_size / 8]
tri_3 = [start_pos[0], start_pos[1] - pix_square_size / 8]
elif direction_map[red_dir] == 'right':
tri_1 = [end_pos[0] + pix_square_size / 8, end_pos[1]]
tri_2 = [end_pos[0], end_pos[1] + pix_square_size / 8]
tri_3 = [end_pos[0], end_pos[1] - pix_square_size / 8]
pygame.draw.polygon(
canvas,
(255, 0, 0),
(tri_1, tri_2, tri_3),
)
for bullet in observation['blue_bullets']:
blue_pos = bullet['pos']
blue_dir = bullet['dir']
# Which dir the bullet should point
if direction_map[blue_dir] == 'up' or direction_map[blue_dir] == 'down':
idx = 1
elif direction_map[blue_dir] == 'left' or direction_map[blue_dir] == 'right':
idx = 0
start_pos = self.to_pygame_coords(blue_pos) * pix_square_size + int(pix_square_size/2)
end_pos = self.to_pygame_coords(blue_pos) * pix_square_size + int(pix_square_size/2)
start_pos[idx] -= pix_square_size / 5
end_pos[idx] += pix_square_size / 5
pygame.draw.line(
canvas,
(0, 0, 255),
start_pos,
end_pos,
10
)
# Draw triangles at the end of each bullet
if direction_map[blue_dir] == 'up':
tri_1 = [start_pos[0], start_pos[1] - pix_square_size / 8]
tri_2 = [start_pos[0] + pix_square_size / 8, start_pos[1]]
tri_3 = [start_pos[0] - pix_square_size / 8, start_pos[1]]
elif direction_map[blue_dir] == 'down':
tri_1 = [end_pos[0], end_pos[1] + pix_square_size / 8]
tri_2 = [end_pos[0] + pix_square_size / 8, end_pos[1]]
tri_3 = [end_pos[0] - pix_square_size / 8, end_pos[1]]
elif direction_map[blue_dir] == 'left':
tri_1 = [start_pos[0] - pix_square_size / 8, start_pos[1]]
tri_2 = [start_pos[0], start_pos[1] + pix_square_size / 8]
tri_3 = [start_pos[0], start_pos[1] - pix_square_size / 8]
elif direction_map[blue_dir] == 'right':
tri_1 = [end_pos[0] + pix_square_size / 8, end_pos[1]]
tri_2 = [end_pos[0], end_pos[1] + pix_square_size / 8]
tri_3 = [end_pos[0], end_pos[1] - pix_square_size / 8]
pygame.draw.polygon(
canvas,
(0, 0, 255),
(tri_1, tri_2, tri_3),
)
# Finally, add some gridlines
for x in range(self.grid_size + 1):
pygame.draw.line(
canvas,
0,
(0, pix_square_size * x),
(self.window_size, pix_square_size * x),
width=3,
)
pygame.draw.line(
canvas,
0,
(pix_square_size * x, 0),
(pix_square_size * x, self.window_size),
width=3,
)
if self.render_mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# We need to ensure that human-rendering occurs at the predefined framerate.
# The following line will automatically add a delay to keep the framerate stable.
self.clock.tick(self.metadata["render_fps"])
elif self.render_mode == 'rgb_array':
return np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def is_done(self, observation):
# End the game when the health goes to zero of an entire team
red_end = True
blue_end = True
for i in observation['red_team']:
if i['health'] != 0:
red_end = False
for i in observation['blue_team']:
if i['health'] != 0:
blue_end = False
return red_end or blue_end
def to_pygame_coords(self, coords):
"""Convert coordinates into pygame coordinates (lower-left => top left)."""
return np.array([coords[0], self.grid_size - 1 - coords[1]])