-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathinferencer.py
90 lines (68 loc) · 2.79 KB
/
inferencer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""
@author: Ke Zhai ([email protected])
"""
import time
import numpy
import scipy
import nltk;
"""
This is a python implementation of vanilla lda, based on a lda approach of variational inference and gibbs sampling, with hyper parameter updating.
It supports asymmetric Dirichlet prior over the topic simplex.
"""
def compute_dirichlet_expectation(dirichlet_parameter):
if (len(dirichlet_parameter.shape) == 1):
return scipy.special.psi(dirichlet_parameter) - scipy.special.psi(numpy.sum(dirichlet_parameter))
return scipy.special.psi(dirichlet_parameter) - scipy.special.psi(numpy.sum(dirichlet_parameter, 1))[:, numpy.newaxis]
def parse_vocabulary(vocab):
type_to_index = {};
index_to_type = {};
for word in set(vocab):
index_to_type[len(index_to_type)] = word;
type_to_index[word] = len(type_to_index);
return type_to_index, index_to_type;
class Inferencer():
"""
"""
def __init__(self,
# local_parameter_iterations=50,
hyper_parameter_optimize_interval=10,
):
self._hyper_parameter_optimize_interval = hyper_parameter_optimize_interval;
assert(self._hyper_parameter_optimize_interval > 0);
# self._local_parameter_iterations = local_parameter_iterations
# assert(self._local_maximum_iteration>0)
"""
"""
def _initialize(self, vocab, number_of_topics, alpha_alpha, alpha_beta):
self.parse_vocabulary(vocab);
# initialize the size of the vocabulary, i.e. total number of distinct tokens.
self._number_of_types = len(self._type_to_index)
self._counter = 0;
# initialize the total number of topics.
self._number_of_topics = number_of_topics
# initialize a K-dimensional vector, valued at 1/K.
self._alpha_alpha = numpy.zeros(self._number_of_topics) + alpha_alpha;
self._alpha_beta = numpy.zeros(self._number_of_types) + alpha_beta;
def parse_vocabulary(self, vocab):
self._type_to_index = {};
self._index_to_type = {};
for word in set(vocab):
self._index_to_type[len(self._index_to_type)] = word;
self._type_to_index[word] = len(self._type_to_index);
self._vocab = self._type_to_index.keys();
def parse_data(self):
raise NotImplementedError;
"""
"""
def learning(self):
raise NotImplementedError;
"""
"""
def inference(self):
raise NotImplementedError;
def export_beta(self, exp_beta_path, top_display=-1):
raise NotImplementedError;
def export_gamma(self, exp_gamma_path, top_display=-1):
raise NotImplementedError
if __name__ == "__main__":
raise NotImplementedError;