From c5eab56eff523db146bc8e0c0ffa5fdb04aac615 Mon Sep 17 00:00:00 2001 From: Your Name Date: Tue, 1 Oct 2024 14:00:00 -0400 Subject: [PATCH] [CLEANUP] --- agents_config_example.yaml | 36 +++++++++---------- docs/swarms/structs/forest_swarm.md | 3 ++ .../structs/swarms/experimental/sap.py | 0 3 files changed, 21 insertions(+), 18 deletions(-) rename sap.py => examples/structs/swarms/experimental/sap.py (100%) diff --git a/agents_config_example.yaml b/agents_config_example.yaml index 2af8c6912..7db030e7d 100644 --- a/agents_config_example.yaml +++ b/agents_config_example.yaml @@ -18,21 +18,21 @@ agents: return_step_meta: false output_type: "str" # Can be "json" or any other format - # - agent_name: "Stock-Analysis-Agent" - # model: - # openai_api_key: "your_openai_api_key" - # model_name: "gpt-4o-mini" - # temperature: 0.2 - # max_tokens: 1500 - # system_prompt: "stock_agent_sys_prompt" # Reference to system prompt file - # max_loops: 2 - # autosave: true - # dashboard: false - # verbose: true - # dynamic_temperature_enabled: false - # saved_state_path: "stock_agent.json" - # user_name: "stock_user" - # retry_attempts: 3 - # context_length: 150000 - # return_step_meta: true - # output_type: "str" + - agent_name: "Stock-Analysis-Agent" + model: + openai_api_key: "your_openai_api_key" + model_name: "gpt-4o-mini" + temperature: 0.2 + max_tokens: 1500 + system_prompt: "stock_agent_sys_prompt" # Reference to system prompt file + max_loops: 2 + autosave: true + dashboard: false + verbose: true + dynamic_temperature_enabled: false + saved_state_path: "stock_agent.json" + user_name: "stock_user" + retry_attempts: 3 + context_length: 150000 + return_step_meta: true + output_type: "str" diff --git a/docs/swarms/structs/forest_swarm.md b/docs/swarms/structs/forest_swarm.md index 3aab358af..6d838b359 100644 --- a/docs/swarms/structs/forest_swarm.md +++ b/docs/swarms/structs/forest_swarm.md @@ -4,6 +4,9 @@ This documentation describes the **ForestSwarm** that organizes agents into tree The architecture allows for efficient task assignment by selecting the most relevant agent from a set of trees. Tasks are processed asynchronously, with agents selected based on task relevance, calculated by the similarity of system prompts and task keywords. + +## Module Path: `swarms.structs.tree_swarm` + --- ### Class: `TreeAgent` diff --git a/sap.py b/examples/structs/swarms/experimental/sap.py similarity index 100% rename from sap.py rename to examples/structs/swarms/experimental/sap.py