-
Notifications
You must be signed in to change notification settings - Fork 30
/
baselines.py
executable file
·348 lines (299 loc) · 21.3 KB
/
baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.cluster import KMeans
from scipy.spatial import distance
from sklearn.metrics import accuracy_score
from collections import defaultdict
import os
import time
from tensorflow.python.platform import flags
from utils import get_data
from task_generator import TaskGenerator
from tqdm import tqdm
FLAGS = flags.FLAGS
flags.DEFINE_string('dataset', 'mnist', 'mnist or omniglot or miniimagenet or celeba')
flags.DEFINE_integer('way', -1, 'classes for few-shot learning')
flags.DEFINE_integer('shot', -1, 'examples per class for few-shot learning')
flags.DEFINE_boolean('test_set', False, 'use validation set (default) or test set')
flags.DEFINE_string('encoder', 'bigan', 'bigan or aae')
flags.DEFINE_string('algorithm', 'kmeans', 'baseline algorithm to run')
flags.DEFINE_integer('num_tasks', 1000, 'number of few shot tasks to evaluate on')
flags.DEFINE_integer('num_clusters', 10, 'number of clusters for kmeans')
flags.DEFINE_integer('num_encoding_dims', 10, 'num_encoding_dims')
flags.DEFINE_integer('units', -1, 'number of units in hidden dense layer')
flags.DEFINE_float('dropout', -1.0, 'dropout rate')
flags.DEFINE_integer('n_neighbours', -1, 'k_nn for nearest neighbours')
flags.DEFINE_float('inverse_reg', -1, 'inverse regularization strength for logistic regression')
os.environ['JOBLIB_TEMP_FOLDER'] = '/tmp' # default parallel processing directory runs out of space
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def embedding_cluster_matching(num_classes=FLAGS.way, num_shots=FLAGS.shot, num_tasks=FLAGS.num_tasks,
num_clusters=FLAGS.num_clusters, num_encoding_dims=FLAGS.num_encoding_dims,
dataset=FLAGS.dataset, test_set=FLAGS.test_set):
if dataset != 'celeba':
_, _, Z_train, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
else:
_, _, Z_train, X_test, attributes_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
start = time.time()
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0, precompute_distances=True, n_jobs=10, n_init=10, max_iter=3000).fit(Z_train)
print("Ran KMeans with n_clusters={} in {:.5} seconds, objective {}.".format(num_clusters, time.time() - start, kmeans.score(Z_train)))
if dataset != 'celeba':
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
partitions = [partition]
else:
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partitions = task_generator.get_celeba_task_pool(attributes_test)
tasks = task_generator.get_tasks(num_tasks=num_tasks, partitions=partitions)
for num_shots in [FLAGS.shot]:
accuracies = []
start = time.time()
num_degenerate_tasks = 0
for i_task, task in enumerate(tasks):
if (i_task + 1) % (num_tasks // 10) == 0:
print('test {}, accuracy {:.5}'.format(i_task + 1, np.mean(accuracies)))
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
Z_train_few, Z_test_few = Z_test[ind_train_few], Z_test[ind_test_few]
clusters_to_labels_few = defaultdict(list)
examples_to_clusters_few = kmeans.predict(Z_train_few)
for i in range(len(Y_train_few)):
clusters_to_labels_few[examples_to_clusters_few[i]].append(Y_train_few[i])
for (cluster, labels) in list(clusters_to_labels_few.items()):
uniques, counts = np.unique(labels, return_counts=True)
clusters_to_labels_few[cluster] = [uniques[np.argmax(counts)]]
# if len(np.unique(labels)) > 1: # delete degenerate clusters
# del clusters_to_labels_few[cluster]
if len(clusters_to_labels_few) == 0:
num_degenerate_tasks += 1
continue
centroid_ind_to_cluster = np.array(list(clusters_to_labels_few.keys()))
centroids = kmeans.cluster_centers_[centroid_ind_to_cluster]
distances = distance.cdist(Z_test_few, centroids)
predicted_clusters = centroid_ind_to_cluster[np.argmin(distances, axis=1)]
predictions = []
for cluster in predicted_clusters:
predictions.append(clusters_to_labels_few[cluster][0])
accuracies.append(accuracy_score(Y_test_few, predictions))
print('dataset={}, encoder={}, num_encoding_dims={}, num_clusters={}'.format(dataset, FLAGS.encoder, num_clusters, num_encoding_dims))
print('{}-way {}-shot nearest-cluster after clustering embeddings: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(accuracies), 1.96*np.std(accuracies)/np.sqrt(num_tasks), num_tasks))
print('{} few-shot classification tasks: {:.5} seconds with {} degenerate tasks.'.format(num_tasks, time.time() - start, num_degenerate_tasks))
def embedding_mlp(num_classes=FLAGS.way, num_shots=FLAGS.shot, num_tasks=FLAGS.num_tasks,
num_encoding_dims=FLAGS.num_encoding_dims, test_set=FLAGS.test_set, dataset=FLAGS.dataset,
units=FLAGS.units, dropout=FLAGS.dropout):
import keras
from keras.layers import Dense, Dropout
from keras.losses import categorical_crossentropy
from keras.callbacks import EarlyStopping
from keras import backend as K
if dataset != 'celeba':
_, _, _, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
partitions = [partition]
else:
_, _, _, X_test, attributes_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partitions = task_generator.get_celeba_task_pool(attributes_test)
tasks = task_generator.get_tasks(num_tasks=num_tasks, partitions=partitions)
train_accuracies, test_accuracies = [], []
start = time.time()
for i_task, task in enumerate(tqdm(tasks)):
if (i_task + 1) % (num_tasks // 10) == 0:
tqdm.write('test {}, accuracy {:.5}'.format(i_task + 1, np.mean(test_accuracies)))
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
Z_train_few, Z_test_few = Z_test[ind_train_few], Z_test[ind_test_few]
Y_train_few, Y_test_few = keras.utils.to_categorical(Y_train_few, num_classes=num_classes), keras.utils.to_categorical(Y_test_few, num_classes=num_classes)
model = keras.Sequential()
model.add(Dense(units=units, activation='relu', input_dim=Z_train_few.shape[1]))
model.add(Dropout(rate=dropout))
model.add(Dense(units=num_classes, activation='softmax'))
model.compile(loss=categorical_crossentropy, optimizer=keras.optimizers.Adam(), metrics=['accuracy'])
early_stopping = EarlyStopping(monitor='val_loss', patience=2)
model.fit(Z_train_few, Y_train_few, batch_size=Z_train_few.shape[0], epochs=500, verbose=0, validation_data=(Z_test_few, Y_test_few), callbacks=[early_stopping])
train_score = model.evaluate(Z_train_few, Y_train_few, verbose=0)
train_accuracies.append(train_score[1])
test_score = model.evaluate(Z_test_few, Y_test_few, verbose=0)
test_accuracies.append(test_score[1])
K.clear_session()
print('units={}, dropout={}'.format(units, dropout))
print('{}-way {}-shot embedding mlp: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(test_accuracies), 1.96*np.std(test_accuracies)/np.sqrt(num_tasks), num_tasks))
print('Mean training accuracy: {:.5}; standard deviation: {:.5}'.format(np.mean(train_accuracies), np.std(train_accuracies)))
print('{} few-shot classification tasks: {:.5} seconds.'.format(num_tasks, time.time() - start))
def embedding_nearest_neighbour(n_neighbors=FLAGS.n_neighbours, num_classes=FLAGS.way, num_shots=FLAGS.shot, num_tasks=FLAGS.num_tasks,
num_encoding_dims=FLAGS.num_encoding_dims, test_set=FLAGS.test_set,
dataset=FLAGS.dataset):
print('{}-way {}-shot embedding nearest neighbour'.format(num_classes, num_shots))
if dataset != 'celeba':
_, _, _, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
partitions = [partition]
else:
_, _, _, X_test, attributes_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partitions = task_generator.get_celeba_task_pool(attributes_test)
tasks = task_generator.get_tasks(num_tasks=num_tasks, partitions=partitions)
accuracies = []
for i_task, task in enumerate(tasks):
if (i_task + 1) % (num_tasks // 10) == 0:
print('test {}, accuracy {:.5}'.format(i_task + 1, np.mean(accuracies)))
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
Z_train_few, Z_test_few = Z_test[ind_train_few], Z_test[ind_test_few]
knn = KNeighborsClassifier(n_neighbors=n_neighbors, n_jobs=-1)
knn.fit(Z_train_few, Y_train_few)
accuracy = knn.score(Z_test_few, Y_test_few)
accuracies.append(accuracy)
print('{}-way {}-shot embedding nearest neighbour: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(accuracies), 1.96*np.std(accuracies)/np.sqrt(num_tasks), num_tasks))
def embedding_logistic_regression(C=FLAGS.inverse_reg, penalty='l2', multi_class='multinomial', num_classes=FLAGS.way, num_shots=FLAGS.shot, num_tasks=FLAGS.num_tasks,
num_encoding_dims=FLAGS.num_encoding_dims, test_set=FLAGS.test_set,
dataset=FLAGS.dataset):
print('{}-way {}-shot logistic regression'.format(num_classes, num_shots))
if dataset != 'celeba':
_, _, _, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
partitions = [partition]
else:
_, _, _, X_test, attributes_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partitions = task_generator.get_celeba_task_pool(attributes_test)
tasks = task_generator.get_tasks(num_tasks=num_tasks, partitions=partitions)
train_accuracies, test_accuracies = [], []
start = time.time()
for i_task, task in enumerate(tasks):
if (i_task + 1) % (num_tasks // 10) == 0:
print('test {}, train accuracy {:.5}, test accuracy {:.5}'.format(i_task + 1, np.mean(train_accuracies), np.mean(test_accuracies)))
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
Z_train_few, Z_test_few = Z_test[ind_train_few], Z_test[ind_test_few]
logistic_regression = LogisticRegression(n_jobs=-1, penalty=penalty, C=C, multi_class=multi_class, solver='saga', max_iter=1000)
logistic_regression.fit(Z_train_few, Y_train_few)
test_accuracies.append(logistic_regression.score(Z_test_few, Y_test_few))
train_accuracies.append(logistic_regression.score(Z_train_few, Y_train_few))
print('penalty={}, C={}, multi_class={}'.format(penalty, C, multi_class))
print('{}-way {}-shot logistic regression: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(test_accuracies), 1.96*np.std(test_accuracies)/np.sqrt(num_tasks), num_tasks))
print('Mean training accuracy: {:.5}; standard deviation: {:.5}'.format(np.mean(train_accuracies), np.std(train_accuracies)))
print('{} few-shot classification tasks: {:.5} seconds.'.format(num_tasks, time.time() - start))
def cluster_color_logistic_regression(C=FLAGS.inverse_reg, penalty='l2', multi_class='multinomial', n_clusters=FLAGS.num_clusters, num_classes=FLAGS.way, num_shots=FLAGS.shot, num_tasks=FLAGS.num_tasks,
num_encoding_dims=FLAGS.num_encoding_dims, test_set=FLAGS.test_set,
dataset=FLAGS.dataset):
if dataset != 'celeba':
_, _, Z_train, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
else:
_, _, Z_train, X_test, attributes_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
start = time.time()
kmeans = KMeans(n_clusters=n_clusters, precompute_distances=True, n_jobs=-1, n_init=100).fit(Z_train)
print("Ran KMeans with n_clusters={} in {:.5} seconds.".format(n_clusters, time.time() - start))
uniques, counts = np.unique(kmeans.labels_, return_counts=True)
if dataset != 'celeba':
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
partitions = [partition]
else:
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partitions = task_generator.get_celeba_task_pool(attributes_test)
tasks = task_generator.get_tasks(num_tasks=num_tasks, partitions=partitions)
train_accuracies, test_accuracies = [], []
start = time.time()
clusters_to_indices = task_generator.get_partition_from_labels(kmeans.labels_)
for i_task, task in enumerate(tasks):
if (i_task + 1) % (num_tasks // 10) == 0:
print('test {}, train accuracy {:.5}, test accuracy {:.5}'.format(i_task + 1, np.mean(train_accuracies), np.mean(test_accuracies)))
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
Z_train_few, Z_test_few = Z_test[ind_train_few], Z_test[ind_test_few]
clusters_to_labels_few = defaultdict(list)
indices_to_clusters_few = kmeans.predict(Z_train_few)
for i in range(Z_train_few.shape[0]):
clusters_to_labels_few[indices_to_clusters_few[i]].append(Y_train_few[i])
Z_train_fit, Y_train_fit = [], []
for cluster in list(clusters_to_labels_few.keys()):
labels = clusters_to_labels_few[cluster]
if len(np.unique(labels)) == 1: # skip degenerate clusters
Z_train_fit.extend(Z_train[clusters_to_indices[cluster]]) # propagate labels to unlabeled datapoints
Y_train_fit.extend([labels[0] for i in range(len(clusters_to_indices[cluster]))])
Z_train_fit, Y_train_fit = np.stack(Z_train_fit, axis=0), np.stack(Y_train_fit, axis=0)
Z_train_fit = np.concatenate((Z_train_fit, Z_train_few), axis=0)
Y_train_fit = np.concatenate((Y_train_fit, Y_train_few), axis=0)
logistic_regression = LogisticRegression(n_jobs=-1, penalty=penalty, C=C, multi_class=multi_class, solver='saga', max_iter=500)
logistic_regression.fit(Z_train_fit, Y_train_fit)
test_accuracies.append(logistic_regression.score(Z_test_few, Y_test_few))
train_accuracies.append(logistic_regression.score(Z_train_fit, Y_train_fit))
print('n_clusters={}, penalty={}, C={}, multi_class={}'.format(n_clusters, penalty, C, multi_class))
print('{}-way {}-shot logistic regression after clustering: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(test_accuracies), 1.96*np.std(test_accuracies)/np.sqrt(num_tasks), num_tasks))
print('Mean training accuracy: {:.5}; standard deviation: {:.5}'.format(np.mean(train_accuracies), np.std(train_accuracies)))
print('{} few-shot classification tasks: {:.5} seconds.'.format(num_tasks, time.time() - start))
def cluster_fit_color(num_classes=FLAGS.way, num_tasks=FLAGS.num_tasks,
num_clusters=FLAGS.num_clusters, num_encoding_dims = FLAGS.num_encoding_dims,
test_set=FLAGS.test_set, dataset=FLAGS.dataset):
assert dataset == 'mnist'
import keras
from keras.layers import Conv2D, Flatten, Dense
from keras.losses import categorical_crossentropy
from keras.optimizers import Adam
from sklearn.cluster import KMeans
X_train, Y_train, Z_train, X_test, Y_test, Z_test = get_data(dataset, num_encoding_dims, test_set)
# Z_train, Z_test = whitening(Z_train, Z_test)
start = time.time()
kmeans = KMeans(n_clusters=num_clusters, init='k-means++', random_state=0, precompute_distances=True, n_jobs=-1,
n_init=1000, max_iter=100000).fit(Z_train)
print("Ran KMeans with n_clusters={} in {:.5} seconds, objective {}.".format(num_clusters, time.time() - start,
kmeans.score(Z_train)))
X_train, X_test = X_train / 255.0, X_test / 255.0
X_train, X_test = X_train.reshape((-1, 28, 28, 1)), X_test.reshape((-1, 28, 28, 1))
cluster_labels_train = keras.utils.to_categorical(kmeans.labels_, num_clusters)
cluster_labels_test = keras.utils.to_categorical(kmeans.predict(Z_test), num_clusters)
model = keras.Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same', input_shape=(28, 28, 1)))
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same'))
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same'))
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(2, 2), activation='relu', padding='same'))
model.add(Flatten())
model.add(Dense(units=num_clusters, activation='softmax'))
model.summary()
model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy'])
model.fit(X_train, cluster_labels_train, batch_size=500, epochs=25, verbose=1, validation_data=(X_test, cluster_labels_test))
score = model.evaluate(X_test, cluster_labels_test, verbose=1)
print('Test loss: {}\tTest accuracy: {}'.format(score[0], score[1]))
model.compile(loss=categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01), metrics=['accuracy'])
for num_shots in [1, 5, 10]:
accuracies, finetuned_accuracies = [], []
num_degenerate_tasks = 0
start = time.time()
task_generator = TaskGenerator(num_classes=num_classes, num_train_samples_per_class=num_shots, num_samples_per_class=num_shots+5)
partition = task_generator.get_partition_from_labels(Y_test)
for i_test in range(num_tasks):
if (i_test + 1) % (num_tasks // 10) == 0:
print('test {}, accuracy {:.5}, finetuned accuracy {:.5}'.format(i_test + 1, np.mean(accuracies), np.mean(finetuned_accuracies)))
task = task_generator.get_task(partition=partition)
ind_train_few, Y_train_few, ind_test_few, Y_test_few = task
X_train_few, X_test_few = X_test[ind_train_few], X_test[ind_test_few]
cluster_to_labels_few = defaultdict(list)
Z_train_few = np.argmax(model.predict(X_train_few), axis=1)
Z_test_few = np.argmax(model.predict(X_test_few), axis=1)
for i in range(len(Y_train_few)):
cluster_to_labels_few[Z_train_few[i]].append(Y_train_few[i])
cluster_to_label_few = defaultdict(int)
for (cluster, labels) in list(cluster_to_labels_few.items()):
uniques, counts = np.unique(labels, return_counts=True)
cluster_to_label_few[cluster] = uniques[np.argmax(counts)]
if len(cluster_to_label_few) == 0:
num_degenerate_tasks += 1
continue
predictions = []
for z in Z_test_few:
predictions.append(cluster_to_label_few[z])
accuracies.append(accuracy_score(Y_test_few, predictions))
print('num_clusters={}, num_encoding_dims={}'.format(num_clusters, num_encoding_dims))
print('{}-way {}-shot fit_kmeans: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(accuracies), 1.96*np.std(accuracies)/np.sqrt(num_tasks), num_tasks))
print('{}-way {}-shot fit_kmeans finetuned: {:.5} with 95% CI {:.5} over {} tests'.format(num_classes, num_shots, np.mean(finetuned_accuracies), 1.96*np.std(finetuned_accuracies)/np.sqrt(num_tasks), num_tasks))
print('{} few-shot classification tasks: {:.5} seconds with {} degenerate tasks.'.format(num_tasks, time.time() - start, num_degenerate_tasks))
if __name__ == '__main__':
if FLAGS.algorithm == 'embedding_nearest_neighbour':
embedding_nearest_neighbour()
elif FLAGS.algorithm == 'embedding_logistic_regression':
embedding_logistic_regression()
elif FLAGS.algorithm == 'embedding_cluster_matching':
embedding_cluster_matching()
elif FLAGS.algorithm == 'embedding_mlp':
embedding_mlp()
else:
raise ValueError()