-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathvariational_bayes.py
359 lines (277 loc) · 16.4 KB
/
variational_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
VariationalBayes for Vanilla LDA
@author: Ke Zhai ([email protected])
"""
import time
import numpy
import scipy;
import scipy.misc;
import nltk;
import string;
import sys;
from inferencer import compute_dirichlet_expectation
from inferencer import Inferencer;
"""
This is a python implementation of vanilla lda, based on variational inference, with hyper parameter updating.
It supports asymmetric Dirichlet prior over the topic simplex.
References:
[1] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 3:993-1022, January 2003.
"""
'''
def parse_data(corpus, vocab):
doc_count = 0
word_ids = [];
word_cts = [];
for document_line in corpus:
# words = document_line.split();
document_word_dict = []
for token in document_line.split():
if token in vocab:
if token not in document_word_dict:
document_word_dict[token] = 0;
document_word_dict[token] += 1;
else:
continue;
word_ids.append(numpy.array(document_word_dict.keys()));
word_cts.append(numpy.array(document_word_dict.values()));
doc_count += 1
if doc_count % 10000 == 0:
print "successfully import %d documents..." % doc_count;
print "successfully import %d documents..." % (doc_count);
return word_ids, word_cts
'''
class VariationalBayes(Inferencer):
"""
"""
def __init__(self,
hyper_parameter_optimize_interval=1,
# hyper_parameter_iteration=100,
# hyper_parameter_decay_factor=0.9,
# hyper_parameter_maximum_decay=10,
# hyper_parameter_converge_threshold=1e-6,
# model_converge_threshold=1e-6
):
Inferencer.__init__(self, hyper_parameter_optimize_interval);
# self._hyper_parameter_iteration = hyper_parameter_iteration
# self._hyper_parameter_decay_factor = hyper_parameter_decay_factor;
# self._hyper_parameter_maximum_decay = hyper_parameter_maximum_decay;
# self._hyper_parameter_converge_threshold = hyper_parameter_converge_threshold;
# self._model_converge_threshold = model_converge_threshold;
"""
@param num_topics: the number of topics
@param data: a defaultdict(dict) data type, first indexed by doc id then indexed by term id
take note: words are not terms, they are repeatable and thus might be not unique
"""
def _initialize(self, corpus, vocab, number_of_topics, alpha_alpha, alpha_beta):
Inferencer._initialize(self, vocab, number_of_topics, alpha_alpha, alpha_beta);
#self._corpus = corpus;
self._parsed_corpus = self.parse_data(corpus);
# define the total number of document
self._number_of_documents = len(self._parsed_corpus[0]);
# initialize a D-by-K matrix gamma, valued at N_d/K
self._gamma = numpy.zeros((self._number_of_documents, self._number_of_topics)) + self._alpha_alpha[numpy.newaxis, :] + 1.0 * self._number_of_types / self._number_of_topics;
# initialize a V-by-K matrix beta, valued at 1/V, subject to the sum over every row is 1
self._eta = numpy.random.gamma(100., 1. / 100., (self._number_of_topics, self._number_of_types));
# self._E_log_eta = compute_dirichlet_expectation(self._eta);
def parse_data(self, corpus):
doc_count = 0
word_ids = [];
word_cts = [];
for document_line in corpus:
# words = document_line.split();
document_word_dict = {}
for token in document_line.split():
if token not in self._type_to_index:
continue;
type_id = self._type_to_index[token];
if type_id not in document_word_dict:
document_word_dict[type_id] = 0;
document_word_dict[type_id] += 1;
if len(document_word_dict) == 0:
sys.stderr.write("warning: document collapsed during parsing");
continue;
word_ids.append(numpy.array(document_word_dict.keys()));
word_cts.append(numpy.array(document_word_dict.values())[numpy.newaxis, :]);
doc_count += 1
if doc_count % 10000 == 0:
print "successfully parse %d documents..." % doc_count;
assert len(word_ids) == len(word_cts);
print "successfully parse %d documents..." % (doc_count);
return (word_ids, word_cts)
def e_step(self, parsed_corpus=None, local_parameter_iteration=50, local_parameter_converge_threshold=1e-6):
if parsed_corpus == None:
word_ids = self._parsed_corpus[0];
word_cts = self._parsed_corpus[1];
else:
word_ids = parsed_corpus[0]
word_cts = parsed_corpus[1];
assert len(word_ids) == len(word_cts);
number_of_documents = len(word_ids);
document_log_likelihood = 0;
words_log_likelihood = 0;
# initialize a V-by-K matrix phi sufficient statistics
phi_sufficient_statistics = numpy.zeros((self._number_of_topics, self._number_of_types));
# initialize a D-by-K matrix gamma values
gamma_values = numpy.zeros((number_of_documents, self._number_of_topics)) + self._alpha_alpha[numpy.newaxis, :] + 1.0 * self._number_of_types / self._number_of_topics;
E_log_eta = compute_dirichlet_expectation(self._eta);
assert E_log_eta.shape == (self._number_of_topics, self._number_of_types);
if parsed_corpus != None:
E_log_prob_eta = E_log_eta - scipy.misc.logsumexp(E_log_eta, axis=1)[:, numpy.newaxis]
# iterate over all documents
# for doc_id in xrange(number_of_documents):
for doc_id in numpy.random.permutation(number_of_documents):
# compute the total number of words
# total_word_count = self._corpus[doc_id].N()
total_word_count = numpy.sum(word_cts[doc_id]);
# initialize gamma for this document
gamma_values[doc_id, :] = self._alpha_alpha + 1.0 * total_word_count / self._number_of_topics;
# term_ids = numpy.array(self._corpus[doc_id].keys());
# term_counts = numpy.array([self._corpus[doc_id].values()]);
term_ids = word_ids[doc_id];
term_counts = word_cts[doc_id];
assert term_counts.shape == (1, len(term_ids));
# update phi and gamma until gamma converges
for gamma_iteration in xrange(local_parameter_iteration):
assert E_log_eta.shape == (self._number_of_topics, self._number_of_types);
# log_phi = self._E_log_eta[:, term_ids].T + numpy.tile(scipy.special.psi(self._gamma[[doc_id], :]), (len(self._corpus[doc_id]), 1));
log_phi = E_log_eta[:, term_ids].T + numpy.tile(scipy.special.psi(gamma_values[[doc_id], :]), (word_ids[doc_id].shape[0], 1));
assert log_phi.shape == (len(term_ids), self._number_of_topics);
# phi_normalizer = numpy.log(numpy.sum(numpy.exp(log_phi), axis=1)[:, numpy.newaxis]);
# assert phi_normalizer.shape == (len(term_ids), 1);
# log_phi -= phi_normalizer;
log_phi -= scipy.misc.logsumexp(log_phi, axis=1)[:, numpy.newaxis];
assert log_phi.shape == (len(term_ids), self._number_of_topics);
gamma_update = self._alpha_alpha + numpy.array(numpy.sum(numpy.exp(log_phi + numpy.log(term_counts.transpose())), axis=0));
mean_change = numpy.mean(abs(gamma_update - gamma_values[doc_id, :]));
gamma_values[doc_id, :] = gamma_update;
if mean_change <= local_parameter_converge_threshold:
break;
# Note: all terms including E_q[p(\theta | \alpha)], i.e., terms involving \Psi(\gamma), are cancelled due to \gamma updates in E-step
# compute the alpha terms
document_log_likelihood += scipy.special.gammaln(numpy.sum(self._alpha_alpha)) - numpy.sum(scipy.special.gammaln(self._alpha_alpha))
# compute the gamma terms
document_log_likelihood += numpy.sum(scipy.special.gammaln(gamma_values[doc_id, :])) - scipy.special.gammaln(numpy.sum(gamma_values[doc_id, :]));
# compute the phi terms
document_log_likelihood -= numpy.sum(numpy.dot(term_counts, numpy.exp(log_phi) * log_phi));
# Note: all terms including E_q[p(\eta | \beta)], i.e., terms involving \Psi(\eta), are cancelled due to \eta updates in M-step
if parsed_corpus != None:
# compute the p(w_{dn} | z_{dn}, \eta) terms, which will be cancelled during M-step during training
words_log_likelihood += numpy.sum(numpy.exp(log_phi.T + numpy.log(term_counts)) * E_log_prob_eta[:, term_ids]);
assert(log_phi.shape == (len(term_ids), self._number_of_topics));
phi_sufficient_statistics[:, term_ids] += numpy.exp(log_phi + numpy.log(term_counts.transpose())).T;
if (doc_id + 1) % 1000 == 0:
print "successfully processed %d documents..." % (doc_id + 1);
if parsed_corpus == None:
self._gamma = gamma_values;
return document_log_likelihood, phi_sufficient_statistics
else:
return words_log_likelihood, gamma_values
def m_step(self, phi_sufficient_statistics):
# Note: all terms including E_q[p(\eta|\beta)], i.e., terms involving \Psi(\eta), are cancelled due to \eta updates
# compute the beta terms
topic_log_likelihood = self._number_of_topics * (scipy.special.gammaln(numpy.sum(self._alpha_beta)) - numpy.sum(scipy.special.gammaln(self._alpha_beta)));
# compute the eta terms
topic_log_likelihood += numpy.sum(numpy.sum(scipy.special.gammaln(self._eta), axis=1) - scipy.special.gammaln(numpy.sum(self._eta, axis=1)));
self._eta = phi_sufficient_statistics + self._alpha_beta;
assert(self._eta.shape == (self._number_of_topics, self._number_of_types));
# self._E_log_eta = compute_dirichlet_expectation(self._eta);
# compute the sufficient statistics for alpha and update
alpha_sufficient_statistics = scipy.special.psi(self._gamma) - scipy.special.psi(numpy.sum(self._gamma, axis=1)[:, numpy.newaxis]);
alpha_sufficient_statistics = numpy.sum(alpha_sufficient_statistics, axis=0); # [numpy.newaxis, :];
return topic_log_likelihood, alpha_sufficient_statistics
"""
"""
def learning(self):
self._counter += 1;
clock_e_step = time.time();
document_log_likelihood, phi_sufficient_statistics = self.e_step();
clock_e_step = time.time() - clock_e_step;
clock_m_step = time.time();
topic_log_likelihood, alpha_sufficient_statistics = self.m_step(phi_sufficient_statistics);
if self._hyper_parameter_optimize_interval > 0 and self._counter % self._hyper_parameter_optimize_interval == 0:
self.optimize_hyperparameters(alpha_sufficient_statistics);
clock_m_step = time.time() - clock_m_step;
joint_log_likelihood = document_log_likelihood + topic_log_likelihood;
print "e_step and m_step of iteration %d finished in %d and %d seconds respectively with log likelihood %g" % (self._counter, clock_e_step, clock_m_step, joint_log_likelihood)
# if abs((joint_log_likelihood - old_likelihood) / old_likelihood) < self._model_converge_threshold:
# print "model likelihood converged..."
# break
# old_likelihood = joint_log_likelihood;
return joint_log_likelihood
def inference(self, corpus):
parsed_corpus = self.parse_data(corpus);
number_of_documents = len(parsed_corpus[0]);
clock_e_step = time.time();
words_log_likelihood, corpus_gamma_values = self.e_step(parsed_corpus);
clock_e_step = time.time() - clock_e_step;
return words_log_likelihood, corpus_gamma_values
"""
@param alpha_vector: a dict data type represents dirichlet prior, indexed by topic_id
@param alpha_sufficient_statistics: a dict data type represents alpha sufficient statistics for alpha updating, indexed by topic_id
"""
def optimize_hyperparameters(self, alpha_sufficient_statistics, hyper_parameter_iteration=100, hyper_parameter_decay_factor=0.9, hyper_parameter_maximum_decay=10, hyper_parameter_converge_threshold=1e-6):
# assert(alpha_sufficient_statistics.shape == (1, self._number_of_topics));
assert (alpha_sufficient_statistics.shape == (self._number_of_topics,));
alpha_update = self._alpha_alpha;
decay = 0;
for alpha_iteration in xrange(hyper_parameter_iteration):
alpha_sum = numpy.sum(self._alpha_alpha);
alpha_gradient = self._number_of_documents * (scipy.special.psi(alpha_sum) - scipy.special.psi(self._alpha_alpha)) + alpha_sufficient_statistics;
alpha_hessian = -self._number_of_documents * scipy.special.polygamma(1, self._alpha_alpha);
if numpy.any(numpy.isinf(alpha_gradient)) or numpy.any(numpy.isnan(alpha_gradient)):
print "illegal alpha gradient vector", alpha_gradient
sum_g_h = numpy.sum(alpha_gradient / alpha_hessian);
sum_1_h = 1.0 / alpha_hessian;
z = self._number_of_documents * scipy.special.polygamma(1, alpha_sum);
c = sum_g_h / (1.0 / z + sum_1_h);
# update the alpha vector
while True:
singular_hessian = False
step_size = numpy.power(hyper_parameter_decay_factor, decay) * (alpha_gradient - c) / alpha_hessian;
# print "step size is", step_size
assert(self._alpha_alpha.shape == step_size.shape);
if numpy.any(self._alpha_alpha <= step_size):
singular_hessian = True
else:
alpha_update = self._alpha_alpha - step_size;
if singular_hessian:
decay += 1;
if decay > hyper_parameter_maximum_decay:
break;
else:
break;
# compute the alpha sum
# check the alpha converge criteria
mean_change = numpy.mean(abs(alpha_update - self._alpha_alpha));
self._alpha_alpha = alpha_update;
if mean_change <= hyper_parameter_converge_threshold:
break;
return
def export_beta(self, exp_beta_path, top_display=-1):
output = open(exp_beta_path, 'w');
E_log_eta = compute_dirichlet_expectation(self._eta);
for topic_index in xrange(self._number_of_topics):
output.write("==========\t%d\t==========\n" % (topic_index));
beta_probability = numpy.exp(E_log_eta[topic_index, :] - scipy.misc.logsumexp(E_log_eta[topic_index, :]));
i = 0;
for type_index in reversed(numpy.argsort(beta_probability)):
i += 1;
output.write("%s\t%g\n" % (self._index_to_type[type_index], beta_probability[type_index]));
if top_display > 0 and i >= top_display:
break;
output.close();
def export_gamma(self, exp_gamma_path, top_display=-1):
output = open(exp_gamma_path, 'w');
exp_gamma = self._gamma / numpy.sum(self._gamma, axis=1)[:, numpy.newaxis];
for document_index in xrange(self._number_of_documents):
i = 0;
topic_probabilities = [];
for topic_index in reversed(numpy.argsort(exp_gamma[document_index, :])):
i += 1;
topic_probabilities.append("%d:%g" % (topic_index, exp_gamma[document_index, topic_index]));
if top_display > 0 and i >= top_display:
break;
output.write("%s\n" % "\t".join(topic_probabilities));
output.close();
if __name__ == "__main__":
print "not implemented..."