From 9e16a23ff1c8ab7002a013ab4bf4057cd9902253 Mon Sep 17 00:00:00 2001 From: MilagrosMarin Date: Thu, 9 Nov 2023 14:41:25 -0600 Subject: [PATCH] ephys tutorial preliminary review to mirror dlc --- notebooks/tutorial.ipynb | 2389 ++++---------------------------------- 1 file changed, 244 insertions(+), 2145 deletions(-) diff --git a/notebooks/tutorial.ipynb b/notebooks/tutorial.ipynb index 5ccc0b4f..55d2d527 100644 --- a/notebooks/tutorial.ipynb +++ b/notebooks/tutorial.ipynb @@ -5,702 +5,156 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# DataJoint Elements for NeuroPixels Array Electrophysiology\n", - "\n", - "This tutorial aims to provide a comprehensive understanding of the open-source data pipeline created using `element-array-ephys` for processing and analyzing extracellular electrophysiology datasets. \n", - "\n", - "**In this tutorial, we will cover:**\n", - "- The basics:\n", - " - Differentiating between an Element, module, schema, table, and pipeline.\n", - " - How to plot an overview of the pipeline with `dj.Diagram`.\n", - "- Hands-on interactions with the pipeline:\n", - " - Inserting real data into tables.\n", - " - Querying table contents.\n", - " - Fetching table contents.\n", - "- A walk-through:\n", - " - Processing NeuroPixels ephys data acquired with OpenEphys and spike sorted with Kilosort.\n", - "\n", - "**Additional Resources:**\n", - "- [Interactive Tutorials](https://github.com/datajoint/datajoint-tutorials) on `datajoint-python`: Dive deep into DataJoint's fundamentals.\n", - "- [*`datajoint-python`* Documentation](https://datajoint.com/docs/core/datajoint-python/): Comprehensive documentation on DataJoint for Python.\n", - "- [Element Array Electrophysiology Documentation](https://datajoint.com/docs/elements/element-array-ephys/): Detailed guide on the DataJoint Element for Array Electrophysiology.\n", - "\n", - "Before we jump into the core concepts, let's ensure we have all the necessary packages imported." + "# DataJoint Elements for Array Electrophysiology with NeuroPixels" ] }, { - "cell_type": "code", - "execution_count": 1, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "import datajoint as dj\n", - "import datetime\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np" + "### **Open-source Data Pipeline for Processing and Analyzing Extracellular Electrophysiology Datasets**" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "## Combine multiple Elements into a pipeline\n", - "\n", - "Each DataJoint Element is a modular set of tables that can be combined into a complete\n", - "pipeline. Here are the definitions for clarity:\n", - "\n", - "+ **Module**: In Python, a module is a file containing definitions and statements. In the context of DataJoint, modules often define and structure related database tables.\n", - "+ **Table**: A structured set of data held within the database. It consists of rows and\n", - " columns, much like an Excel spreadsheet.\n", - "+ **Schema**: Think of a schema as a container or namespace within the database where related tables are grouped together. It helps organize and manage the database structure.\n", - "+ **Element**: A modular set of related tables. \n", + "This tutorial aims to provide a comprehensive understanding of the open-source data pipeline by `element-array-ephys`. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![flowchart](../images/diagram_flowchart.svg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The package is designed to **process NeuroPixels ephys data** with **OpenEphys** and spike sorted with **Kilosort**." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![pipeline](../images/attached_array_ephys_element_acute.svg)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By the end of this tutorial, you will have a clear grasp of how to set up and integrate the `element-array-ephys` into your specific research projects and your lab." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### **Key Components and Objectives**\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**- Setup**\n", "\n", - "---\n", + "**- Designing the DataJoint Pipeline**\n", "\n", - "Each Element contains 1 or more modules, and each module declares its own schema in the database.\n", + "**- Step 1: Insert Example Data into Subject and Session tables**\n", "\n", - "This tutorial pipeline is assembled from four DataJoint Elements.\n", + "**- Step 2: Register the Electrophysiology Recording information for each Probe**\n", "\n", - "| Element | Source Code | Documentation | Description |\n", - "| -- | -- | -- | -- |\n", - "| Element Lab | [Link](https://github.com/datajoint/element-lab) | [Link](https://datajoint.com/docs/elements/element-lab) | Lab management related information, such as Lab, User, Project, Protocol, Source. |\n", - "| Element Animal | [Link](https://github.com/datajoint/element-animal) | [Link](https://datajoint.com/docs/elements/element-animal) | General animal metadata and surgery information. |\n", - "| Element Session | [Link](https://github.com/datajoint/element-session) | [Link](https://datajoint.com/docs/elements/element-session) | General information of experimental sessions. |\n", - "| Element Array Ephys | [Link](https://github.com/datajoint/element-array-ephys) | [Link](https://datajoint.com/docs/elements/element-array-ephys) | NeuroPixels Array Electrophysiology analysis with Kilosort. |\n", + "**- Step 3: Run the Clustering Task**\n", "\n", - "By importing the modules for the first time, the schemas and tables will be created in\n", - "the database. Once created, importing modules will not create schemas and tables\n", - "again, but will allow access to existing schemas/tables.\n", + "**- Step 4: Curate the Clustering Results (Optional)**\n", "\n", - "The Elements are imported and activated within the `tutorial_pipeline` script." + "**- Step 4: Visualize the Results**" ] }, { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "[2023-10-26 21:39:21,831][WARNING]: lab.Project and related tables will be removed in a future version of Element Lab. Please use the project schema.\n", - "[2023-10-26 21:39:21,833][INFO]: Connecting root@fakeservices.datajoint.io:3306\n", - "[2023-10-26 21:39:21,840][INFO]: Connected root@fakeservices.datajoint.io:3306\n" - ] - } - ], - "source": [ - "from tutorial_pipeline import (\n", - " lab,\n", - " subject,\n", - " session,\n", - " probe,\n", - " ephys,\n", - ")" + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Setup**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Each Python module (e.g. `subject`) contains a schema object that enables interaction with the schema in the database." + "Let's start this tutorial by importing the packages necessary to run the data pipeline." ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Schema `neuro_subject`" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "subject.schema" + "import datajoint as dj\n", + "import datetime\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "The Python classes in the module correspond to a table in the database server." + "This codespace provides a local database private to you for experimentation. Let's connect to the database server:" ] }, { "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

subject_nickname

\n", - " \n", - "
\n", - "

sex

\n", - " \n", - "
\n", - "

subject_birth_date

\n", - " \n", - "
\n", - "

subject_description

\n", - " \n", - "
\n", - " \n", - "

Total: 0

\n", - " " - ], - "text/plain": [ - "*subject subject_nickna sex subject_birth_ subject_descri\n", - "+---------+ +------------+ +-----+ +------------+ +------------+\n", - "\n", - " (Total: 0)" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "subject.Subject()" + "dj.conn()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Design the DataJoint Pipeline**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Diagram\n", + "This tutorial presumes that the `element-array-ephys` has been pre-configured and instantiated, with the database linked downstream to pre-existing `subject` and `session` tables. \n", "\n", - "Let's plot the diagram of tables within multiple schemas and their dependencies using `dj.Diagram()`." + "Now, we will proceed to import the essential schemas required to construct this data pipeline, with particular attention to the primary components: `probe` and `ephys`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from tutorial_pipeline import lab, subject, session, probe, ephys" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can represent a diagram of some of the upstream and downstream dependencies connected to these `probe` and `ephys` schemas:" ] }, { "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "%3\n", - "\n", - "\n", - "\n", - "ephys.ClusteringMethod\n", - "\n", - "\n", - "ephys.ClusteringMethod\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusteringParamSet\n", - "\n", - "\n", - "ephys.ClusteringParamSet\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusteringMethod->ephys.ClusteringParamSet\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType\n", - "\n", - "\n", - "probe.ProbeType\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType.Electrode\n", - "\n", - "\n", - "probe.ProbeType.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType->probe.ProbeType.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "probe.Probe\n", - "\n", - "\n", - "probe.Probe\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType->probe.Probe\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig\n", - "\n", - "\n", - "probe.ElectrodeConfig\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType->probe.ElectrodeConfig\n", - "\n", - "\n", - "\n", - "\n", - "ephys.InsertionLocation\n", - "\n", - "\n", - "ephys.InsertionLocation\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.QualityMetrics.Waveform\n", - "\n", - "\n", - "ephys.QualityMetrics.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig.Electrode\n", - "\n", - "\n", - "probe.ElectrodeConfig.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ProbeType.Electrode->probe.ElectrodeConfig.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "session.Session\n", - "\n", - "\n", - "session.Session\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ProbeInsertion\n", - "\n", - "\n", - "ephys.ProbeInsertion\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "session.Session->ephys.ProbeInsertion\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig.Electrode->ephys.CuratedClustering.Unit\n", - "\n", - "\n", - "\n", - "\n", - "ephys.LFP.Electrode\n", - "\n", - "\n", - "ephys.LFP.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig.Electrode->ephys.LFP.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "ephys.WaveformSet.Waveform\n", - "\n", - "\n", - "ephys.WaveformSet.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig.Electrode->ephys.WaveformSet.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.Curation\n", - "\n", - "\n", - "ephys.Curation\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering\n", - "\n", - "\n", - "ephys.CuratedClustering\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.Curation->ephys.CuratedClustering\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusteringTask\n", - "\n", - "\n", - "ephys.ClusteringTask\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusteringParamSet->ephys.ClusteringTask\n", - "\n", - "\n", - "\n", - "\n", - "ephys.WaveformSet.PeakWaveform\n", - "\n", - "\n", - "ephys.WaveformSet.PeakWaveform\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.WaveformSet\n", - "\n", - "\n", - "ephys.WaveformSet\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.WaveformSet->ephys.WaveformSet.PeakWaveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.WaveformSet->ephys.WaveformSet.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "subject.Subject\n", - "\n", - "\n", - "subject.Subject\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "subject.Subject->session.Session\n", - "\n", - "\n", - "\n", - "\n", - "ephys.AcquisitionSoftware\n", - "\n", - "\n", - "ephys.AcquisitionSoftware\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.EphysRecording\n", - "\n", - "\n", - "ephys.EphysRecording\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.AcquisitionSoftware->ephys.EphysRecording\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusterQualityLabel\n", - "\n", - "\n", - "ephys.ClusterQualityLabel\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusterQualityLabel->ephys.CuratedClustering.Unit\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit->ephys.QualityMetrics.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit->ephys.WaveformSet.PeakWaveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.QualityMetrics.Cluster\n", - "\n", - "\n", - "ephys.QualityMetrics.Cluster\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit->ephys.QualityMetrics.Cluster\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering.Unit->ephys.WaveformSet.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ProbeInsertion->ephys.InsertionLocation\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ProbeInsertion->ephys.EphysRecording\n", - "\n", - "\n", - "\n", - "\n", - "ephys.QualityMetrics\n", - "\n", - "\n", - "ephys.QualityMetrics\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.QualityMetrics->ephys.QualityMetrics.Waveform\n", - "\n", - "\n", - "\n", - "\n", - "ephys.QualityMetrics->ephys.QualityMetrics.Cluster\n", - "\n", - "\n", - "\n", - "\n", - "ephys.Clustering\n", - "\n", - "\n", - "ephys.Clustering\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.ClusteringTask->ephys.Clustering\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering->ephys.WaveformSet\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering->ephys.CuratedClustering.Unit\n", - "\n", - "\n", - "\n", - "\n", - "ephys.CuratedClustering->ephys.QualityMetrics\n", - "\n", - "\n", - "\n", - "\n", - "ephys.Clustering->ephys.Curation\n", - "\n", - "\n", - "\n", - "\n", - "probe.Probe->ephys.ProbeInsertion\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig->probe.ElectrodeConfig.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "probe.ElectrodeConfig->ephys.EphysRecording\n", - "\n", - "\n", - "\n", - "\n", - "ephys.EphysRecording.EphysFile\n", - "\n", - "\n", - "ephys.EphysRecording.EphysFile\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.LFP\n", - "\n", - "\n", - "ephys.LFP\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "ephys.LFP->ephys.LFP.Electrode\n", - "\n", - "\n", - "\n", - "\n", - "ephys.EphysRecording->ephys.ClusteringTask\n", - "\n", - "\n", - "\n", - "\n", - "ephys.EphysRecording->ephys.EphysRecording.EphysFile\n", - "\n", - "\n", - "\n", - "\n", - "ephys.EphysRecording->ephys.LFP\n", - "\n", - "\n", - "\n", - "" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "(\n", " dj.Diagram(subject.Subject)\n", @@ -711,48 +165,35 @@ ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "## Understanding Table Types in DataJoint\n", - "\n", - "In the previous cell, we visualized the relationships between various tables in our pipeline using `dj.Diagram`. As you might have noticed, tables have different colors and shapes. This is because, in DataJoint, tables can be of different types, each serving a unique purpose.\n", - "\n", - "| Table tier | Color and shape | Description | Practical Example |\n", - "| -- | -- | -- | -- |\n", - "| **Manual table** | Green box | Data entered manually, either by hand or with external helper scripts. | A table containing data about individual subjects, like their birth date or sex. |\n", - "| **Lookup table** | Gray box | Small tables containing general, non-changing information or settings. | A table containing available experimental protocols or animal species. |\n", - "| **Imported table** | Blue oval | Data automatically ingested but requiring external data. | A table that pulls data from an external file or dataset. |\n", - "| **Computed table** | Red circle | Data computed entirely within the pipeline. | A table calculating metrics or statistics from previously stored data. |\n", - "| **Part table** | Plain text | Tables associated with a master table, sharing its tier. | A subtable containing specific measurements for each subject in a master subject table. |\n", - "\n", - "### Order matters!\n", - "\n", - "The arrangement of tables in the `dj.Diagram` is not arbitrary. It represents the flow of data and dependencies:\n", + "As evident, this data pipeline is fairly comprehensive, encompassing several tables associated with different Array Electrophysiology components like ephys recording, probe, and clustering. A few tables, such as `Subject` or `Session`, while integral to the pipeline, fall outside the scope of `element-array-ephys` tutorial as they are upstream. \n", "\n", - "- **Higher-up Tables**: These are typically your starting point. For instance, before you can insert data about an experimental session, you need to have data about the subject of that session.\n", - "- **Dependencies**: Tables connected by a line have dependencies. For example, before\n", - " you can populate data about an experiment's results, you need to insert data about the\n", - " experiment setup.\n", - "\n", - "**Quick Check**: Based on the diagram, which tables do you think we would insert data into first?\n", - "\n", - "---\n", - "\n", - "## Interacting with DataJoint Pipelines\n", - "\n", - "DataJoint offers a powerful set of commands that allow us to interact with the pipeline:\n", - "\n", - "- **Insert**: Manually add data to a table.\n", - "- **Populate**: Automatically compute and insert data.\n", - "- **Query**: Search and filter data.\n", - "- **Fetch**: Retrieve data for further analysis or visualization.\n", - "\n", - "In the upcoming sections, we'll get hands-on with these commands. Let's start by\n", - "understanding how to manually insert data into our pipeline!\n", - "\n", - "---" + "Our focus in this tutorial will be primarily on the two core schemas:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "dj.Diagram(probe) + dj.Diagram(ephys)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This diagram represents an example of the `element-array-ephys` pipeline." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Step 1 - Insert Example Data into Subject and Session tables**" ] }, { @@ -760,11 +201,6 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Insert entries into manual tables\n", - "\n", - "Manual tables serve as the foundation upon which our pipeline builds. By entering data\n", - "here, we lay the groundwork for subsequent automated analyses.\n", - "\n", "Let's start with the first table in the schema diagram (i.e. `subject.Subject` table).\n", "\n", "To know what data to insert into the table, we can view its dependencies and attributes using the `.describe()` and `.heading` functions." @@ -772,49 +208,27 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "subject : varchar(8) \n", - "---\n", - "subject_nickname=\"\" : varchar(64) \n", - "sex : enum('M','F','U') \n", - "subject_birth_date : date \n", - "subject_description=\"\" : varchar(1024) \n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "subject.Subject()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(subject.Subject.describe())" ] }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# \n", - "subject : varchar(8) # \n", - "---\n", - "subject_nickname=\"\" : varchar(64) # \n", - "sex : enum('M','F','U') # \n", - "subject_birth_date : date # \n", - "subject_description=\"\" : varchar(1024) # " - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "subject.Subject.heading" ] @@ -831,105 +245,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

subject_nickname

\n", - " \n", - "
\n", - "

sex

\n", - " \n", - "
\n", - "

subject_birth_date

\n", - " \n", - "
\n", - "

subject_description

\n", - " \n", - "
subject5U2023-01-01
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject subject_nickna sex subject_birth_ subject_descri\n", - "+----------+ +------------+ +-----+ +------------+ +------------+\n", - "subject5 U 2023-01-01 \n", - " (Total: 1)" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "subject.Subject.insert1(\n", " dict(subject=\"subject5\", subject_birth_date=\"2023-01-01\", sex=\"U\")\n", @@ -947,41 +265,18 @@ }, { "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-> subject.Subject\n", - "session_datetime : datetime \n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(session.Session.describe())" ] }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# \n", - "subject : varchar(8) # \n", - "session_datetime : datetime # " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "session.Session.heading" ] @@ -1004,7 +299,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1013,210 +308,19 @@ }, { "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
subject52023-01-01 00:00:00
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject *session_datet\n", - "+----------+ +------------+\n", - "subject5 2023-01-01 00:\n", - " (Total: 1)" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "session.Session.insert1(session_key)\n", "session.Session()" ] }, { - "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "#### Introducing the `SessionDirectory` Table\n", - "\n", - "Every experimental session produces a set of data files. The `SessionDirectory` table's\n", - "purpose is to locate these files. It references a directory path relative to a root\n", - "directory, defined in `dj.config[\"custom\"]`. More\n", - "information about `dj.config` is provided in the [User\n", - "Guide](https://datajoint.com/docs/elements/user-guide/)." - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " \n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

session_dir

\n", - " Path to the data directory for a session\n", - "
subject52023-01-01 00:00:00raw/subject5/session1
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject *session_datet session_dir \n", - "+----------+ +------------+ +------------+\n", - "subject5 2023-01-01 00: raw/subject5/s\n", - " (Total: 1)" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "session.SessionDirectory.insert1(\n", - " dict(**session_key, session_dir=\"raw/subject5/session1\")\n", - ")\n", - "session.SessionDirectory()" + "### **Step 2: Register the Electrophysiology Recording information for each Probe**\n" ] }, { @@ -1224,7 +328,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "As the workflow diagram indicates, the tables in the `probe` schemas need to\n", + "As the Diagram indicates, the tables in the `probe` schemas need to\n", "contain data before the tables in the `ephys` schema accept any data. Let's\n", "start by inserting into `probe.Probe`, a table containing metadata about a\n", "multielectrode probe. " @@ -1232,97 +336,9 @@ }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Represent a physical probe with unique identification\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "
\n", - "

probe

\n", - " unique identifier for this model of probe (e.g. serial number)\n", - "
\n", - "

probe_type

\n", - " e.g. neuropixels_1.0\n", - "
\n", - "

probe_comment

\n", - " \n", - "
714000838neuropixels 1.0 - 3B
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*probe probe_type probe_comment \n", - "+-----------+ +------------+ +------------+\n", - "714000838 neuropixels 1. \n", - " (Total: 1)" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "probe.Probe.insert1(\n", " dict(probe=\"714000838\", probe_type=\"neuropixels 1.0 - 3B\")\n", @@ -1341,148 +357,27 @@ }, { "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# Probe insertion implanted into an animal for a given session.\n", - "-> session.Session\n", - "insertion_number : tinyint unsigned \n", - "---\n", - "-> probe.Probe\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "print(ephys.ProbeInsertion.describe())" ] }, { "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# Probe insertion implanted into an animal for a given session.\n", - "subject : varchar(8) # \n", - "session_datetime : datetime # \n", - "insertion_number : tinyint unsigned # \n", - "---\n", - "probe : varchar(32) # unique identifier for this model of probe (e.g. serial number)" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.ProbeInsertion.heading" ] }, { "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Probe insertion implanted into an animal for a given session.\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

insertion_number

\n", - " \n", - "
\n", - "

probe

\n", - " unique identifier for this model of probe (e.g. serial number)\n", - "
subject52023-01-01 00:00:001714000838
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject *session_datet *insertion_num probe \n", - "+----------+ +------------+ +------------+ +-----------+\n", - "subject5 2023-01-01 00: 1 714000838 \n", - " (Total: 1)" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.ProbeInsertion.insert1(\n", " dict(\n", @@ -1498,244 +393,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Populate\n", - "\n", - "### Automatically populate tables\n", - "\n", - "In DataJoint, the `populate()` method is a powerful feature designed to fill tables based on the logic defined in the table's `make` method. Here's a breakdown of its functionality:\n", - "\n", - "- **Automation**: Instead of manually inserting data into each table, which can be error-prone and time-consuming, `populate()` automates the insertion based on the dependencies and relationships already established in the schema.\n", - "\n", - "- **Dependency Resolution**: Before populating a table, `populate()` ensures all its dependencies are populated. This maintains the integrity and consistency of the data.\n", - "\n", - "- **Part Tables**: If a table has part tables associated with it, calling `populate()` on the main table will also populate its part tables. This is especially useful in cases like `ephys.EphysRecording` and its part table `ephys.EphysRecording.EphysFile`, as they are closely linked in terms of data lineage.\n", - "\n", - "- **Restriction**: The `populate()` method can be restricted to specific entries. For instance, by providing a `session_key`, we're ensuring the method only operates on the data relevant to that particular session. This is both efficient and avoids unnecessary operations.\n", - "\n", - "In the upcoming cells, we'll make use of the `populate()` method to fill the `ephys.EphysRecording` table and its part table. Remember, while this operation is automated, it's essential to understand the underlying logic to ensure accurate and consistent data entry.\n" + "Confirm the inserted data:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ephys.ProbeInsertion()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In the upcoming cells, populate the `ephys.EphysRecording` table and its part table `ephys.EphysRecording.EphysFile` will extract and store the recording information from a given experimental session.\n" ] }, { "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Ephys recording from a probe insertion for a given session.\n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

insertion_number

\n", - " \n", - "
\n", - "

electrode_config_hash

\n", - " \n", - "
\n", - "

acq_software

\n", - " \n", - "
\n", - "

sampling_rate

\n", - " (Hz)\n", - "
\n", - "

recording_datetime

\n", - " datetime of the recording from this probe\n", - "
\n", - "

recording_duration

\n", - " (seconds) duration of the recording from this probe\n", - "
\n", - " \n", - "

Total: 0

\n", - " " - ], - "text/plain": [ - "*subject *session_datet *insertion_num electrode_conf acq_software sampling_rate recording_date recording_dura\n", - "+---------+ +------------+ +------------+ +------------+ +------------+ +------------+ +------------+ +------------+\n", - "\n", - " (Total: 0)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.EphysRecording()" ] }, { "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Paths of files of a given EphysRecording round.\n", - "
\n", - " \n", - " \n", - " \n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

insertion_number

\n", - " \n", - "
\n", - "

file_path

\n", - " filepath relative to root data directory\n", - "
\n", - " \n", - "

Total: 0

\n", - " " - ], - "text/plain": [ - "*subject *session_datet *insertion_num *file_path \n", - "+---------+ +------------+ +------------+ +-----------+\n", - "\n", - " (Total: 0)" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.EphysRecording.EphysFile()" ] }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "EphysRecording: 100%|██████████| 1/1 [00:01<00:00, 1.22s/it]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.EphysRecording.populate(session_key, display_progress=True)" ] @@ -1750,222 +449,29 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Ephys recording from a probe insertion for a given session.\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

insertion_number

\n", - " \n", - "
\n", - "

electrode_config_hash

\n", - " \n", - "
\n", - "

acq_software

\n", - " \n", - "
\n", - "

sampling_rate

\n", - " (Hz)\n", - "
\n", - "

recording_datetime

\n", - " datetime of the recording from this probe\n", - "
\n", - "

recording_duration

\n", - " (seconds) duration of the recording from this probe\n", - "
subject52023-01-01 00:00:0018d4cc6d8-a02d-42c8-bf27-7459c39ea0eeSpikeGLX30000.02018-07-03 20:32:28338.666
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject *session_datet *insertion_num electrode_conf acq_software sampling_rate recording_date recording_dura\n", - "+----------+ +------------+ +------------+ +------------+ +------------+ +------------+ +------------+ +------------+\n", - "subject5 2023-01-01 00: 1 8d4cc6d8-a02d- SpikeGLX 30000.0 2018-07-03 20: 338.666 \n", - " (Total: 1)" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.EphysRecording()" ] }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Paths of files of a given EphysRecording round.\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "
\n", - "

subject

\n", - " \n", - "
\n", - "

session_datetime

\n", - " \n", - "
\n", - "

insertion_number

\n", - " \n", - "
\n", - "

file_path

\n", - " filepath relative to root data directory\n", - "
subject52023-01-01 00:00:001raw/subject5/session1/probe_1/npx_g0_t0.imec.ap.meta
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*subject *session_datet *insertion_num *file_path \n", - "+----------+ +------------+ +------------+ +------------+\n", - "subject5 2023-01-01 00: 1 raw/subject5/s\n", - " (Total: 1)" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.EphysRecording.EphysFile()" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Step 3: Run the Clustering Task**" + ] + }, { "attachments": {}, "cell_type": "markdown", @@ -1982,131 +488,18 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# Parameter set to be used in a clustering procedure\n", - "paramset_idx : smallint # \n", - "---\n", - "clustering_method : varchar(16) # \n", - "paramset_desc : varchar(128) # \n", - "param_set_hash : uuid # \n", - "params : longblob # dictionary of all applicable parameters" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.ClusteringParamSet.heading" ] }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - " \n", - " \n", - " \n", - " Parameter set to be used in a clustering procedure\n", - "
\n", - " \n", - " \n", - " \n", - "\n", - "\n", - "\n", - "\n", - "
\n", - "

paramset_idx

\n", - " \n", - "
\n", - "

clustering_method

\n", - " \n", - "
\n", - "

paramset_desc

\n", - " \n", - "
\n", - "

param_set_hash

\n", - " \n", - "
\n", - "

params

\n", - " dictionary of all applicable parameters\n", - "
0kilosort2Spike sorting using Kilosort2de78cee1-526f-319e-b6d5-8a2ba04963d8=BLOB=
\n", - " \n", - "

Total: 1

\n", - " " - ], - "text/plain": [ - "*paramset_idx clustering_met paramset_desc param_set_hash params \n", - "+------------+ +------------+ +------------+ +------------+ +--------+\n", - "0 kilosort2 Spike sorting de78cee1-526f- =BLOB= \n", - " (Total: 1)" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# insert clustering task manually\n", "params_ks = {\n", @@ -2157,27 +550,9 @@ }, { "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# Manual table for defining a clustering task ready to be run\n", - "subject : varchar(8) # \n", - "session_datetime : datetime # \n", - "insertion_number : tinyint unsigned # \n", - "paramset_idx : smallint # \n", - "---\n", - "clustering_output_dir=\"\" : varchar(255) # clustering output directory relative to the clustering root data directory\n", - "task_mode=\"load\" : enum('load','trigger') # 'load': load computed analysis results, 'trigger': trigger computation" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.ClusteringTask.heading" ] @@ -2204,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2221,17 +596,9 @@ }, { "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Clustering: 100%|██████████| 1/1 [00:00<00:00, 3.46it/s]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.Clustering.populate(session_key, display_progress=True)" ] @@ -2248,38 +615,16 @@ }, { "cell_type": "code", - "execution_count": 28, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "# Manual curation procedure\n", - "subject : varchar(8) # \n", - "session_datetime : datetime # \n", - "insertion_number : tinyint unsigned # \n", - "paramset_idx : smallint # \n", - "curation_id : int # \n", - "---\n", - "curation_time : datetime # time of generation of this set of curated clustering results\n", - "curation_output_dir : varchar(255) # output directory of the curated results, relative to root data directory\n", - "quality_control : tinyint # has this clustering result undergone quality control?\n", - "manual_curation : tinyint # has manual curation been performed on this clustering result?\n", - "curation_note=\"\" : varchar(2000) # " - ] - }, - "execution_count": 28, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "ephys.Curation.heading" ] }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2298,21 +643,9 @@ }, { "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "CuratedClustering: 0%| | 0/1 [00:00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plt.plot(lfp_average)\n", "plt.title(\"Average LFP Waveform for Insertion 1\")\n", @@ -2436,7 +758,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2450,20 +772,9 @@ }, { "cell_type": "code", - "execution_count": 34, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGwCAYAAACkfh/eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFOElEQVR4nO3de1zUZd7/8fcoMqLAICAoCogK5lkqJdNcK9PcbjrtofPDbe/ysd2drLYtdzfd9t7Nau/aDrd33W33vdav426bne61k2mmGaZCrocEBIVEQSEYDjIofH9/uPNtZpgB5DTD19fz8ZhHzPd0fa7PdV3Dp5nhq80wDEMAAAAW0i/YAQAAAHQ3ChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAsJyzYAfS0lpYWlZWVKSoqSjabLdjhAACADjAMQ7W1tUpKSlK/fqf+fozlC5yysjIlJycHOwwAANAJpaWlGjly5CmfZ/kCJyoqStLJBEVHRwc5GgAA0BFOp1PJycnm7/FTZfkCx/2xVHR0NAUOAAB9TGe/XsKXjAEAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocDpZhXORv3xo3xVOBuDHUrQ9UQuAl2zt/LO+HZcKOdqd1mNrvrvzdpYcER//Chfu8tqejVWd/u7y2q69bqhnHNfvRmru62eHGd//TmVPgYjH51py/fcUJ5zFDjdrKLWpSfXFqii1hXsUIKuJ3IR6Jq9lXfGt+NCOVf55XXKKa5Sbkm1nlxboPzyul6N1d1+fnldt143lHPuqzdjdbfVk+Psrz+n0sdg5KMzbfmeG8pzjgIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HA6WYJUXbdeWG6EqLswQ4l6HoiF4Gu2Vt5Z3w7LpRzlZEYqay0WGWmxOjOC9OVkRjZq7G6289IjOzW64Zyzn31ZqzutnpynP3151T6GIx8dKYt33NDec7ZDMMwgh1ET3I6nXI4HKqpqVF0dHSwwwEAAB3Q1d/fvIMDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJYT1AJnw4YNys7OVlJSkmw2m9566y2v/XV1dbrttts0cuRIRUREaMKECXr22WeDEywAAOgzglrg1NfXa+rUqVq5cqXf/Xfffbfef/99vfTSS9qzZ4+WLFmi2267Te+8804vRwoAAPqSsGA2vnDhQi1cuDDg/s8//1yLFi3S3LlzJUmLFy/Wf//3f2vLli269NJLeylKAADQ14T0d3DOPfdcvfPOOzp48KAMw9C6deuUn5+v+fPnBzzH5XLJ6XR6PQAAwOklpAucp59+WhMmTNDIkSMVHh6uiy++WCtXrtScOXMCnrNixQo5HA7zkZyc3IsRAwCAUBDyBc4XX3yhd955R9u2bdNjjz2mW2+9VR9//HHAc5YuXaqamhrzUVpa2osRAwCAUBDU7+C05dixY/rlL3+p1atX65JLLpEkTZkyRXl5efqP//gPzZs3z+95drtddru9N0MFAAAhJmTfwTl+/LiOHz+ufv28Q+zfv79aWlqCFBUAAOgLgvoOTl1dnQoLC83nxcXFysvLU2xsrFJSUvS9731P9957ryIiIpSamqpPP/1UL774oh5//PEgRg0AAEKdzTAMI1iNr1+/Xueff36r7YsWLdKqVat0+PBhLV26VB9++KGqqqqUmpqqxYsX66677pLNZutQG06nUw6HQzU1NYqOju7uLgAAgB7Q1d/fQS1wegMFDgAAfU9Xf3+H7HdwAAAAOosCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLCQt2AH3Z7rIa3fV6nqrqm3TnvHS9+9UhLc+eoAlJDklShbNRL+eU6LqsFCVEDzTPC7Tdfc0H393doeu0xfccz+eS2r2evzY9t+WX1+q+v+3QIz+YotnpQ732L5iYqDe3H5QkLZ4zWpK04u97tLmoUr+6ZLwKK+q94npuQ5F5bEL0wFY5qHA2mucvOjdVL31RolvmjtFrW0pV23hcDU3N+uNV05SRGKWXc0pUdKRW7+44LEmySTorNUaNx1uUnhCpiPD+GhQepivPHKEPdpWb+XDHMHfcUD39SaGWZ09QfKRdz20oUkPTCUnSoPAwLZ4zWkfrXHrw3d26/YKx+nL/t61y5D7HXzuBxsA9l8qdjRrmGKjHfzzNHH/3vPjV6p0aPzxKS+ZltDmGbY11e3PJ3/wLND8C9dPdzhMf5yunqFKV9U2KjwzXjLQ4LZmX0aF2K5yNWv72Tq3PP6L0hEjtO1Kvpd8/Q0dqm3RdVoqO1rl0+yvbVVZ9TOeMidNwR4Q5RleeOaLV/Hs5p0TTRw3RYx/ma/zwKM0cE6eH13yt+xeeoc37KrXjmxpNGenQ9eekevWjPf7i7sia31hwxFw/GYlRZi6PNTVrf2WD7pmfofV7j5j5dffDPU+nJjv0+//bo5lj4rR04Xi/bXmuQ9/jPa8VaI76W/cdmUP+1nSgc3aX1egXb+zQ8eYWnZU6REvmZSinuFL3/22H5mQM1ZSRDv3xowIty56g688Z5XcMfK/d1lo5WufSL97YIUl69IdTJMlrLY9NGKyH13zdalzcY+Bvrfke45vDU1mPnmP3wa5yv/G48+rblwlJDrPvw6LtOux06Z75GV6vUYFicf88fdQQ8/Wvqr5Jd7yaK5tNevLqTPP1dfqoIXp4zddeY9bR30u9jQKnC/LL67S3vE6StKmwUjnFVcovr/uuMKl16cm1BbpoQqL3C1CA7e5rdvQ6bfE9x/O5pHav569Nz225JdU6WN2o3JLq7wqcf+5Pix+s5zcWS5IuzxwhSVqdVyZJyimq0ks5JV5xeR6bED2wVQ4qal3m+Z8VVOpgdaM2FVZqZ5nTjDe3pFoxg8L15NoCJUTZze2GpK0HqiXJ6/hJIxxe+XDH4IgYYLbdYny33e3yzBEqrDgZ3+ySar858jzHt51AY+A5l6qP1XmNv3RyXuSWViu3tFrXZqW2OYZtjXV7c8nf/POnrX6623llS6m5v/rYCRUeadC1Wakdarei1qU1u8olSTsOnhy3TYWVWrPzsC6akKjCijrtO9ogSVq396jXtSaNcLSaf0+uLdA9F2WYOexns+lgdaNyiqrMOHeWOTUjLe6U1pq/uDuy5j3XT8yg8FbzLLek2mubux/ubddnpeiw06XVuWX619mj/bbluQ59j/e8VqA56m/dd2QO+VvTgc7JL68z1+Xe8jpdm5WqnKIq1Te1aM3OctUcO6GmZkObCisDFzg+125rrRRWfNde/j/Xm+davj4rJeC4uPsSqK+e49TR195AuU2LH9xmPO7XIc++TEhymH13y/V5jQoUi/vney7KMOdzaVWDqhqOm9dxv77ec1FGqzEL1QKHj6gAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHP5MvAsyEiM1LjFSVfVNmjU2TlX1TcpIjDT3J0TZdeeF6V5/ttzWdvc1s9JiO3Sdtvie4/u8vev5a9NzW2ZKjEbEDFRmSkyr/RmJkbppdpq5TZKumJakzUWVyhodq7hIu1dcvsf65iAhym6ef156nA5U1mvW2DiVVjWY98HJTIkx2+/IfXAyEiO9+ueOITMlxmw7PvJkbJ73wUmIsqufTcpKi1VmSozfHLnP8ddOoJ/dc8l9HxzP8Xfvz0yO0fjhUe2OYVtj3d5c8jf//GmvnwlRdl07I7nVfXA62m5ClF0LJyZ63Qdn1tg4ZSRGmWMwJn6Q3/vg+Jt/d16YrsyUGDOHWaNjtW5vhbJGx6rFMMz74Pj2oz3+4u7ImvdcP565dN8HJzMlxiu/vvN0arJDH+8p18wxrXPqbx36O969r6056i/29uaQvzUd6JyMxEhNSoo276mSEGVX1uhYrc79xrwPztb9VZo1Ni7gGPheu6210s8mTUqKNo+TvNfy2ITBWre3otW4eI6Bv776HtPR195AuXWPib943Mf564u77+774Pi+RrUVi3uNfPf6F67YQQNks8nr9TUzJabVmIUqm2EYRrCD6ElOp1MOh0M1NTWKjo4OdjgAAKADuvr7m4+oAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByglrgbNiwQdnZ2UpKSpLNZtNbb73V6pg9e/bo0ksvlcPh0ODBgzV9+nSVlJT0frAAAKDPCGqBU19fr6lTp2rlypV+9+/bt0+zZ8/WGWecofXr12vHjh164IEHNHDgwF6OFAAA9CU2wzCMYAchSTabTatXr9bll19ubrv66qs1YMAA/b//9/86fB2XyyWXy2U+dzqdSk5OVk1NjaKjo7szZAAA0EOcTqccDkenf3+H7HdwWlpa9H//93/KyMjQggULlJCQoKysLL8fY3lasWKFHA6H+UhOTu6dgAEAQMgI2QKnoqJCdXV1evjhh3XxxRfrww8/1BVXXKErr7xSn376acDzli5dqpqaGvNRWlrai1EDAIBQEBbsAAJpaWmRJF122WW66667JEnTpk3T559/rmeffVbf+973/J5nt9tlt9t7LU4AABB6QvYdnPj4eIWFhWnChAle28ePH89fUQEAgDaFbIETHh6u6dOna+/evV7b8/PzlZqaGqSoAABAXxDUj6jq6upUWFhoPi8uLlZeXp5iY2OVkpKie++9V1dddZXmzJmj888/X++//77effddrV+/PnhBAwCAkBfUPxNfv369zj///FbbFy1apFWrVkmS/vd//1crVqzQN998o3HjxunBBx/UZZdd1uE2uvpnZgAAoPd19fd3yNwHp6dQ4AAA0PdY9j44AAAAnUWBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMBywoIdQF/37lcHdc/reWpqkRwRYVp57ZmKHRyuB9/dreXZExQfadfLOSW6LitFR+tc+tXqnRo/PErXn5OqD3aV67qsFCVED9Tushpz35J5GUqIHtiqrQpno17OKdGCiYn604YirdtbIZukuWckaOnC8ZJktuXvfM/rPLehSJK0eM5or2M94/CN0d3+dVkpkqTnNhRpX0WtNhdVauSQQfrNpRO1fu8Rr+vuLqvRLS9tU0nVMUX/Mz+z04eacTzxcb42FR5Vec0xjYwdrKeuyVR8pN2M78ozR3jF0FGeufpgV3mr//r2yXO7JK34+x5tLqrUf/xoqjISo/TchiJV1rm0v7JB98zP0Jf7v201dsOi7TrsdOncMbF6dn2RIiPC9LvLJ6mwol7TRw3Rv7+3W1X1TVqWPUGFFfWtzh8VN0gR4f11qPqYtuz/Vg//YLKyp45o1beNBUf0by9vU72rWZkpMaptPCFJOit1iL4/ebgeXvO1ahuPq6GpuVVbHbG7rEYPvrtbt18wVuv3HjH7/fsrJkmSfvHGDknSoz+coglJjlbn+pvH7nnwzbfHlDU6VhOGO7R4zmgdrXOZa8X3WpL00hf79dt3d2tZ9gRdf84oMzbf4zcWHNF9f9uhR34wxZxfHe3n8uwJqqpv0n1/26H7F55hjtfyt3fq4LcNXvPSd335rgl/68/zGPd4e/bBM9+e88r3PH98j2lrbXvyzZfnef7WXFux+FtDOcWV+uWb/9B9C8/Q/qMNamg6oUHhYVo8Z7SZpwUTE/Xm9oNqaDqhY03N2vFNtZyNJzR+WKQ2FFZpwvAo3TJ3jB5e83WrcfWNZ2PBEd31ep4cEWFKT4hSfnmtvm04ru+NG6qlC8f7fY31HC9JXv1/c/tBr1z4vj74G3P3NTzXy4Qkh55ZX6A/fJCvexdk6Ja56dpYcEQ//+tXmjkmzowt0Ng+8XG+9hyqNa/lO3fdc8Y3Pt+xnD5qiJ7+pDDgOmuvbUltrtNQxTs4XZRTVKWmlpM/1xw7odySauWX1ymnuEr55XWqqHXpybUFqqh1Kb+8Trml1XplS6nyy+vM7ZK89rm3+XJfK7+8TqvzylR97IS+PXZCq3PLVFHr8mqrLRW1Lj2/sVjPbyxudWxbMXpe332NdflH1XjCUOGReuWWVLe6bn55nQ5UHZPhkR/POF7ZUqoDVcfU2CwVHqk3c+a+jm8MHeWZK3//9e2T5/aKWpdW55XpsNOl3JJqM57VeWXKLa1Wbkm137Fbs6tcuaXV+qywUs3/7G9OUZWeXFug3JJq7S2v05G6JnOb7/mr88r0ypZSrcs/qvqmZuUUVfntW25JtZyNzWo2pK0HTl53b3mdXtlSqtySau0sc+pA1TG/bXWEe/66x9Pd7/zyOuWX12lnmVM7y5zKL6/ze66/eeyeB82G9Pm+KnOOeK4VfzYVVqqp2dCmwkqv2HyPzy2p1sHqRq/51dF+5pfXmed7jte+ow2t5qVvLn3XhL9c+2737YNnvgOtt0B8j2lrbbeVr/bWXFux+FtDOUVVqnU1a1NhpZ7fWKxXtpSaMXke7963Oq9M+4426Ehdk3K/cUqSdh+qVU5Rld9x9Y0nt6RaR+qaVHikQWt2lWvf0QZVNRw3Xxvdefacm/5ez9z9982F7+tDoJ9914skfVZQqRbj5H/dsR52urxiCzS2r2wp9bqWm++c8Y3PN/7ckuo211l7bbe3TkMVBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWw31wuihrdKz+8mWJeR+czJQYxQ4OV1ZarDISIxUfadedF6YrIcqufjYpMzlG44dHKSMx0twuSRmJkeY+9zZfCVEnr5WRGKkrpiV53QfHfY7nNQNJiLLrptlp5s+ePOPwjdHdvvv5TbPTvO6Dk5kS0+q6GYmRSo2NMO+Dk5kS4xXHtTOSve6D486Z+zq+MXSUZ678/de3T77br5iWpM1FlcpMiTHz5b6/RWZKjN+x87wPzq5vahQZEaas0bGKi7QrMyVG4xIjVVXfZG7zPd/3PjhZo2P99i0zJUbRA/v7vQ9OZkqMJiVFm/fB8W2rIzISI5WVFmuOp7vfGYmRkqRJSdHmcf7O9TeP3fPA8z447jXhXiv+zBobp7V7yjVrbJxXbL7HZ6bEaETMQK/51dF+npxz4RoRM9BrvMbEDzLvg+O7lt1814S/uep7jG8fPPPd1nrzx/eYttZ2W/nyPM/fmmsrFn9rKGt0rN7OO6hZY+M0IibCvA+OZ54yEiN10+y0Nu+DkzU6Vuv2VrQaV994MlNiNDQy3O99cNp6jfV9PXMf55sL35wE+tnfejkvPU5fFFXqvPQ4M9Zh0XbNHBPX7theOyNZew7VtprvvnPGNz7f+DNTYtpcZx1p+1TODxU2wzCMYAfRk5xOpxwOh2pqahQdHR3scAAAQAd09fc3H1EBAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOWEBTuAvqzC2aiXc0q0YGKiPthVruuyUpQQPdDc7n7ue7zv9lNpqzPndvWap9L2qeako23sLqvRL97YIUk6OzVGqzaXSJJiBw1QbeMJLb90guZPGKb73vhKGwsrtfzSCbr+nFHtXrvC2ajnNhRJkq48c4RXzJ7nTh81RE9/Uqjl2RM0IckRsJ8dyc11WSmS1Cqm3WU1uv2V7TpU06hHfjhF2VNH+O3/oz+covhIu57bUKQtxZXacdCpH581QgUV9Ro/PErfnzzcK9aOxOPb30Bzd/qoIfrV6n/oYPUx/ebSiWaO/V13+qghWv72TpVVH1Nm6hBV1jVpQP9+evSHU1rF5dvuxoIjuu2V7Wo83qyRQyK070iDzk6N0cghg7S/skG/v2JSm33z5c5fbeNxfVN1TM0e+8IknZA0oJ/0+FXTzLzvLqvRg+/u1vLsCYqPtLe7piXvMfXcd7TO5XWt5W/v1IaCo3r4B5O9xrm9Pvxq9U6NHx6l689J1Qe7yjU2YbAeXvO1HvnBFM1OHxpwTJ/bUKSGphPmtQaFh+nKM0foTxuKtLmoUovOTdULnx/Q6KGDVXSkXr+6ZLwKK+q1YGKi3tx+UA1NJzQoPEyL54w2+/bEx/nac6i21Vh45q2tMdpYcEQ//+tXykyJ0YiYQea1PfsZ3t+mVZtLND01RsMcA/XujsPKnjJMUQMHmG27x2bBxES99MUB7fimRlNGOrRkXoYkmet77rih+vf3dqvc2aj4yHDNSIsz8+hex2MTBmvpmztU72rRv80drZyiKm0tqdb01BitvO4sM767Xs9TVX2TlmVPUGFFvYZGhWvF3/doRlqsao+d0LaSap07Jla/umSCnl5boHV7KzRkULhOtBhalj1BX5XWaF9Frb4ortLccUP14KWTvMYrUG4DCfR6tLHgiO772w5zfgQ6Nr+8Vvf9bYdumTtG7351SLdfMFZf7v/W71z2neehLKjv4GzYsEHZ2dlKSkqSzWbTW2+9FfDYn/3sZ7LZbHriiSd6Lb72VNS69OTaAuWX1+nJtQWqqHV5bXc/9z3ed/uptNWZc7t6zVNp+1Rz0tE28svrtLPMqZ1lTm3cV2Vur2o4ruMthjYVVqqi1qV1+UfN5x25dkWtS89vLNbzG4tbxex5bm5JtXKKq5RfXtdmPzuSm4pal9+Y8svrtO9ogxqOtyinqMrrXM/+55fXmXHvOOiUJH1eVKXc0mq9sqW0Vawdiae9XHnm4UDVMZ1okVeOAx2772iDjp0w9Pm+Ku39Zx/8xeXbbm5JtaqPnVDjCUOFRxpkSPryQLVW55Upt7S63b75cufvgE9xI50sbiTpeIu88p5fXmfmsSNr2vcYz+e+11qzq1z1Tc2txrm9PrjH2D3vcoqqdLC6Ubkl1a3a9Izx+Y3FemVLqflwz/fVeWU67HTps4JKHXa69Pm+Kh12upRTVGXOb/e5z28s9urbK1tK/Y6FZ1/bkltSrcNOl9bsLPe6tmc/3Wv9ywPVyin+VpKUU/ytV9uea/GVLaXaWebUK1tKzTFxr+/ckmrtLa9T9bETKjzS4JVHz3zWuVpkSPqssFJb/5nXLw9Ue8W3t7xOR+qazDxtKqxUfVOL1u09qq0l1TIkbdp3MgdrdpWr8YShQ06Xec7zG4u1Lv+ojh1v0Zqd5a3GK1BuAwn0epRbUu01PwId6z5uU2GlcoqrlFtSHXAu98Tvop4S1AKnvr5eU6dO1cqVK9s8bvXq1friiy+UlJTUS5EBAIC+LKgfUS1cuFALFy5s85iDBw/q9ttv1wcffKBLLrmk3Wu6XC65XN9Vlk6ns8txAgCAviWkv2Tc0tKiG264Qffee68mTpzYoXNWrFghh8NhPpKTk3s4SgAAEGpCusB55JFHFBYWpjvuuKPD5yxdulQ1NTXmo7S0tAcjBAAAoShk/4pq27ZtevLJJ7V9+3bZbLYOn2e322W323swMgAAEOpC9h2czz77TBUVFUpJSVFYWJjCwsJ04MAB3XPPPRo1alSwwwMAACEsZN/BueGGGzRv3jyvbQsWLNANN9ygG2+8MUhReUuIsuvOC9OVkRipOy9MV0KU3Wu7+7nv8b7bT6Wtzpzb1WueStunmpOOtpGRGKlJSdGSTt4Hp7Di5J9Puu+DM2tsnBKi7Do/I14bCys1a2xch66dEGXXTbPTzDZ8j3Ofm5kSo6y0WGUkRrbZz47kxn2s73kZiZEaEz9Ih2oalTU6NmD/MxIjFR95Mm73fXDOHR1r3gfHN9aOxtNWrjzzkBoboYPVx7xyHOjYMfGDWt0Hx19cvu1mpsQoJiIs4H1w2uubL3f+2rsPjmfeMxIjzTzGR3ZsTQea8/1s8rrWwomJ2lBwtNU4t9eHzOQYjR8eZc67sQmDtW5vhTJTYvzG49520+y0VvfByUiM1BXTkrS5qFLnpcep6EideR+crNGxiou0KyMx0jx3UHiYV9+unZGsPYdqW42FZ97akpkSo2HRdvM+OO5re/YzvL9NhRV1XvfByUobYt4Hx3NsMhIjde2MZPM+OO7rudd3ZkqMxiVGet0Hx51Hz3y+lfeN6l0tOm9snML72cz74HjGNy4xUlX1TWaehkaFa0N+Rav74GQkRmrhxESv++BkjY7VwAH9ve6D4ztegXIbSKDXo5O5HWjOj0DHuo+bNTZOVfVNykyJafP1u7t/F/UUm2EYRrAar6urU2FhoSQpMzNTjz/+uM4//3zFxsYqJSWl1fGjRo3SkiVLtGTJkg634XQ65XA4VFNTo+jo6O4KHQAA9KCu/v4O6js4W7du1fnnn28+v/vuuyVJixYt0qpVq4IUFQAA6OuCWuDMnTtXp/IG0v79+3suGAAAYBkh+yVjAACAzqLAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwnE4VOKNHj1ZlZWWr7dXV1Ro9enSXgwIAAOiKThU4+/fvV3Nzc6vtLpdLBw8e7HJQAAAAXRF2Kge/88475s8ffPCBHA6H+by5uVlr167VqFGjui04AACAzjilAufyyy+XJNlsNi1atMhr34ABAzRq1Cg99thj3RYcAABAZ5xSgdPS0iJJSktL05dffqn4+PgeCQoAAKArTqnAcSsuLu7uOAAAALpNhwucp556SosXL9bAgQP11FNPtXnsHXfc0eXAAAAAOstmGIbRkQPT0tK0detWxcXFKS0tLfAFbTYVFRV1W4Bd5XQ65XA4VFNTo+jo6GCHAwAAOqCrv787/A6O58dSfEQFAABCGXcyBgAAltOpLxk3Nzdr1apVWrt2rSoqKsy/rnL75JNPuiU4AACAzuhUgXPnnXdq1apVuuSSSzRp0iTZbLbujgsAAKDTOlXgvPbaa/rLX/6i73//+90dDwAAQJd16js44eHhGjt2bHfHAgAA0C06VeDcc889evLJJ9XBvzAHAADoVZ36iGrjxo1at26d1qxZo4kTJ2rAgAFe+998881uCQ4AAKAzOlXgxMTE6IorrujuWAAAALpFpwqcP//5z90dBwAAQLc5pQJnyJAhfv8k3OFwKCMjQz//+c910UUXdVtwAAAAnXFKBc4TTzzhd3t1dbW2bdumf/mXf9Ebb7yh7OzsDl1vw4YN+sMf/qBt27bp0KFDWr16tS6//HJJ0vHjx/XrX/9af//731VUVCSHw6F58+bp4YcfVlJS0qmEDQAATjOnVOAsWrSozf3Tpk3TihUrOlzg1NfXa+rUqfrpT3+qK6+80mtfQ0ODtm/frgceeEBTp07Vt99+qzvvvFOXXnqptm7deiphAwCA00yH/zXxjsjPz9c555yjqqqqUw/EZvN6B8efL7/8UjNmzNCBAweUkpLSoevyr4kDAND39Nq/Jt4RLpdL4eHh3XlJLzU1NbLZbIqJiWkzBpfLZT53Op09Fg8AAAhN3fqvif/P//yPpk2b1p2XNDU2Nuq+++7TNddc02Ylt2LFCjkcDvORnJzcI/EAAIDQdUrv4Nx9991+t9fU1Gj79u3Kz8/Xhg0buiUwT8ePH9ePf/xjGYahZ555ps1jly5d6hWn0+mkyAEA4DRzSgVObm6u3+3R0dG66KKL9OabbyotLa1bAnNzFzcHDhzQJ5980u7ncHa7XXa7vVtjAAAAfcspFTjr1q3rqTj8chc3BQUFWrduneLi4nq1fQAA0Dd165eMT1VdXZ0KCwvN58XFxcrLy1NsbKyGDx+uH/7wh9q+fbvee+89NTc36/Dhw5Kk2NjYHv0yMwAA6Nu69c/ET9X69et1/vnnt9q+aNEi/eY3vwn4cde6des0d+7cDrXBn4kDAND3hNSfiZ+quXPnqq36Koi1FwAA6MO69c/EAQAAQgEFDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYTlALnA0bNig7O1tJSUmy2Wx66623vPYbhqFly5Zp+PDhioiI0Lx581RQUBCcYAEAQJ8R1AKnvr5eU6dO1cqVK/3uf/TRR/XUU0/p2WefVU5OjgYPHqwFCxaosbGxlyMFAAB9SVgwG1+4cKEWLlzod59hGHriiSf061//Wpdddpkk6cUXX1RiYqLeeustXX311b0ZKgAA6ENC9js4xcXFOnz4sObNm2duczgcysrK0ubNmwOe53K55HQ6vR4AAOD0ErIFzuHDhyVJiYmJXtsTExPNff6sWLFCDofDfCQnJ/donAAAIPSEbIHTWUuXLlVNTY35KC0tDXZIAACgl4VsgTNs2DBJUnl5udf28vJyc58/drtd0dHRXg8AAHB6CdkCJy0tTcOGDdPatWvNbU6nUzk5OZo5c2YQIwMAAKEuqH9FVVdXp8LCQvN5cXGx8vLyFBsbq5SUFC1ZskS/+93vlJ6errS0ND3wwANKSkrS5ZdfHrygAQBAyAtqgbN161adf/755vO7775bkrRo0SKtWrVKv/jFL1RfX6/Fixerurpas2fP1vvvv6+BAwcGK2QAANAH2AzDMIIdRE9yOp1yOByqqanh+zgAAPQRXf39HbLfwQEAAOgsChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlhMW7AD6ugpno57bUCRJWjxntBKiB6rC2aiXc0o0fdQQPfZhvsYPj9L156TqpS8OaM+hWv3+ikmakOTodHsv55TouqwUJUQPbPeYo3UuPfjubt1+wVh9uf9bv+dVOBu14u97tLmoUv/xo6manT5Uu8tq9OC7u7U8e4JXrO7t7ustmJioN7cfNPsvSS/nlGjBxER9sKvcbM8dU02DS6s2lyh+8AANc0To/oVn6Mv932r6qCF6+pNCr/bcbc0dF68nPsrXiWZJNunByybq+nNGefXhpS/269dv7ZIkJQ8ZqP++4Wy/OfaXm+XZExQfaW+V191lNfrV6p2KiQjTtpJv1djUrAh7mM4dE6chg8IlSYPCw7R4zmgdrXPpF2/s0PHmFp2VOkTXn5Oqp9cWaEPBUT38g8nKSotrdf0KZ6P+7aVt2lpSrbB+0kUTEvXgpZPMHE4fNUQPr/laknT/wjO0fu8RNTSdMNv0HMc/vL9HK9cXKclh1/OLpvvtj78cuNsaOMCmP35UoGXZE7xy6zvfPOeFZxuStOLve7T263I1NDbL+Oc4zZ8wzOyLe3zd53muj5lj4vTwmq/1yA+maHb6UK/2fdeXP23FGWgePLehSA1NJ3SsqVn7KxvMdeke94gB/fTVNzX60Vkj9Ndt32hGWqyGOyL0bX2TNu07qqYTLZo5Jk7DHRFeY+Ibi28f3Dn3HZuXvtiv3767W3ddlK7G40ar148PdpWb68q97vZV1OqL4irNHTfUa+54jq3nWvSc8+6+BsqTux+B1rJv/LvLavSLN3ZIkh794RRznH1fIxKiB+rdrw7qF298pZiIcLlOtOh744bqgjMS9PCar3XL3DH627aDam5p0Y6DTnM97ztSp1+++Q89dOVkZU8d4dWu+zXp5S8OmGsue+oIvfTFfj34zi6NHx6tkqoG9e9n028unaivSmvU0HTCHMu6xma1SJqeGqM752WYc/XT/Ar94YN83bsgQz84M9ns99+2l+rR9/M1ZUS0+vXrp5FDBurdHYeVGBWuP984o9XaeOLjfOUUVcrZeEJ/vGqaJOlnL21VnatFSQ67stLiVN3QpM1FlRoWPVBp8YO1s8yp2enxWrpwvPLLa3Xf33Z4rQ/3OByqbtBfth3UT2am6MfTU3Tzi1t1sLpR01NjFB9p1+aiStkkTUuJUUllg8prG3Wi2dDMMXGKiQhXQUWdpox0mGvw+nNStHJdoepcLZo1JlZ/vCpTkrT87Z1an39EmSkxOtbUot9fcXK+/Wr1To0fHqUl8zICrs9gocDpoopal57fWCxJujxzxMkXgFqXnlxboHsuylBuabVyS6s1Iy1Or2wplSTll9d1vsD557UvmpAY+MXe45jCijrlFFdpdkl1wPMqal1anVcmScotqdbs9KHKLz95nm+s7u3u66XFD/bqvyRzu2d77pjGJkRKko7WH9fR+uPK/ed17rkoo1V77rb697PJ1fzPAAxpU2FlqwJnU2Gl+XPpt40Bc+wvN/nldWox1Co/+eV1yi2t9jq/6dgJrdlZ7rXt8swRKqyo084ypyRpb3mdZqTFac2uk8flFFUpLT6y1fUral3aWnLy+idapDU7y3Xr+elmDu+5KMO8Zm5JtZlnd5ue4/jZP/tfVuMK2B9/OXC3de6YODU1G61y6zvfPOeFZxuSzDkkyRynaclDWo2v+zzP9dHPZtPB6kZz/nm277u+/GkrzkDzwDOf0nfr0nfcN+6rUn1Ti9btPdrqOp7bfNe/59z3t0Z8x2ZTYaWamg19VlCpz/dVtnr98FxXnutOaj13PMfWcy16znl3XwPlyd2PQGvZN/788u/WgOc4+75GJEQPVE5RlY4dN3TsuEuStDq3TIPDw3SwulGbCiu98u9ez1v3V6nW1aycoiqvAsfzNclzzWVPHaFNhZU63iLtOOg0j88pqtJLOSWtxlKSvjxQrdySajMnnxVUqsWQPiuo1HnpCWa/PyuolCHpq39e92C1XZJUXtvkd224X/ulk2tZkupcLZJOrlnPtbO/6pj2Vx0z8/Kvs0crt6S61fpwj8PIIRGSTs7TaSmxOljdaPbFk+/89Xy+s8xprsHPCirN2Dbtq1JF7ckxcuf2831VZt4lmXP02qzUkCtw+IgKAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy+HPxLsoIcqum2anmT+7/3vnhenKTIlRZnKMxg+PUkZipK6dkaw9h2qVkRjZpfbuvDDdbKu9Y/rZpKy0WGWmxAQ8LyHKriumJWlzUaUyU2IkSRmJkcpKi20Vq3u7+3oZiZGt+u/e7tmeO6aaBpcKK+rM++C4r5OZEtOqPXdb56XHadv+SvM+OLPGxrXqw6yxcVqz87Ckk/fBCZRjf7nJSIxUfGTrvGYkRiozOabd++C4rzUpKdq8D05GYqQWTkzUhoKjyhod63fcEqLsOjslxus+OJ45zEyJ0aSkaElSZkqMbpqdZt4Hx3cczxsbpx3f1CjJYQ/YH385cLc1cIBNW/dXtcqt77Ge88K3jSumJXndB2fW2DivteB7nuf6yBodq3V7K8z559m+7/xqb1x94wx0vDuf7vvguI91j7v7Pjizx8TqUHVDu/fB8Z3rns/9rRHf/swaG6e1e8p1Xnqcpo+KbfX64bmu3OvO8z44/q7tuxY953x7eXL3I9Ba9o0/IzHSnK+e4+zvNSJrdKz+tr3U6z447jkwa2ycDtc0et0HJyMxUv37SW/nHVTW6NhW7bpfkzzXnDunH+8+7HUfnKzRsRo4oH/A++B4ztXz0uP0RVGlzkuP8+r3eelx2ryv0u99cPytjWtnJJv3wXHP8Uh7vw7dBychyq7MlBiNiBnotT7c8bjvgzN7zMmYR8QM7NR9cNz5Py89Tju++da8D467DwsnJnrdB8c9Z9xztK31GSw2wzCMYAfRk5xOpxwOh2pqahQdHR3scAAAQAd09fc3H1EBAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHIocAAAgOVQ4AAAAMsJ6QKnublZDzzwgNLS0hQREaExY8bo3//932UYRrBDAwAAISws2AG05ZFHHtEzzzyjF154QRMnTtTWrVt14403yuFw6I477gh2eAAAIESFdIHz+eef67LLLtMll1wiSRo1apReffVVbdmyJeA5LpdLLpfLfO50Ons8TgAAEFpC+iOqc889V2vXrlV+fr4k6auvvtLGjRu1cOHCgOesWLFCDofDfCQnJ/dWuAAAIETYjBD+QktLS4t++ctf6tFHH1X//v3V3Nys3//+91q6dGnAc/y9g5OcnKyamhpFR0f3RtgAAKCLnE6nHA5Hp39/h/RHVH/5y1/08ssv65VXXtHEiROVl5enJUuWKCkpSYsWLfJ7jt1ul91u7+VIAQBAKAnpAufee+/V/fffr6uvvlqSNHnyZB04cEArVqwIWOAAAACE9HdwGhoa1K+fd4j9+/dXS0tLkCICAAB9QUi/g5Odna3f//73SklJ0cSJE5Wbm6vHH39cP/3pT4MdGgAACGEh/SXj2tpaPfDAA1q9erUqKiqUlJSka665RsuWLVN4eHiHrtHVLykBAIDe19Xf3yFd4HQHChwAAPqerv7+Dunv4AAAAHQGBQ4AALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HA6WYVzkb98aN8VTgbT4t229PdcYVqPz1VOBv1u/d263fv7Q56nMHKf0+MU0+03Rvzqbva8Hed9q7d2bZDfZ2Fenwd0ZPzoifb66nr9QQKnG5WUevSk2sLVFHrOi3abU93xxWq/fRUUevS8xuL9fzG4qDHGaz898Q49UTbvTGfuqsNf9dp79qdbTvU11mox9cRPTkverK9nrpeT6DAAQAAlkOBAwAALIcCBwAAWA4FDgAAsBwKHAAAYDkUOAAAwHLCgh2A1SRE2XXnhelKiLKfFu22p7vjCtV+ekqIsuum2Wnmz8GOJRj574lx6om2e2M+dVcb/q7T3rU723aor7NQj68jenJe9GR7PXW9nmAzDMMIdhA9yel0yuFwqKamRtHR0cEOBwAAdEBXf3/zERUAALAcChwAAGA5FDgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALIcCBwAAWE7IFzgHDx7U9ddfr7i4OEVERGjy5MnaunVrsMPqUyqcjfrjR/mqcDb2ynld1Va7gfZVOBv1u/d263fv7e4z/Qz1WILJMw/t5aS757fv9p4Yk65cs63cdOa6HT2no20Fiq83Y+2KU2mjs7lra393tt/VfPX116OQLnC+/fZbzZo1SwMGDNCaNWu0e/duPfbYYxoyZEiwQ+tTKmpdenJtgSpqXb1yXle11W6gfRW1Lj2/sVjPbyzuM/0M9ViCyTMP7eWku+e37/aeGJOuXLOt3HTmuh09p6NtBYqvN2PtilNpo7O5a2t/d7bf1Xz19dejsGAH0JZHHnlEycnJ+vOf/2xuS0tLC2JEAACgLwjpd3DeeecdnX322frRj36khIQEZWZm6k9/+lOb57hcLjmdTq8HAAA4vYR0gVNUVKRnnnlG6enp+uCDD3TLLbfojjvu0AsvvBDwnBUrVsjhcJiP5OTkXowYAACEgpAucFpaWnTmmWfqoYceUmZmphYvXqybb75Zzz77bMBzli5dqpqaGvNRWlraixEDAIBQENIFzvDhwzVhwgSvbePHj1dJSUnAc+x2u6Kjo70eAADg9BLSBc6sWbO0d+9er235+flKTU0NUkQAAKAvCOm/orrrrrt07rnn6qGHHtKPf/xjbdmyRc8995yee+65YIfWpyRE2XXnhelKiLL3ynld1Va7gfYlRNl10+w08+fuaq+3hVIsweSbh7Zy0t3z23d7T4xJV67ZVm46c92OntPRvLQVX2/F2hWn0kZnc9fe/u5qv6v56uuvRzbDMIxgB9GW9957T0uXLlVBQYHS0tJ099136+abb+7w+U6nUw6HQzU1NXxcBQBAH9HV398hX+B0FQUOAAB9T1d/f4f0d3AAAAA6gwIHAABYDgUOAACwHAocAABgORQ4AADAcihwAACA5VDgAAAAy6HAAQAAlkOBAwAALCek/y2q7uC+UbPT6QxyJAAAoKPcv7c7+w8uWL7Aqa2tlSQlJycHORIAAHCqamtr5XA4Tvk8y/9bVC0tLSorK1NUVJRsNlu3XdfpdCo5OVmlpaWn/b9xRS6+Qy5OIg/fIRcnkYfvkIvvtJULwzBUW1urpKQk9et36t+osfw7OP369dPIkSN77PrR0dGn/QR1IxffIRcnkYfvkIuTyMN3yMV3AuWiM+/cuPElYwAAYDkUOAAAwHIocDrJbrdr+fLlstvtwQ4l6MjFd8jFSeThO+TiJPLwHXLxnZ7MheW/ZAwAAE4/vIMDAAAshwIHAABYDgUOAACwHAocAABgORQ4nbRy5UqNGjVKAwcOVFZWlrZs2RLskHrUb37zG9lsNq/HGWecYe5vbGzUrbfeqri4OEVGRuoHP/iBysvLgxhx99mwYYOys7OVlJQkm82mt956y2u/YRhatmyZhg8froiICM2bN08FBQVex1RVVem6665TdHS0YmJi9K//+q+qq6vrxV50j/Zy8ZOf/KTVPLn44ou9jrFCLlasWKHp06crKipKCQkJuvzyy7V3716vYzqyJkpKSnTJJZdo0KBBSkhI0L333qsTJ070Zle6pCN5mDt3bqs58bOf/czrmL6eB0l65plnNGXKFPOGdTNnztSaNWvM/afDfHBrLxe9NScocDrh9ddf1913363ly5dr+/btmjp1qhYsWKCKiopgh9ajJk6cqEOHDpmPjRs3mvvuuusuvfvuu/rrX/+qTz/9VGVlZbryyiuDGG33qa+v19SpU7Vy5Uq/+x999FE99dRTevbZZ5WTk6PBgwdrwYIFamxsNI+57rrrtGvXLn300Ud67733tGHDBi1evLi3utBt2suFJF188cVe8+TVV1/12m+FXHz66ae69dZb9cUXX+ijjz7S8ePHNX/+fNXX15vHtLcmmpubdckll6ipqUmff/65XnjhBa1atUrLli0LRpc6pSN5kKSbb77Za048+uij5j4r5EGSRo4cqYcffljbtm3T1q1bdcEFF+iyyy7Trl27JJ0e88GtvVxIvTQnDJyyGTNmGLfeeqv5vLm52UhKSjJWrFgRxKh61vLly42pU6f63VddXW0MGDDA+Otf/2pu27NnjyHJ2Lx5cy9F2DskGatXrzaft7S0GMOGDTP+8Ic/mNuqq6sNu91uvPrqq4ZhGMbu3bsNScaXX35pHrNmzRrDZrMZBw8e7LXYu5tvLgzDMBYtWmRcdtllAc+xai4qKioMScann35qGEbH1sTf//53o1+/fsbhw4fNY5555hkjOjracLlcvduBbuKbB8MwjO9973vGnXfeGfAcK+bBbciQIcbzzz9/2s4HT+5cGEbvzQnewTlFTU1N2rZtm+bNm2du69evn+bNm6fNmzcHMbKeV1BQoKSkJI0ePVrXXXedSkpKJEnbtm3T8ePHvXJyxhlnKCUlxfI5KS4u1uHDh7367nA4lJWVZfZ98+bNiomJ0dlnn20eM2/ePPXr1085OTm9HnNPW79+vRISEjRu3DjdcsstqqysNPdZNRc1NTWSpNjYWEkdWxObN2/W5MmTlZiYaB6zYMECOZ1Or//T7Ut88+D28ssvKz4+XpMmTdLSpUvV0NBg7rNiHpqbm/Xaa6+pvr5eM2fOPG3ng9Q6F269MScs/49tdrejR4+qubnZK/GSlJiYqK+//jpIUfW8rKwsrVq1SuPGjdOhQ4f04IMP6rzzztPOnTt1+PBhhYeHKyYmxuucxMREHT58ODgB9xJ3//zNB/e+w4cPKyEhwWt/WFiYYmNjLZefiy++WFdeeaXS0tK0b98+/fKXv9TChQu1efNm9e/f35K5aGlp0ZIlSzRr1ixNmjRJkjq0Jg4fPux33rj39TX+8iBJ1157rVJTU5WUlKQdO3bovvvu0969e/Xmm29KslYe/vGPf2jmzJlqbGxUZGSkVq9erQkTJigvL++0mw+BciH13pygwEGHLFy40Px5ypQpysrKUmpqqv7yl78oIiIiiJEhlFx99dXmz5MnT9aUKVM0ZswYrV+/XhdeeGEQI+s5t956q3bu3On1nbTTUaA8eH6/avLkyRo+fLguvPBC7du3T2PGjOntMHvUuHHjlJeXp5qaGr3xxhtatGiRPv3002CHFRSBcjFhwoRemxN8RHWK4uPj1b9//1bffi8vL9ewYcOCFFXvi4mJUUZGhgoLCzVs2DA1NTWpurra65jTISfu/rU1H4YNG9bqC+gnTpxQVVWV5fMzevRoxcfHq7CwUJL1cnHbbbfpvffe07p16zRy5Ehze0fWxLBhw/zOG/e+viRQHvzJysqSJK85YZU8hIeHa+zYsTrrrLO0YsUKTZ06VU8++eRpNx+kwLnwp6fmBAXOKQoPD9dZZ52ltWvXmttaWlq0du1ar88Xra6urk779u3T8OHDddZZZ2nAgAFeOdm7d69KSkosn5O0tDQNGzbMq+9Op1M5OTlm32fOnKnq6mpt27bNPOaTTz5RS0uLubCt6ptvvlFlZaWGDx8uyTq5MAxDt912m1avXq1PPvlEaWlpXvs7siZmzpypf/zjH14F30cffaTo6GjzrfxQ114e/MnLy5MkrznR1/MQSEtLi1wu12kzH9rizoU/PTYnOvmF6NPaa6+9ZtjtdmPVqlXG7t27jcWLFxsxMTFe3/i2mnvuucdYv369UVxcbGzatMmYN2+eER8fb1RUVBiGYRg/+9nPjJSUFOOTTz4xtm7dasycOdOYOXNmkKPuHrW1tUZubq6Rm5trSDIef/xxIzc31zhw4IBhGIbx8MMPGzExMcbbb79t7Nixw7jsssuMtLQ049ixY+Y1Lr74YiMzM9PIyckxNm7caKSnpxvXXHNNsLrUaW3lora21vj5z39ubN682SguLjY+/vhj48wzzzTS09ONxsZG8xpWyMUtt9xiOBwOY/369cahQ4fMR0NDg3lMe2vixIkTxqRJk4z58+cbeXl5xvvvv28MHTrUWLp0aTC61Cnt5aGwsND47W9/a2zdutUoLi423n77bWP06NHGnDlzzGtYIQ+GYRj333+/8emnnxrFxcXGjh07jPvvv9+w2WzGhx9+aBjG6TEf3NrKRW/OCQqcTnr66aeNlJQUIzw83JgxY4bxxRdfBDukHnXVVVcZw4cPN8LDw40RI0YYV111lVFYWGjuP3bsmPFv//ZvxpAhQ4xBgwYZV1xxhXHo0KEgRtx91q1bZ0hq9Vi0aJFhGCf/VPyBBx4wEhMTDbvdblx44YXG3r17va5RWVlpXHPNNUZkZKQRHR1t3HjjjUZtbW0QetM1beWioaHBmD9/vjF06FBjwIABRmpqqnHzzTe3KvytkAt/OZBk/PnPfzaP6cia2L9/v7Fw4UIjIiLCiI+PN+655x7j+PHjvdybzmsvDyUlJcacOXOM2NhYw263G2PHjjXuvfdeo6amxus6fT0PhmEYP/3pT43U1FQjPDzcGDp0qHHhhReaxY1hnB7zwa2tXPTmnLAZhmF0/P0eAACA0Md3cAAAgOVQ4AAAAMuhwAEAAJZDgQMAACyHAgcAAFgOBQ4AALAcChwAAGA5FDgAAMByKHAA9Lqf/OQnuvzyy4PW/g033KCHHnqoQ8deffXVeuyxx3o4IgDdjTsZA+hWNputzf3Lly/XXXfdJcMwFBMT0ztBefjqq690wQUX6MCBA4qMjGz3+J07d2rOnDkqLi6Ww+HohQgBdAcKHADd6vDhw+bPr7/+upYtW6a9e/ea2yIjIztUWPSUm266SWFhYXr22Wc7fM706dP1k5/8RLfeemsPRgagO/ERFYBuNWzYMPPhcDhks9m8tkVGRrb6iGru3Lm6/fbbtWTJEg0ZMkSJiYn605/+pPr6et14442KiorS2LFjtWbNGq+2du7cqYULFyoyMlKJiYm64YYbdPTo0YCxNTc364033lB2drbX9v/6r/9Senq6Bg4cqMTERP3whz/02p+dna3XXnut68kB0GsocACEhBdeeEHx8fHasmWLbr/9dt1yyy360Y9+pHPPPVfbt2/X/PnzdcMNN6ihoUGSVF1drQsuuECZmZnaunWr3n//fZWXl+vHP/5xwDZ27NihmpoanX322ea2rVu36o477tBvf/tb7d27V++//77mzJnjdd6MGTO0ZcsWuVyunuk8gG5HgQMgJEydOlW//vWvlZ6erqVLl2rgwIGKj4/XzTffrPT0dC1btkyVlZXasWOHJOk///M/lZmZqYceekhnnHGGMjMz9b//+79at26d8vPz/bZx4MAB9e/fXwkJCea2kpISDR48WP/yL/+i1NRUZWZm6o477vA6LykpSU1NTV4fvwEIbRQ4AELClClTzJ/79++vuLg4TZ482dyWmJgoSaqoqJB08svC69atM7/TExkZqTPOOEOStG/fPr9tHDt2THa73euL0BdddJFSU1M1evRo3XDDDXr55ZfNd4ncIiIiJKnVdgChiwIHQEgYMGCA13Obzea1zV2UtLS0SJLq6uqUnZ2tvLw8r0dBQUGrj5jc4uPj1dDQoKamJnNbVFSUtm/frldffVXDhw/XsmXLNHXqVFVXV5vHVFVVSZKGDh3aLX0F0PMocAD0SWeeeaZ27dqlUaNGaezYsV6PwYMH+z1n2rRpkqTdu3d7bQ8LC9O8efP06KOPaseOHdq/f78++eQTc//OnTs1cuRIxcfH91h/AHQvChwAfdKtt96qqqoqXXPNNfryyy+1b98+ffDBB7rxxhvV3Nzs95yhQ4fqzDPP1MaNG81t7733np566inl5eXpwIEDevHFF9XS0qJx48aZx3z22WeaP39+j/cJQPehwAHQJyUlJWnTpk1qbm7W/PnzNXnyZC1ZskQxMTHq1y/wS9tNN92kl19+2XweExOjN998UxdccIHGjx+vZ599Vq+++qomTpwoSWpsbNRbb72lm2++ucf7BKD7cKM/AKeVY8eOady4cXr99dc1c+bMdo9/5plntHr1an344Ye9EB2A7sI7OABOKxEREXrxxRfbvCGgpwEDBujpp5/u4agAdDfewQEAAJbDOzgAAMByKHAAAIDlUOAAAADLocABAACWQ4EDAAAshwIHAABYDgUOAACwHAocAABgORQ4AADAcv4/4rIQegvxjTEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "x = np.hstack(unit_spiketimes)\n", "y = np.hstack([np.full_like(s, u) for u, s in zip(units, unit_spiketimes)])\n", @@ -2474,7 +785,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2486,235 +797,18 @@ }, { "cell_type": "code", - "execution_count": 36, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'subject': 'subject5',\n", - " 'session_datetime': datetime.datetime(2023, 1, 1, 0, 0),\n", - " 'insertion_number': 1,\n", - " 'paramset_idx': 0,\n", - " 'curation_id': 1,\n", - " 'unit': 15,\n", - " 'electrode_config_hash': UUID('8d4cc6d8-a02d-42c8-bf27-7459c39ea0ee'),\n", - " 'probe_type': 'neuropixels 1.0 - 3A',\n", - " 'electrode': 92,\n", - " 'cluster_quality_label': 'noise',\n", - " 'spike_count': 292,\n", - " 'spike_times': array([ 1.02606667, 1.19973333, 1.5044 , 1.52283333,\n", - " 1.86786667, 1.8688 , 1.8806 , 1.88553333,\n", - " 2.0581 , 2.76826667, 2.89186667, 2.9311 ,\n", - " 4.8753 , 5.2964 , 7.02266667, 9.65273333,\n", - " 9.81373333, 10.22443333, 11.96146667, 15.07173333,\n", - " 15.08983333, 15.78326667, 21.30936667, 22.7549 ,\n", - " 23.5582 , 23.6582 , 23.87043333, 24.16726667,\n", - " 24.25456667, 24.2671 , 25.0249 , 27.89116667,\n", - " 35.3036 , 36.0171 , 40.00396667, 40.0873 ,\n", - " 41.015 , 42.70086667, 45.8682 , 47.9291 ,\n", - " 48.90843333, 49.37996667, 49.39596667, 49.4058 ,\n", - " 49.65926667, 49.68203333, 49.74273333, 51.52213333,\n", - " 52.41486667, 55.27623333, 55.54576667, 55.81213333,\n", - " 56.0544 , 56.29426667, 56.36896667, 56.3743 ,\n", - " 56.47403333, 56.7147 , 56.71683333, 60.764 ,\n", - " 61.5317 , 61.54046667, 61.7721 , 62.10233333,\n", - " 62.10726667, 62.2118 , 62.81173333, 63.15896667,\n", - " 65.11126667, 65.495 , 67.18373333, 77.59256667,\n", - " 79.2709 , 80.46186667, 82.1178 , 85.6568 ,\n", - " 86.52613333, 89.12126667, 89.46963333, 89.64663333,\n", - " 90.19103333, 92.0923 , 92.99573333, 93.36923333,\n", - " 93.68086667, 95.2097 , 97.96296667, 98.1067 ,\n", - " 98.69713333, 99.26963333, 99.28013333, 101.04216667,\n", - " 101.2002 , 101.3843 , 101.3975 , 101.40656667,\n", - " 102.00996667, 102.07066667, 102.17033333, 103.5861 ,\n", - " 104.68523333, 104.71643333, 105.2595 , 105.5166 ,\n", - " 105.54723333, 107.0848 , 109.82746667, 110.14853333,\n", - " 110.92203333, 111.2481 , 112.26 , 113.09466667,\n", - " 113.09846667, 113.1005 , 113.33513333, 118.842 ,\n", - " 118.96803333, 119.32606667, 119.64796667, 119.96313333,\n", - " 119.97343333, 120.19573333, 120.19693333, 120.21163333,\n", - " 121.1879 , 121.233 , 121.9611 , 122.40203333,\n", - " 123.1745 , 124.6798 , 124.68196667, 124.97396667,\n", - " 125.2205 , 125.87786667, 125.957 , 125.95803333,\n", - " 127.7149 , 136.8558 , 136.86413333, 138.49966667,\n", - " 139.49553333, 139.93163333, 139.9819 , 142.57013333,\n", - " 142.70053333, 143.343 , 143.40796667, 148.46066667,\n", - " 148.47023333, 148.89893333, 152.79766667, 153.2198 ,\n", - " 153.39096667, 153.62456667, 153.82253333, 153.82693333,\n", - " 153.8364 , 153.98863333, 155.4047 , 157.52706667,\n", - " 157.53233333, 163.1177 , 163.12516667, 163.46916667,\n", - " 163.69406667, 163.7119 , 166.6946 , 166.7006 ,\n", - " 170.78053333, 170.7891 , 170.79653333, 180.36596667,\n", - " 180.43416667, 182.72556667, 182.73706667, 182.76576667,\n", - " 184.24713333, 185.5131 , 185.7329 , 186.4198 ,\n", - " 186.48443333, 186.72036667, 186.95926667, 187.1402 ,\n", - " 187.16683333, 189.4036 , 193.27583333, 195.40946667,\n", - " 200.2427 , 203.03376667, 203.04076667, 205.84043333,\n", - " 206.1151 , 207.3402 , 210.95773333, 217.73583333,\n", - " 220.35 , 221.1235 , 227.7719 , 227.946 ,\n", - " 228.02456667, 231.2108 , 231.80003333, 233.48253333,\n", - " 236.8342 , 241.78993333, 243.6285 , 245.61546667,\n", - " 245.95573333, 246.04586667, 246.06206667, 247.12933333,\n", - " 248.17143333, 249.16873333, 251.13613333, 252.4734 ,\n", - " 253.2007 , 254.50943333, 255.22563333, 255.2502 ,\n", - " 255.5314 , 255.53423333, 255.7684 , 256.81196667,\n", - " 256.99066667, 256.9928 , 257.0588 , 257.06206667,\n", - " 257.0801 , 257.15523333, 257.27496667, 257.291 ,\n", - " 257.99483333, 259.6955 , 259.7061 , 259.71746667,\n", - " 263.59203333, 266.7052 , 266.70576667, 267.0376 ,\n", - " 267.35913333, 267.87316667, 268.36156667, 268.94556667,\n", - " 269.01516667, 269.63623333, 269.88553333, 270.16176667,\n", - " 270.39123333, 273.41633333, 273.43763333, 274.2084 ,\n", - " 276.36113333, 278.68053333, 279.50626667, 281.0338 ,\n", - " 281.9869 , 283.69233333, 285.0663 , 287.0179 ,\n", - " 289.5541 , 291.78113333, 292.16493333, 292.85823333,\n", - " 292.8702 , 295.93823333, 295.9514 , 295.9679 ,\n", - " 296.00623333, 296.0391 , 296.04393333, 298.9717 ,\n", - " 299.01556667, 299.0859 , 299.7463 , 306.65153333,\n", - " 307.38243333, 307.7771 , 311.80163333, 311.83026667,\n", - " 313.37816667, 314.948 , 317.10726667, 317.98363333,\n", - " 319.25856667, 321.01533333, 321.16426667, 330.15466667,\n", - " 330.73633333, 330.91536667, 332.83243333, 332.86266667]),\n", - " 'spike_sites': array([92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92,\n", - " 92, 92, 92]),\n", - " 'spike_depths': array([ 917.68931051, 1002.6141662 , 893.1431346 , 912.33104931,\n", - " 902.87693568, 872.31105976, 875.26191363, 922.47333477,\n", - " 949.16252597, 801.99946108, 858.01692677, 921.7837487 ,\n", - " 897.25087548, 874.42894267, 914.89717798, 861.55454858,\n", - " 904.22082978, 900.71556806, 848.89880207, 871.55857472,\n", - " 849.40502424, 887.21898509, 957.57407264, 857.52950094,\n", - " 941.13752662, 931.03217518, 898.99527832, 962.92735677,\n", - " 915.56550832, 922.14542481, 894.27941318, 874.31413165,\n", - " 847.78323382, 960.73651726, 902.09721294, 899.97936727,\n", - " 936.76767365, 908.68471877, 931.97562897, 892.8563381 ,\n", - " 940.49920044, 925.87119487, 915.55667036, 786.01763842,\n", - " 867.61268444, 1007.66794229, 867.43220284, 941.51843395,\n", - " 955.66765617, 970.36344663, 894.82624021, 915.00922015,\n", - " 889.99169864, 878.28545616, 850.33714087, 928.43421969,\n", - " 939.52352775, 962.60336897, 903.36858487, 896.37548128,\n", - " 963.73199174, 789.82843798, 920.43722936, 828.40065648,\n", - " 943.98810503, 835.85766882, 841.76946105, 937.36801859,\n", - " 896.49642885, 967.15672796, 918.39713395, 906.36795986,\n", - " 919.40916519, 875.89694182, 908.3418033 , 972.05674531,\n", - " 927.07275902, 940.77150366, 918.04680759, 981.59648505,\n", - " 940.32229921, 938.36235287, 849.04038544, 893.3058527 ,\n", - " 913.09883832, 912.35625832, 989.78190796, 879.34780591,\n", - " 928.81644221, 892.97322993, 898.70158737, 906.91746418,\n", - " 946.42526162, 914.08702993, 859.34034454, 907.18338275,\n", - " 989.30138781, 926.06769221, 838.08269605, 929.50654863,\n", - " 827.39586238, 927.36188021, 910.17661856, 935.41822322,\n", - " 885.63661049, 914.48018584, 895.93753147, 911.13864214,\n", - " 881.60996972, 938.20931097, 1015.75963624, 938.56188955,\n", - " 909.09481672, 867.81417174, 912.15092578, 907.0519042 ,\n", - " 913.43873474, 913.23570042, 983.89208176, 899.44708324,\n", - " 910.55603061, 950.67199374, 916.27718038, 886.16272254,\n", - " 975.57372749, 882.46972449, 908.99151954, 893.41760103,\n", - " 938.6441373 , 885.19738826, 947.44382361, 918.75218854,\n", - " 942.78614663, 968.52291541, 915.78656008, 989.00683215,\n", - " 855.88223229, 976.62553529, 919.25644927, 958.63970635,\n", - " 934.03540249, 926.45247121, 961.36373273, 926.55709697,\n", - " 896.6375551 , 897.47943897, 907.74803191, 954.04187795,\n", - " 882.10295293, 1004.09432843, 892.73726557, 846.13198111,\n", - " 929.42733278, 894.24531402, 921.97988827, 860.601478 ,\n", - " 912.55635483, 997.22339505, 985.88635074, 938.45775184,\n", - " 944.63766895, 942.18376197, 984.23087354, 922.40370934,\n", - " 965.34813049, 921.32552393, 969.81367405, 917.74503135,\n", - " 833.76599428, 894.97963584, 878.49090123, 864.91049261,\n", - " 985.04808527, 927.18133162, 844.64492657, 913.88047009,\n", - " 928.03561194, 930.79686847, 930.13055052, 839.5761256 ,\n", - " 943.37875897, 956.44476838, 931.39781252, 989.20932655,\n", - " 1006.29928459, 942.03146682, 901.72518137, 932.53880871,\n", - " 935.96943144, 925.53161728, 874.67439465, 951.48997974,\n", - " 960. , 874.14717137, 921.49562818, 927.26749515,\n", - " 926.41158172, 896.61260138, 938.6103718 , 959.64828575,\n", - " 935.22630845, 955.63103852, 950.8495808 , 888.45366602,\n", - " 912.06814044, 862.81354284, 875.05713562, 875.4100677 ,\n", - " 923.5426824 , 839.78562837, 889.74471045, 867.8332007 ,\n", - " 933.88736839, 868.07155277, 883.34738777, 913.12741673,\n", - " 915.77804797, 962.99775026, 932.9485248 , 930.37415413,\n", - " 944.21567324, 776.98228821, 936.37311401, 941.58975024,\n", - " 941.55965056, 864.51860126, 930.38329188, 912.78502395,\n", - " 947.32712079, 1011.13494089, 937.99624501, 916.59535343,\n", - " 873.82437868, 901.49630725, 846.11674006, 998.64016883,\n", - " 978.32805846, 876.27655411, 905.78089027, 827.25234516,\n", - " 1002.18813125, 898.65291068, 920.350764 , 874.17361952,\n", - " 938.70381451, 945.81921622, 874.98921047, 915.97985629,\n", - " 920.14460695, 965.25282342, 977.01542391, 863.18856888,\n", - " 907.62393082, 906.19584978, 851.37149337, 956.85804045,\n", - " 969.94521463, 912.02588788, 953.60047228, 819.53086148,\n", - " 911.99611929, 845.66361521, 962.24964999, 921.43338903,\n", - " 982.04267741, 931.1841306 , 896.56744607, 926.6958426 ,\n", - " 841.56778533, 961.77261899, 943.15601639, 786.18136435,\n", - " 864.98026608, 950.29718422, 930.39820918, 983.57154574,\n", - " 909.55498598, 925.76591071, 906.07808244, 964.41923255,\n", - " 911.17276099, 919.34859876, 906.11721418, 905.96844161,\n", - " 911.53683431, 958.97512493, 953.15452691, 889.09240389,\n", - " 957.98473324, 993.29170991, 928.99175736, 908.10563408]),\n", - " 'peak_electrode_waveform': array([-503.33636558, -502.734375 , -501.32973031, -500.34246575,\n", - " -499.73244863, -498.66491866, -494.41887842, -491.6015625 ,\n", - " -486.59300086, -481.55233305, -474.36055223, -466.79152397,\n", - " -458.98169949, -451.10766267, -442.41491866, -431.03328339,\n", - " -420.81549658, -410.91074486, -402.25010702, -395.59610445,\n", - " -389.25513699, -384.02985873, -381.67005565, -379.81592466,\n", - " -378.79655394, -380.26541096, -384.54355736, -392.41759418,\n", - " -401.11033818, -410.67797517, -420.13324058, -430.6640625 ,\n", - " -442.34267979, -452.71297089, -461.42979452, -469.67305223,\n", - " -478.64672517, -486.40036387, -493.83294092, -498.87360873,\n", - " -504.82127568, -509.58101455, -511.55554366, -514.19627568,\n", - " -515.77750428, -516.41160103, -517.3828125 , -518.16941353,\n", - " -517.26241438, -518.46639555, -517.76808647, -517.3828125 ,\n", - " -516.61226455, -514.32470034, -512.5187286 , -511.66791524,\n", - " -510.65657106, -507.74293664, -504.84535531, -503.02333048,\n", - " -501.93172089, -499.3552012 , -498.77729024, -495.78339041,\n", - " -495.42219606, -495.78339041, -494.30650685, -492.30789812,\n", - " -491.83433219, -492.14736729, -490.16481164, -489.69124572,\n", - " -488.84043236, -488.5354238 , -489.24175942, -487.68461045,\n", - " -486.48062928, -485.50941781, -484.23319777, -484.24925086,\n", - " -484.26530394, -483.3984375 ])}" - ] - }, - "execution_count": 36, - "metadata": {}, - "output_type": "execute_result" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "unit_data" ] }, { "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkoElEQVR4nO3dd3zTdf4H8FfSke500tK9S6WFtoxSNlIpCgquU1QQBBRPT9aJ4HnuE/FEfooTPIRDOIYDByAge5TZFihQVumA0j3SmbbJ9/dH2kilLR1pvxmv5+ORx12Tb5J3Ykle/Xze389HIgiCACIiIiJqllTsAoiIiIj0GcMSERERUSsYloiIiIhawbBERERE1AqGJSIiIqJWMCwRERERtYJhiYiIiKgV5mIXYOjUajVycnJgb28PiUQidjlERETUBoIgoLy8HJ6enpBKWx87YljqpJycHPj4+IhdBhEREXVAdnY2vL29Wz2GYamT7O3tAWjebAcHB5GrISIiorZQKBTw8fHRfo+3hmGpkxqn3hwcHBiWiIiIDExbWmjY4E1ERETUCoYlIiIiolYwLBERERG1gmGJiIiIqBUMS0REREStYFgiIiIiagXDEhEREVErGJaIiIiIWsGwRERERNQKhiUiIiKiVjAsEREREbWCYYmIiIioFQxLRAZEEAQoaurELoOIyKQYbFh64IEH4OvrCysrK/Ts2ROTJ09GTk5Ok2N27NiBQYMGwd7eHm5ubnj44YeRkZHR5Jh9+/YhJiYGMpkMwcHBWL16dfe9CKI2Utar8N2p6xj3ySH0eXMn5m1MQXFlrdhlERGZBIMNS6NGjcKmTZtw8eJFfP/997h69SoeeeQR7e3Xrl3DhAkTcPfddyMlJQU7duxAYWEhHnrooSbHjBs3DqNGjUJKSgrmzJmDGTNmYMeOHWK8JKLbFFUo8fHvlzHk/b34++bTOH9TAQD4IfkG4j/ajx+Tr0MQBJGrJCIybhLBSD5pf/75Z0ycOBFKpRIWFhb47rvvMGnSJCiVSkilmkz4yy+/YMKECdpjXnnlFWzduhWpqanax3n88cdRWlqK3377rU3Pq1AoIJfLUVZWBgcHhy55bWR6KpX1eG/bBWw+dR219WoAgIeDFaYM9kOklxzv/noBF/PKAQDDQlzxr4mR8HWxEbNkIiKD0p7vb4MdWbpVcXEx1q1bh8GDB8PCwgIA0K9fP0ilUnzzzTdQqVQoKyvD2rVrER8frz0mMTER8fHxTR4rISEBiYmJLT6XUqmEQqFociHSpYzCSjz4+WGsO5aF2no1+nrL8fHjUTj4yij8dWQwhoW44deXhuLlhDBYmktx8HIhxvzffqxNzBC7dCIio2TQYemVV16Bra0tXFxckJWVhZ9++kl7W0BAAHbu3IlXX30VMpkMjo6OuH79OjZt2qQ9Jjc3F+7u7k0e093dHQqFAtXV1c0+5+LFiyGXy7UXHx+frnlxZJL2XczHA58ewqW8CvSwl2HdjFhseWEIJkR5wcLsj3+uFmZSvDAqGDvmDEdcoAtq6tT450/ncDq7VLziiYiMlF6FpYULF0IikbR6SUtL0x7/8ssvIzk5GTt37oSZmRmmTJmi7d/Izc3FzJkz8fTTT+PEiRPYv38/LC0t8cgjj3Sqx2PRokUoKyvTXrKzszv9uokEQcBne69g2uoTUNTUI8bXEb/+bSiGBLtCIpG0eL8AV1usnxmLCVGeAID3t6exh4mISMfMxS7gVvPnz8fUqVNbPSYwMFD7/11dXeHq6orQ0FCEh4fDx8cHR48eRVxcHD777DPI5XJ88MEH2uO//fZb+Pj44NixYxg0aBA8PDyQl5fX5PHz8vLg4OAAa2vrZp9fJpNBJpN1/EUS/Umlsh4vf3ca287mAgAmDfTFmw/cBZm5WZvuL5FI8HJCGLafzUViehH2XyrAyLAeXVkyEZFJ0auw5ObmBjc3tw7dV63WNMEqlUoAQFVVlbaxu5GZmVmTY+Pi4rBt27Ymx+zatQtxcXEdqoGovRQ1dZj8n+M4nV0KCzMJ3nogAk/E+rb7cbydbPD0YD+sPHgN729Pw7AQN5hJWx6RIiKittOrabi2OnbsGD799FOkpKQgMzMTe/bswaRJkxAUFKQNOuPGjcOJEyfw9ttv4/Lly0hKSsK0adPg5+eH6OhoAMCsWbOQnp6OBQsWIC0tDZ9//jk2bdqEuXPnivnyyERUKOsxdZUmKDnZWGDDs4M6FJQa/XVkMOytzJGWW46fUm7osFIiItNmkGHJxsYGP/zwA0aPHo2wsDBMnz4dffr0wf79+7VTZHfffTfWr1+PLVu2IDo6GmPHjoVMJsNvv/2mnWILCAjA1q1bsWvXLvTt2xdLly7F119/jYSEBDFfHpmASmU9pn1zHElZpZBbW+DbGbHo5+fcqcd0srXEX0cGAwCW7ryEmjqVLkolIjJ5RrPOkli4zhK1V3WtCtNWH8fR9GLYW5lj/YxBiPSW6+Sxa+pUGPnvfchV1OC1ceGYMSzwznciIjJBJrfOEpGhqKlTYcZ/T+BoejHsZOb47zMDdRaUAMDKwgxz7wkBAHy69wrKqrmPHBFRZzEsEXWT2no1nl17CoevFMHW0gxrnhmAaF8nnT/PwzHeCOlhh9KqOny5/6rOH5+IyNQwLBF1k40ns3HgUgGsLczwzbSBne5Raom5mRQLxvYCAKw6dA25ZTVd8jxERKaCYYmoG6jVAlYdugYAWDA2DAMDuiYoNYoP74EB/k5Q1qux4kB6lz4XEZGxY1gi6gZ7L+bjWmEl7K3M8Zf+Xb9FjkQi0TZ377qQy1W9iYg6gWGJqBt8fVAzqvTEQF/YyrpnLdihwa6wNJMiu7gaVwsquuU5iYiMEcMSURc7l1OGxPQimEkleHqwf7c9r63MHLGBmum+PWn53fa8RETGhmGJqIutOpQBALg3wgOejs3vOdhV7u6l2SOOYYmIqOMYloi6UL6iBj+f1mw9IsYCkY1h6URGCddcIiLqIIYloi609mgm6lQC+vk5IcrHsduf38/FFkFutlCpBRy8XNDtz09EZAwYloi6SE2dCt8ezQQATB8aIFodnIojIuochiWiLvJD0g2UVNXB28kaY+5yF62Ou3tpnnv/xQKo1VxCgIiovRiWiLqAWi1g1WHNcgFTB/vD3Ey8f2r9/Z1gb2WOospanL5eKlodRESGimGJqAvsv1yAK/kVsJOZ47EBXb8IZWsszKQYHuIGgFNxREQdwbBE1AUatzZ5bIAP7K0sRK4GGMW+JSKiDmNYItKxG6XVOHSlEADwdJy/uMU0GBnmBokEOJejQJ6CG+sSEbUHwxKRjm1JvgFBAGIDnOHrYiN2OQAAVzsZ+no7AgD2cnSJiKhdGJaIdEgQBPyYrFmE8uEYb5GraapxCYHdDEtERO3CsESkQ2dvlOFKfgVk5lLcG+khdjlNNIalw1cKoaxXiVwNEZHhYFgi0qEfkjSjSvfc5a4Xjd236u3pAHcHGapqVTiWXix2OUREBoNhiUhH6lRq/HI6B4D+TcEBgEQiwagwnhVHRNReDEtEOnLgUgGKKmvhameJYSGuYpfTrFuXEBAEruZNRNQWDEtEOvJDQ2P3A329RF2xuzVDg11haSZFVnEV0gsrxS6HiMgg6OcnOpGBKauuw67zeQCAh2K8RK6mZbYyc/T3dwKgafQmIqI7Y1gi0oHtZ2+itl6NkB526O3pIHY5rRoSrJkiPHSZYYmIqC0Yloh0oPEsuIdivCGRSESupnWN/VSJ6UWoV6lFroaISP8xLBF1UnZxFY5nFEMiASZGe4pdzh319pRDbm2B8pp6nL1RJnY5RER6j2GJqJO2NDR2xwW6oKfcWuRq7sxMKsHgIBcAnIojImoLhiWiThAEQXsW3EN6uLZSS7R9S2zyJiK6I4Ylok5IyS7FtcJKWFlIMTZCv7Y3ac3QhrCUlFWCqtp6kashItJvDEtEndA4BZfQ2wN2MnORq2k7PxcbeDlao04l4Pg1bn1CRNQahiWiDqpXqbH17E0AwIQo/W/svpVEItGOLnG9JSKi1jEsEXVQYnoRCitq4WhjgaHBbmKX025DQxr7lopEroSISL8xLBF10M8pmk1z743oCUtzw/un1HhG3IWbChSUK0WuhohIfxneJzyRHlDWq/DbuVwAwAN9DWsKrpGLnQx39dSsNn7kKqfiiIhawrBE1AH7LhagvKYe7g4yDAxwFrucDmucimPfEhFRyxiWiDrg59OaKbj7+3jCTKrf25u05tZ94gRBELkaIiL9ZPBhSalUIioqChKJBCkpKU1uO3PmDIYNGwYrKyv4+Pjggw8+uO3+mzdvRq9evWBlZYXIyEhs27atmyonQ1WprMfuC3kAgAcM7Cy4Pxvg7wRLMylyymqQUVQldjlERHrJ4MPSggUL4Ol5+xeWQqHAmDFj4Ofnh1OnTuHf//433nzzTaxYsUJ7zJEjRzBp0iRMnz4dycnJmDhxIiZOnIjU1NTufAlkYHadz0NNnRr+LjaI9JKLXU6n2FiaI8bPEQBX8yYiaolBh6Xt27dj586d+PDDD2+7bd26daitrcWqVavQu3dvPP7443jppZfw0UcfaY/5+OOPMXbsWLz88ssIDw/HO++8g5iYGHz66afd+TLIwDROwT3Q1xMSieFOwTUaqp2KKxC5EiIi/WSwYSkvLw8zZ87E2rVrYWNjc9vtiYmJGD58OCwtLbXXJSQk4OLFiygpKdEeEx8f3+R+CQkJSExMbPF5lUolFApFkwuZjpLKWhy4pAkVhj4F12hoiGaNqCNXi6BSs2+JiOjPDDIsCYKAqVOnYtasWejfv3+zx+Tm5sLd3b3JdY0/5+bmtnpM4+3NWbx4MeRyufbi4+PTmZdCBmZ7ai7q1QLCezoguIe92OXoRKSXHPZW5iivqcfZG2Vil0NEpHf0KiwtXLgQEomk1UtaWhqWL1+O8vJyLFq0qNtrXLRoEcrKyrSX7Ozsbq+BxPPzac1ecIa6tlJzzKQS7QKVXEKAiOh2erXz5/z58zF16tRWjwkMDMSePXuQmJgImUzW5Lb+/fvjySefxJo1a+Dh4YG8vLwmtzf+7OHhof3f5o5pvL05Mpnstucl05BbVoNjDZvO3t+3p8jV6NbQYFfsOJeHw1cK8cKoYLHLISLSK3oVltzc3ODmduc9tj755BO8++672p9zcnKQkJCAjRs3IjY2FgAQFxeHf/zjH6irq4OFhQUAYNeuXQgLC4OTk5P2mN27d2POnDnax9q1axfi4uJ0+KrIWPx6JgeCAPTzc4K30+19coZsUKBmZCkpqwS19WqD3L6FiKirGOQnoq+vLyIiIrSX0NBQAEBQUBC8vb0BAE888QQsLS0xffp0nDt3Dhs3bsTHH3+MefPmaR9n9uzZ+O2337B06VKkpaXhzTffxMmTJ/Hiiy+K8rpIv/1yy1lwxia4hx2cbS1RU6dm3xIR0Z8YZFhqC7lcjp07d+LatWvo168f5s+fj9dffx3PPvus9pjBgwdj/fr1WLFiBfr27YvvvvsOW7ZsQUREhIiVkz7KU9Tg9PUySCTAfZHGNQUHABKJBAP8NSOuxxumGomISEOvpuE6yt/fv9mtGvr06YODBw+2et9HH30Ujz76aFeVRkbi0GVN43Oklxxu9sbZszYwwAU7zuXh+LUiPD8ySOxyiIj0htGOLBHpUuNZYo17qRmj2IYNgU9mlHC9JSKiWzAsEd2BIAjarUCGGnFYCu/pADuZOcqV9bhwk4utEhE1YlgiuoPL+RXIL1dCZi5FPz8nscvpMmZSCfqzb4mI6DYMS0R30NivNDDAGVYWZiJX07UG+Gum4hiWiIj+wLBEdAeHTWAKrlFj39KJjOJmT5ogIjJFDEtErahTqXE0vQiAcTd3N4r0lkNmLkVRZS2uFlSKXQ4RkV5gWCJqRUp2KSprVXC2tcRdPR3ELqfLyczNEO3rCIBTcUREjRiWiFpxsKFfaXCQC6RSicjVdI+BAZqtT45fKxK5EiIi/cCwRNQKU+pXatTYt3TsGvuWiIgAhiWiFpXX1CEluxQAMDTEdMJStK8jzKUS3CyrwfWSarHLISISHcMSUQuOphdDpRbg72IDbycbscvpNjaW5oj0lgNg3xIREcCwRNQi7RScCY0qNRoYwPWWiIgaMSwRtcAUtjhpSWPf0vEMhiUiIoYlombcLKvGlfwKSCVAXKDphaV+fs6QSIBrhZXIV9SIXQ4RkagYloiacfiK5rT5SG9HyG0sRK6m+8mtLdDLQ7OuFEeXiMjUMSwRNeOPJQNcRK5EPLHsWyIiAsCwRHQbQRBu6VdyE7ka8bDJm4hIg2GJ6E8u5VWgoFwJawszxPg5il2OaAb4a8JSWm45SqtqRa6GiEg8DEtEf3LwcgEAzciKzNxM5GrE42YvQ6CbLQDgREaJyNUQEYmHYYnoT441TDsNDjLdfqVGf/QtcZ84IjJdDEtEtxAEAScbzv4a0BAUTFlsw6a6x9i3REQmjGGJ6BZXCypRUlUHmbkUEZ5yscsRXWOTd+qNMpTX1IlcDRGROBiWiG5xKlMzghLl4whLc/7z8HS0ho+zNdQCcCqTfUtEZJr4bUB0i8ZG5sYzwYhTcUREDEtEt2jsV+rv7yRyJfqjcSruWDqbvInINDEsETXIL69BRlEVJBIgxo9hqdGghpGlM9fLUF2rErkaIqLux7BE1OBUwxRcmLs9HKxMbz+4lvg4W6On3Ar1agFJWexbIiLTw7BE1ID9Ss2TSCR/TMWxb4mITBDDElGDxjPh2K90O22TN/uWiMgEMSwRAaiqrUdqjgIAR5aaExuoeU+Ss0tRU8e+JSIyLQxLRABSskqhUgvwcrSGp6O12OXonUBXW7jayVBbr8aZ62Vil0NE1K0YlojwR79SP54F1yyJRKLdJ45TcURkahiWiACcbOhXGsB+pRY1TsWxyZuITA3DEpm8epUaSQ1befRnv1KLGs+IO5VZgjqVWuRqiIi6D8MSmby03HJU1qpgb2WOUHd7scvRW6E97OFoY4HqOhXO3mDfEhGZDoYlMnmNW5z083OCmVQicjX6SyqVYGDDyNtxTsURkQlhWCKTd6JxCo7N3XfEfeKIyBQZfFhSKpWIioqCRCJBSkqK9vp9+/ZhwoQJ6NmzJ2xtbREVFYV169bddv/NmzejV69esLKyQmRkJLZt29aN1ZPYBEG4ZfNc9ivdyaBAzeKUJzNKoFILIldDRNQ9DD4sLViwAJ6enrddf+TIEfTp0wfff/89zpw5g2nTpmHKlCn49ddfmxwzadIkTJ8+HcnJyZg4cSImTpyI1NTU7nwJJKLrJdXIUyhhYSZBX29HscvRe+E9HWAvM0e5sh4XbirELoeIqFtIBEEw2D8Pt2/fjnnz5uH7779H7969kZycjKioqBaPHzduHNzd3bFq1SoAwGOPPYbKysomAWrQoEGIiorCl19+2aYaFAoF5HI5ysrK4ODg0KnXQ93vh6TrmLfpNKJ9HfHjX4eIXY5BmPbNcey9WIDXxoVjxrBAscshIuqQ9nx/G+zIUl5eHmbOnIm1a9fCxsamTfcpKyuDs/MfUy2JiYmIj49vckxCQgISExNbfAylUgmFQtHkQoaLm+e2X2zDVBybvInIVBhkWBIEAVOnTsWsWbPQv3//Nt1n06ZNOHHiBKZNm6a9Ljc3F+7u7k2Oc3d3R25ubouPs3jxYsjlcu3Fx8enYy+C9ELj5rlcubvtGpu8T2QUw4AHpomI2kyvwtLChQshkUhavaSlpWH58uUoLy/HokWL2vS4e/fuxbRp07By5Ur07t27UzUuWrQIZWVl2kt2dnanHo/EU1pVi0t5FQB4Jlx7RHjKYWkuRUlVHTKLqsQuh4ioy5mLXcCt5s+fj6lTp7Z6TGBgIPbs2YPExETIZLImt/Xv3x9PPvkk1qxZo71u//79uP/++7Fs2TJMmTKlyfEeHh7Iy8trcl1eXh48PDxafH6ZTHbb85JhSsrSTMEFutrCxY7/TdvK0lyKCE8HJGWVIjm7BP6utmKXRETUpfQqLLm5ucHNze2Ox33yySd49913tT/n5OQgISEBGzduRGxsrPb6ffv2Yfz48ViyZAmeffbZ2x4nLi4Ou3fvxpw5c7TX7dq1C3FxcZ17IWQQTmVy89yOivZ10oSlrFI8GO0tdjlERF1Kr8JSW/n6+jb52c7ODgAQFBQEb2/NB/fevXsxfvx4zJ49Gw8//LC2D8nS0lLb5D179myMGDECS5cuxbhx47BhwwacPHkSK1as6MZXQ2JhWOq4GF8n/AfXtKNzRETGTK96lnRpzZo1qKqqwuLFi9GzZ0/t5aGHHtIeM3jwYKxfvx4rVqxA37598d1332HLli2IiIgQsXLqDnUqNU5na/Y3Y1hqv2hfRwDAhZvlqK5ViVsMEVEXM+h1lvQB11kyTGevl+H+Tw/BwcocKa+PgZR7wrWLIAgYtHg38hRKbHouTnuGHBGRoTCJdZaIOqNxyYBoXycGpQ6QSCSI8dWMyCVzKo6IjBzDEpmkU1mlADgF1xmNU3HsWyIiY8ewRCYpic3dnRbdMLKUlFXKxSmJyKgxLJHJyS2rwY3SakglQF8fR7HLMViRXnKYSyUoKFcip6xG7HKIiLoMwxKZnMZpo14eDrCTGeTqGXrBysIMd3lqmiIbR+qIiIwRwxKZHK6vpDvRDSNzyQ09YERExohhiUwOw5LuNPYtJWdzZImIjBfDEpmUmjoVzuVwMUpdaTwj7twNBZT1XJySiIwTwxKZlLM3ylCnEuBmL4O3k7XY5Rg8X2cbuNhaolalxrkchdjlEBF1CYYlMinaKThfJ0gkXIyysyQSiXZ0iX1LRGSsGJbIpLBfSfeiuZI3ERk5hiUyGYIgaE9xj2FY0hmeEUdExo5hiUxGZlEViiprYWkmRYQXNz3WlT4+jpBKgBul1chTcHFKIjI+DEtkMhqn4CK95ZCZm4lcjfGwk5kj1N0eAEeXiMg4MSyRyTiVxX6lrsL1lojImDEskcnQ9iv5MizpmvaMuMxSUesgIuoKDEtkEhQ1dbiYVw4AiPFzFLcYI9QYQM/cKEWdSi1yNUREusWwRCYhJasUgqBZRLGHvZXY5RidQFdbOFiZo6ZOjYu55WKXQ0SkUwxLZBK4vlLXkkoliOJ6S0RkpBiWyCQkZTX2KzmKW4gR6+stB6DZUoaIyJgwLJHREwRB+wUe5cORpa4S4dUYlrhHHBEZF/PO3Lmurg65ubmoqqqCm5sbnJ2ddVUXkc5kF1ejtKoOlmZShHrYiV2O0WoMS5fzylFTp4KVBdeyIiLj0O6RpfLycnzxxRcYMWIEHBwc4O/vj/DwcLi5ucHPzw8zZ87EiRMnuqJWog45c6MUANCrpz0Xo+xCnnIrONtaol4tII1N3kRkRNoVlj766CP4+/vjm2++QXx8PLZs2YKUlBRcunQJiYmJeOONN1BfX48xY8Zg7NixuHz5clfVTdRmZ69rpuAiG0Y+qGtIJBLt6FIq+5aIyIi0axruxIkTOHDgAHr37t3s7QMHDsQzzzyDL7/8Et988w0OHjyIkJAQnRRK1FFnGsJSH2+Gpa4W6eWAA5cKGJaIyKi0Kyz973//a9NxMpkMs2bN6lBBRLqkVgvaL+5IL0dxizEBEZ48I46IjE+7e5ZSU1O7og6iLpFRVIlyZT1k5lKEuLO5u6s1TsNdyiuHsl4lcjVERLrR7rDUp08fxMbGYuXKlSgvZxMn6bfGEY67PB1gYcaVMrqat5M1HG0sUKcScCm3QuxyiIh0ot3fHvv370fv3r0xf/589OzZE08//TQOHjzYFbURdZq2X4nN3d1CIpFoG+k5FUdExqLdYWnYsGFYtWoVbt68ieXLlyMjIwMjRoxAaGgolixZgtzc3K6ok6hDtGfCeTuKW4gJ6c2+JSIyMh2el7C1tcW0adOwf/9+XLp0CY8++ig+++wz+Pr64oEHHtBljUQdolILSM3hmXDdrXFk6VwOwxIRGQedNHEEBwfj1VdfxWuvvQZ7e3ts3bpVFw9L1CnpBRWoqlXB2sIMQW5s7u4ujWEp7WY5auvVIldDRNR5nQ5LBw4cwNSpU+Hh4YGXX34ZDz30EA4fPqyL2og6pbFfKcLLAWZSicjVmA4fZ2s4WJmjVqXGpTyeBEJEhq9DYSknJwfvvfceQkNDMXLkSFy5cgWffPIJcnJysHLlSgwaNEjXdRK121murySKW1fy5lQcERmDdm+ke++99+L333+Hq6srpkyZgmeeeQZhYWFdURtRp5y5XgqA/UpiiPSS48jVIpy9UYbHBohdDRFR57Q7LFlYWOC7777D+PHjYWbGTUlJP9Wr1DiXowAARDIsdbsI7fIBCpErISLqvHaHpZ9//hkAkJ2dDR8fH50XRKQLl/MroKxXw05mjgAXW7HLMTmNYenCTQXqVGouCEpEBq3dYamRn58fnJ2d0bdvX0RFRWkvtbW1+OSTT7BmzRpd1knULmdvae6Wsrm72/k528BeZo5yZT2u5FcgvKeD2CUREXVYh//cu3btGr7++msMGzYMV65cwauvvoqoqCgMHDhQO/rUHZRKJaKioiCRSJCSktLsMVeuXIG9vT0cHR1vu23z5s3o1asXrKysEBkZiW3btnVtwdQtztwoBQD04WKUopBKJejtpQlIXJySiAxdh8OSn58fJk6ciDfffBM//fQTsrOzcejQIQQFBeGLL77QZY2tWrBgATw9PVu8va6uDpMmTcKwYcNuu+3IkSOYNGkSpk+fjuTkZEycOBETJ07kZsFGQLtyN7c5EU1Ew0reqQxLRGTgdNpIEBcXh48//hgffvihLh+2Rdu3b8fOnTtbfb7XXnsNvXr1wl/+8pfbbvv4448xduxYvPzyywgPD8c777yDmJgYfPrppy0+nlKphEKhaHIh/VJbr8aFm5r1fXgmnHgaG+s5skREhq7DYam2trbZ60NCQnDu3LkOF9RWeXl5mDlzJtauXQsbG5tmj9mzZw82b96Mzz77rNnbExMTER8f3+S6hIQEJCYmtvi8ixcvhlwu117Y5K5/LuWVo1alhtzaAr7Ozf9uUNe7tcm7XsWVvInIcHW4wdvOzg533XUXoqOjERUVhejoaHh6emL58uW3BRBdEwQBU6dOxaxZs9C/f39kZGTcdkxRURGmTp2Kb7/9Fg4OzTeX5ubmwt3dvcl17u7urW4GvGjRIsybN0/7s0KhYGDSM40rd/fxlkMiYXO3WAJcbGFraYbKWhWuFlQizMNe7JKIiDqkwyNLe/bswcyZM2FhYYF169Zh7NixCA0NxfLly6FSqfD6669j8+bNSEtLa/NjLly4EBKJpNVLWloali9fjvLycixatKjFx5o5cyaeeOIJDB8+vKMvsVkymQwODg5NLqRfzjY0d7NfSVxSqQS9PTkVR0SGr8MjS0OHDsXQoUO1P6vValy8eBEpKSlISUnB8ePHsXLlSuTn50OlUrXpMefPn4+pU6e2ekxgYCD27NmDxMREyGSyJrf1798fTz75JNasWYM9e/bg559/1vYzCYIAtVoNc3NzrFixAs888ww8PDyQl5fX5DHy8vLg4eHRpnpJP906skTiivCS43hGMVJvlOGRft5il0NE1CHtCktZWVnw9fVt9japVIrw8HCEh4dj0qRJAIDr16/DwsKizY/v5uYGNze3Ox73ySef4N1339X+nJOTg4SEBGzcuBGxsbEANP1It4a0n376CUuWLMGRI0fg5eUFQNOQvnv3bsyZM0d73K5duxAXF9fmmkm/1NSpcDFX09wdyWUDRBfprRl55RlxRGTI2hWWBgwYgIkTJ2LGjBkYMKD5DZ/KysqwadMmfPzxx3j22Wfx0ksv6aTQW/05sNnZ2QEAgoKC4O2t+es1PDy8yTEnT56EVCpFRESE9rrZs2djxIgRWLp0KcaNG4cNGzbg5MmTWLFihc5rpu5x4aYC9WoBLraW8JRbiV2OyWtcPuBcjqbJ25wreRORAWpXWDp//jz+9a9/4Z577oGVlRX69esHT09PWFlZoaSkBOfPn8e5c+cQExODDz74APfdd19X1a0TgwcPxvr16/Haa6/h1VdfRUhICLZs2dIkUJFhOZpeDACI9nVkc7ceCHSzg53MHBXKelzMK9f2MBERGRKJIAhCe+9UXV2NrVu34tChQ8jMzER1dTVcXV0RHR2NhIQEkwobCoUCcrkcZWVlbPbWA099fQyHrhTizfvvwtQhAWKXQ/jjv8k7EyMweZCf2OUQEQFo3/d3hxq8ra2t8cgjj+CRRx7pUIFEXaGmToXjGZqRpaEhriJXQ41ifB1x6EohkjNLGJaIyCCxgYCMxqnMEtTWq+HuIEOQm53Y5VCDGD8nAEBSVonIlRARdQzDEhmNg5cLAQBDgl3Zr6RHon00YSmjqApFFUqRqyEiaj+GJTIah69owtLQYE7B6RO5jQWCe2hG+pKzSsUthoioAxiWyCiUVNYiNUezls8QhiW9E+PrCIBTcURkmBiWyCgkphdBEICQHnZwd+D6Svomxpd9S0RkuDoVlg4ePIinnnoKcXFxuHHjBgBg7dq1OHTokE6KI2qrQ41TcDwLTi81Nnmfzi5DvUotcjVERO3T4bD0/fffIyEhAdbW1khOToZSqWncLCsrw3vvvaezAonagv1K+i3YzQ72VuaorlMhrWE7GiIiQ9HhsPTuu+/iyy+/xMqVK5vs/zZkyBAkJSXppDiitsgurkJmURXMpBLEBrqIXQ41QyqVIMrHEQCn4ojI8HQ4LF28eBHDhw+/7Xq5XI7S0tLO1ETULo1TcNE+jrCTdWidVeoG/RrXW8pkWCIiw9LhsOTh4YErV67cdv2hQ4cQGBjYqaKI2qMxLPEsOP32R5N3qbiFEBG1U4fD0syZMzF79mwcO3YMEokEOTk5WLduHf7+97/j+eef12WNRC1SqwUcYXO3QYjydYREAmQVV6GQi1MSkQHp8JzFwoULoVarMXr0aFRVVWH48OGQyWT4+9//jr/97W+6rJGoRedvKlBSVQdbSzNtTwzpJwcrC4T0sMOlvAokZZZgTG8PsUsiImqTDo8sSSQS/OMf/0BxcTFSU1Nx9OhRFBQU4J133tFlfUStajwLblCgCyzMuGyYvuNUHBEZok53w1paWuKuu+7SRS1E7cZ+JcMS4+uEDSeyeUYcERmUDoelefPmNXu9RCKBlZUVgoODMWHCBDg7O3e4OKLW1NSpcCKjGAD7lQxFjJ8jAODM9VLUqdQcDSQig9DhsJScnIykpCSoVCqEhYUBAC5dugQzMzP06tULn3/+OebPn49Dhw5x5Im6RFJmCWrq1HCzlyGkYaNW0m+BrnZwsDKHoqYeF24q0MfbUeySiIjuqMN/1k2YMAHx8fHIycnBqVOncOrUKVy/fh333HMPJk2ahBs3bmD48OGYO3euLusl0jp0y6rdEolE5GqoLaRSiXbrE663RESGosNh6d///jfeeecdODg4aK+Ty+V488038cEHH8DGxgavv/46Tp06pZNCif6M/UqGiU3eRGRoOhyWysrKkJ+ff9v1BQUFUCgUAABHR0fU1tZ2vDqiFhSUK3HmehkAYBj7lQzKH2GJI0tEZBg6NQ33zDPP4Mcff8T169dx/fp1/Pjjj5g+fTomTpwIADh+/DhCQ0N1VSuR1r6LmqAe4eUAdwcrkauh9ujrI4dEAlwvqUZ+eY3Y5RAR3VGHw9JXX32F0aNH4/HHH4efnx/8/Pzw+OOPY/To0fjiiy8AAL169cLXX3+ts2KJGu1tCEt3h/UQuRJqL3srC4S52wMAkjJLxS2GiKgNOnw2nJ2dHVauXIlly5YhPT0dABAYGAg7uz/OSoqKiup0gUR/VluvxsFLmn6lUb0YlgxRtK8T0nLLcSqzGGMjuJI3Eem3Ti9KmZWVhZycHNTW1iIjI0N7/QMPPNDZhyZq1smMYpQr6+Fia4m+PPXcIA0KdMb/jmfhyNUisUshIrqjDoel9PR0PPjggzh79iwkEgkEQQAA7SncKpVKNxUS/cmeNM0U3MiwHpBKuWSAIRocpGnKP5ejQHFlLZxtLUWuiIioZR3uWZo9ezYCAgKQn58PGxsbpKam4sCBA+jfvz/27dunwxKJmtrT2K/EKTiD5WYvQy8PTd/SkauFIldDRNS6DoelxMREvP3223B1dYVUKoWZmRmGDh2KxYsX46WXXtJljURaGYWVSC+ohLlUgmGhXDLAkDWuj9W4GTIRkb7qcFhSqVSwt9f8Zejq6oqcnBwAgJ+fHy5evKib6oj+pHEKrr+/ExysLESuhjpjaENYOsSwRER6rsM9SxERETh9+jQCAgIQGxuLDz74AJaWllixYgUCAwN1WSORVuOSAaN7uYtcCXXWwABnmEslyC6uRlZRFXxdbMQuiYioWR0eWXrttdegVqsBAG+//TauXbuGYcOGYdu2bfjkk090ViBRo0plPY6lFwPgkgHGwFZmrl3Nm6NLRKTPOjyylJCQoP3/wcHBSEtLQ3FxMZycnLipKXWJQ1cKUatSw9fZBkFutmKXQzowJNgVxzOKcfhKIZ6I9RW7HCKiZnV4ZCkrK0u7XEAjZ2dnSCQSZGVldbowoj/bm/bHWXAM5MZhaIgLAM0ZcWq1cIejiYjE0eGwFBAQgIKCgtuuLyoqQkBAQKeKIvozQRC0zd1cMsB49PF2hJ3MHCVVdTh/UyF2OUREzepwWBIEodm/7isqKmBlxY1NSbfO5SiQX66EjaUZYgOdxS6HdMTCTIpBDf89uYQAEemrdvcszZs3D4Bmpe5//vOfsLH54wwWlUqFY8eOcU840rnGUaUhwa6QmZuJXA3p0pBgV/x+IR+HrhTiuRFBYpdDRHSbdoel5ORkAJqRpbNnz8LS8o9tCiwtLdG3b1/8/e9/112FRACn4IxY43pLJzKKUVOngpUFwzAR6Zd2h6W9e/cCAKZNm4aPP/4YDg4OOi+K6FaFFUqcvl4KABgVxrBkbIJ72KGHvQz55UokZZVo940jItIXHe5Z+uabb/QiKCmVSkRFRUEikSAlJaXJbYIg4MMPP0RoaChkMhm8vLzwr3/9q8kx+/btQ0xMDGQyGYKDg7F69eruK57aZN/FAggC0NvTAR5y9sMZG4lEoh1dYt8SEemjdo0sNfYrtcVHH33U7mI6YsGCBfD09MTp06dvu2327NnYuXMnPvzwQ0RGRqK4uBjFxcXa269du4Zx48Zh1qxZWLduHXbv3o0ZM2agZ8+eTdaRInHt5RSc0RsS7Iofkm/g0JUivMx/ekSkZ9oVlhr7le6ku9bA2b59O3bu3Invv/8e27dvb3LbhQsX8MUXXyA1NRVhYWEAcNuSBl9++SUCAgKwdOlSAEB4eDgOHTqEZcuWtRiWlEollEql9meFgqc7d6XaejUOXNIsUcGwZLwaN9U9e70UZVV1kNtw3z8i0h/tCkuN/Ur6IC8vDzNnzsSWLVuanJHX6JdffkFgYCB+/fVXjB07FoIgID4+Hh988AGcnTWnKicmJiI+Pr7J/RISEjBnzpwWn3fx4sV46623dPpaqGUnM4pRrqyHi60l+no7il0OdREPuRWCe9jhSn4FEtOLMDbCQ+ySiIi0OtyzBAClpaVYunQpZsyYgRkzZmDZsmUoKyvTVW0tEgQBU6dOxaxZs9C/f/9mj0lPT0dmZiY2b96M//73v1i9ejVOnTqFRx55RHtMbm4u3N2bbsjq7u4OhUKB6urqZh930aJFKCsr016ys7N198LoNrsbpuBG9eoBqZSrdhsz9i0Rkb7qcFg6efIkgoKCsGzZMm0v0EcffYSgoCAkJSV16DEXLlwIiUTS6iUtLQ3Lly9HeXk5Fi1a1OJjqdVqKJVK/Pe//8WwYcMwcuRI/Oc//8HevXtx8eLFjr5syGQyODg4NLlQ12lcMmA0p+CM3hCGJSLSUx3eSHfu3Ll44IEHsHLlSpibax6mvr4eM2bMwJw5c3DgwIF2P+b8+fMxderUVo8JDAzEnj17kJiYCJlM1uS2/v3748knn8SaNWvQs2dPmJubIzQ0VHt7eHg4AM2+dmFhYfDw8EBeXl6Tx8jLy4ODgwOsra3bXT/pVnpBBa4VVsLCTIKhITyd3NjFBjrDTCpBemElbpRWw8uR/waJSD90OCydPHmySVACAHNzcyxYsKDFqbE7cXNzg5ub2x2P++STT/Duu+9qf87JyUFCQgI2btyI2NhYAMCQIUNQX1+Pq1evIihIsyrwpUuXAAB+fn4AgLi4OGzbtq3JY+/atQtxcXEdqp90q3FUKTbABfZWbPg1dg5WFojyccSpzBIcuFSASQN9xS6JiAhAJ6bhHBwckJWVddv12dnZsLe371RRd+Lr64uIiAjtpXH0KCgoCN7e3gCA+Ph4xMTE4JlnnkFycjJOnTqF5557Dvfcc4/2+FmzZiE9PR0LFixAWloaPv/8c2zatAlz587t0vqpbbhqt+kZEar5Y2n/xds36SYiEkuHw9Jjjz2G6dOnY+PGjcjOzkZ2djY2bNiAGTNmYNKkSbqssUOkUil++eUXuLq6Yvjw4Rg3bhzCw8OxYcMG7TEBAQHYunUrdu3ahb59+2Lp0qX4+uuvucaSHlDU1OH4Nc2aWKPDGZZMRWNYOnylEHUqtcjVEBFpdHga7sMPP4REIsGUKVNQX18PALCwsMDzzz+P999/X2cFtoW/vz8EQbjtek9PT3z//fet3nfkyJFtXj+Kus/BS4WoVwsIdLOFn4ut2OVQN4n0ksPZ1hLFlbVIzirFwABnsUsiImr/yFJqaioAzaa5H3/8MUpKSpCSkoKUlBQUFxdj2bJltzVeE7XX7jRN4z3PgjMtUqkEwxqa+fdfyhe5GiIijXaHpT59+iA2NhYrV65EeXk5bGxsEBkZicjIyGYXhyRqL5VawL6Ljat2u9/haDI2jVNxBy5xCQEi0g/tDkv79+9H7969MX/+fPTs2RNPP/00Dh482BW1kYlKyS5FcWUt7K3M0d/fSexyqJsNC9GEpbM3ylBYobzD0UREXa/dYWnYsGFYtWoVbt68ieXLlyMjIwMjRoxAaGgolixZgtzc3K6ok0zInoYpuBGhbrAw69Qi82SA3OxliPDSLPZ68DLPiiMi8XX4m8jW1hbTpk3D/v37cenSJTz66KP47LPP4OvriwceeECXNZKJ2X2hYdVungVnsoaHcAkBItIfOvmzPTg4GK+++ipee+012NvbY+vWrbp4WDJBOaXVSMsth1QCjAhlWDJV2r6ly4VQq28/05WIqDt1OiwdOHAAU6dOhYeHB15++WU89NBDOHz4sC5qIxPUuBBljK8TnG0tRa6GxBLj5wQ7mTmKK2uRmtP1m3MTEbWmQ2EpJycH7733HkJDQzFy5EhcuXIFn3zyCXJycrBy5UoMGjRI13WSiWgMS6O4ZIBJszCTYkiwCwBOxRGR+Nodlu699174+flh+fLlePDBB3HhwgUcOnQI06ZNg60tFw+kjquqrdfuOM8tTqhxGnb/JYYlIhJXu1fwtrCwwHfffYfx48fDzMysK2oiE3XociGU9Wp4O1mjl0fX7i9I+m94qGZxyqSsEpRV1UFuw82UiUgc7Q5LP//8c1fUQYTfL2iWDIgPd4dEIhG5GhKbt5MNgnvY4Up+BQ5fLcR9kT3FLomITBQXsSG9oFIL2iUD7rmLq3aTRuNZcexbIiIxMSyRXkjJLkFRw6rd3DyVGg3XLiFQ0Oxm2URE3YFhifTCrvMNZ8GF9eCq3aQVG+AMmbkUN8tqcDm/QuxyiMhE8VuJ9IK2X4lTcHQLKwszDArkEgJEJC6GJRLdtcJKXMmvgLlUou1RIWo04papOCIiMTAskeh+P68ZVYoNdIbcmqeHU1NDQzRLCJzIKIayXiVyNURkihiWSHS7Gqbg7gnnFBzdLqSHHVztLFFTp0ZKVqnY5RCRCWJYIlGVVNbiZEYxAGA0wxI1QyKRIC5IM7p05GqRyNUQkSliWCJR7b2YD7UA9PKwh4+zjdjlkJ4aHKRp8k5kWCIiETAskah2NfQrjeFZcNSKxrCUnF2Cqtp6kashIlPDsESiqalTaTdJ5ZIB1BpfZxt4OVqjTiXgZEaJ2OUQkYlhWCLRHE0vQlWtCu4OMkR4ysUuh/SYpm9JM7rEviUi6m4MSySaxoUoR4e7QyrlxrnUuj/6lgpFroSITA3DEolCEAT8fp4b51LbNY4snb1RhrLqOpGrISJTwrBEoki9oUCuogY2lmaIa9jOgqg1PeXWCHS1hVoAjl8rFrscIjIhDEskil3ncwEAw0PcYGVhJnI1ZCj+6FviVBwRdR+GJRLFjnMNq3ZzCo7aYXDD4pRcb4mIuhPDEnW79IIKXMwrh7lUgniu2k3tMCjQGQCQlluOogqlyNUQkalgWKJu99s5zRTc4GBXyG24cS61nYudDL087AEAR9PZt0RE3YNhibrdjlRNWBrb20PkSsgQDdbuE8e+JSLqHgxL1K1ulFbj9PUySCTsV6KO4T5xRNTdGJaoWzWOKg3wd4abvUzkasgQDQx0hlQCpBdW4mZZtdjlEJEJYFiibtXYr8QpOOooBysLRHo7AuDoEhF1D4Yl6jYF5UqcyNA05Y6NYFiijmtcyJT7xBFRd2BYom6z63weBAHo6y2Hp6O12OWQAbu1b0kQBJGrISJjx7BE3aZxCi6Bo0rUSf39nWBhJsGN0mpkFlWJXQ4RGTmDD0tKpRJRUVGQSCRISUlpctuOHTswaNAg2Nvbw83NDQ8//DAyMjKaHLNv3z7ExMRAJpMhODgYq1ev7rbaTUlZVR2OXNGc6s1+JeosG0tzxPg6AQD2XyoQuRoiMnYGH5YWLFgAT0/P266/du0aJkyYgLvvvhspKSnYsWMHCgsL8dBDDzU5Zty4cRg1ahRSUlIwZ84czJgxAzt27OjOl2ASdqfloV4tIMzdHoFudmKXQ0ZgdHgPAMDvF/JEroSIjJ252AV0xvbt27Fz5058//332L59e5PbTp06BZVKhXfffRdSqSYT/v3vf8eECRNQV1cHCwsLfPnllwgICMDSpUsBAOHh4Th06BCWLVuGhISEZp9TqVRCqfxjmwWFQtFFr864/Na4ECWn4EhH7u7ljve2peFYejEqlPWwkxn0xxkR6TGDHVnKy8vDzJkzsXbtWtjY2Nx2e79+/SCVSvHNN99ApVKhrKwMa9euRXx8PCwsNFtsJCYmIj4+vsn9EhISkJiY2OLzLl68GHK5XHvx8fHR7QszQpXKeu1UCcMS6UqQmy38XGxQq1Lj0GWu5k1EXccgw5IgCJg6dSpmzZqF/v37N3tMQEAAdu7ciVdffRUymQyOjo64fv06Nm3apD0mNzcX7u5NV5F2d3eHQqFAdXXzi90tWrQIZWVl2kt2drbuXpiR2n+pAMp6NfxcbLT7ehF1lkQiwehemn+/uzkVR0RdSK/C0sKFCyGRSFq9pKWlYfny5SgvL8eiRYtafKzc3FzMnDkTTz/9NE6cOIH9+/fD0tISjzzySKdONZbJZHBwcGhyodbdOgUnkUhEroaMSWPf0t6L+VCruYQAEXUNvZrknz9/PqZOndrqMYGBgdizZw8SExMhkzXdLqN///548sknsWbNGnz22WeQy+X44IMPtLd/++238PHxwbFjxzBo0CB4eHggL6/pX6R5eXlwcHCAtTXXAdKFmjoV9qTlA+BZcKR7A/ydYS8zR2FFLU5fL0V0wxlyRES6pFdhyc3NDW5ubnc87pNPPsG7776r/TknJwcJCQnYuHEjYmNjAQBVVVXaxu5GZmZmAAC1Wg0AiIuLw7Zt25ocs2vXLsTFxXXqddAffki6gQplPbwcrdG3YYsKIl2xNJdieKgbtp69iT1p+QxLRNQl9Goarq18fX0RERGhvYSGhgIAgoKC4O3tDQAYN24cTpw4gbfffhuXL19GUlISpk2bBj8/P0RHRwMAZs2ahfT0dCxYsABpaWn4/PPPsWnTJsydO1e012ZMVGoBXx9MBwA8MzQAUimn4Ej37u6lmYrbfSFf5EqIyFgZZFhqi7vvvhvr16/Hli1bEB0djbFjx0Imk+G3337TTrEFBARg69at2LVrF/r27YulS5fi66+/bnHZAGqfXefzkF5YCbm1BR4fwLMGqWuM6tUDEglw/qYCOaXNn5hBRNQZEoEbK3WKQqGAXC5HWVkZm71vIQgCHvriCJKzSvHCqCC8nNBL7JLIiD38xRGcyizBuxMj8NQgP7HLISIdyS2rwQ/J1+HhYIWHYrx1+tjt+f7Wq54lMh4nM0uQnFUKS3Mpnh7sL3Y5ZORGh/fAqcwS7L6Qx7BEZOBq6lTYeT4P3526jkOXC6AWgDB3ezwY7SXaGdUMS9Qlvtp/FQDwcIwXethbiVwNGbvRvdzxwW8XcfhqEapq62FjyY82IrEJgoA9aflIyy2HVCKBVAJIJRJIJJp10pr7+VyOAr+czkF5Tb32cQb6O+Phfl5QC4CZSK2v/EQhnbuSX47fL+RDIgFmDAsUuxwyAaHudvBytMaN0mocuVKE+Lvc73wnIuoyJzOK8a9tF5CcVdqh+3s5WuPhGC88FOMNf1db3RbXAQxLpHMrDmjOgBtzlzuCuGkudQOJRIL48B5Yk5iJ3Wl5DEtEIkkvqMCS39Kw45xmDUNrCzMk9HaHuZkUgqAZbVILAtQCIABQC4LmOjUgQICTjSUe6OuJQYEuenUGNcMS6VSeogY/Jt8AADw7PEjkasiU3B3urglLF/IhCAJXiyfqRrllNfhi3xWsO5aFerUAqQR4bIAP5saHooeD4bdiMCyRTn1zOAN1KgED/J3Qz48LBFL3GRToDBtLM+SXK5F6Q4FIb7nYJREZNUEQcDS9GP9NzMDO83lQNWw5NCrMDYvuC0eou/HsBcqwRDpTXlOHdUczAXBUibqfzNwMw0JcseNcHnan5TEsEXWRSmU9fki+gbWJGbiUV6G9PjbAGbNHh2BwsKuI1XUNhiXSmQ3Hs1GurEeQmy1GN6yqTNSdRoe7a8LShXzMiQ8Vuxwio1KprMfqIxn4av9VKBrOVrOxNMOD0V6YEuePMA/jGUn6M4Yl0onaejX+c+gaAODZ4YF61ZhHpuPuhtW8z94oQ05pNTwduSE2UWfV1Kmw7lgWvth3BYUVtQCAQFdbTI7zw8P9vOFgZSFyhV2PYYl04qeUG8hV1KCHvQwTo73ELodMlKudDP18nXAyswS/X8jDlDh/sUsiMlh1KjW+O3Udn+y+jJtlNQAAPxcbzLsnFOP7eMLMhP4oZliiTlOrBe1yAc8MDYDM3EzkisiUjentjpOZJdh5jmGJqKMu3FRg/qbTOH9TAQDoKbfCS6ND8Eg/b1iYGe22si1iWKJO23sxH5fzK2AnM8cTsb5il0Mm7p67PPDetjQcTS9CWXUd5NbGP0VA1FZVtfWoUwkt/ruoV6nx5f6r+Hj3ZdSpBDjaWOBvd4fgyVhfWFmY7h/CDEvUaV/t14wqPRnraxJz16TfAlxtEdLDDpfzK7DvYj4mRHFamExPaVUtdl/Ix7XCSmQVVyGruArXS6pQWFELiQSI8nHEPXe5455wdwT3sINEIsGlvHLM33QaZ2+UAQDuucsd/3owgltWgWGJOulUZgmOZxTDwkyCZ4YGiF0OEQDNVNzl/ArsPJfHsEQmo7ZejX0X8/FD0g3sSctHrUrd7HGCACRnlSI5qxQf/HYRfi42iPF1wtYzN1GrUsPByhxvT4jAhChPLu7agGGJOqVxw9wHo73gbgSrtJJxGHOXBz7bexX7LuZDWa9iHx0ZrfKaOpy9UYYdqbn4+XQOSqrqtLfd1dMBMX6O8HW2ga+zDbydbODjbIPqWhV2p+Xh9/N5OHy1CJlFVcgsqgKgOaN08UOR/Dz/E4Yl6rAr+RXYdUGz/8+zw7lhLumPSC853B1kyFMoceRqEUaFcd0vMnyCICA5uxQpWaU4e6MMp6+XIr2gsskxbvYyPBjthYdivNDLw6HZx5FbW+DJWD88GeuHSmU9Dl4uwLFrxYjyccQDfTma1ByGJeqwrw+mQxA089rBPYx3MTIyPFKpBPfc5Y5vj2Zh57k8hiUyeNW1KszdmILfzuXedpuXozUGBjhjYrQXhgS5wLwdZ6vZyswxNqInxkb01GW5RodhiTokX1GDH5I0G+bOGsFRJdI/Y+7ywLdHs/D7hTz8Sx3BhVLJYOWX12DmmpM4fb0MlmZSDA91RaSXI/r4yBHpJYernUzsEo0ewxJ1yKrDGahVqdHfzwn9/JzFLofoNoMCXWAvM0dBuRIp10sR48uNncnwXMwtxzOrT+BGaTWcbCzw1eT+GBjAz9zuZnorS1GnlVX9sWHurBHcMJf0k6W5FCMb9ijceS5P5GqImleprMeV/HJUKOtvu+3ApQI88sUR3CitRoCrLX786xAGJZFwZInapV6lxt82JKNcWY+QHna4mxvmkh4bc5c7fjmdg53nc7Hw3l5il0MmrqZOhQs3FThzvazhUoorBRUQBM3tLraW8HWxgZ+zDeytLLD+eBZUagEDA5zx1VP94GRrKe4LMGEMS9Qu729Pw4FLBbC2MMP/PR7FPhDSayPD3GBhJkF6QSWu5FcguIed2CWRidp3MR+zN6SgrLrutttsLc1QWatCUWUtiiprkZxVqr3toWgvLH44kstfiIxhidps88lsfH3oGgDgw0f7orenXOSKiFpnb2WBwUGu2H+pALvO5zEskSjWHcvE6z+dg0otwNnWEn295Yj0dmz4Xzl62FuhrLoO2Q0rbWcWVSG7pAp9vOR4bIAPT+XXAwxL1CanMovxjx9TAQAvjQ7BuD48zZQMwz13uWP/pQLsPJ+L50eyx466j1otYMlvafiqYaPxh2O8sfihSFia394uLLe2gNxLjggv/hGqj9jgTXeUU1qN59YmoValxtjeHpgzOkTskoja7J673AFotnfIV9SIXA2Zipo6FV78X5I2KM27JxQfPtqn2aBE+o//1ahV1bUqPLv2JAorlOjlYY+lf+nLPiUyKO4OVojycQQA/Hw6R9xiyCQUVigxaeVRbDubC0szKZY91hcvjQ7hdJoBY1iiVv3zp1Sk3lDA2dYSK6f0h62MM7dkeB7t7w0A+OZwBupa2FyUqLMEQcCvZ3Iw9v8OIjmrFHJrC6ydPhAPRnuLXRp1EsMSteh0dim+O3UdEgnw+ZMx8HG2Ebskog55OMYbLraWuFFajW1nb4pdDhmhnNJqzPzvSby4PhmFFUoEudnih78ORmygi9ilkQ5wmICaJQgCFm+/AAB4MNoLg/gPngyYlYUZpg72x9Jdl/DV/nRuFkptoqxXIauoClcLKnC1oBLKejWC3GwR5GaHQDdb2FiaQ60W8O2xTCzZnobKWhUszCR4fmQwXhgVxNP9jQjDEjVr38UCHE0vhqW5FPPHhIldDlGnPTXID5/vu4rzNxU4dKUQw0LcxC6J9FBGYSU+2JGG8zkKZBVXQS20fKyn3ApWFmZIL6wEAMT4OuL9h/sg1J0bixsbhiW6jUot4P3taQCAaYP94eVoLXJFRJ3nZGuJxwb4YPWRDKw4kM6wRLcpr6nDM6tPaMMPANjJzBHUww5BbrawNJMivaASVwsqUFRZi5yyGu0xr4wNw5OxfjwBxkgxLNFtvk+6jot55ZBbW+CvI4PFLodIZ6YPDcDao5k4eLkQqTfKuKYNaQmCgAXfnUF6YSU85Vb44JG+CHG3Qw97WbNTtqVVtbhaUImc0moMDHCGu4OVCFVTd2GDNzVRXavCRzsvAQBeHBUMuY2FyBUR6Y6Psw3GRWoWVF15MF3kakif/OfQNWxPzYWFmQSfPRmDoSGucHewarG3zdHGEv38nHB/X08GJRPAsERNfHPkGnIVNfBytMbkOD+xyyHSuWeHBwIAfj1zE9dLqkSuhvTB8WvFWNzQevD6+LsQ7eskckWkbxiWSKu4shZf7L0KAPh7QiisLHgmBxmfCC85hga7QqUW8J+GvQ7JdOWX1+CF9UlQqQVMiPLEU4P4RyLdjmGJtD7dcwXlynrc1dMBE/p6iV0OUZdpHF3acDwbpVW1IldDYqlXqfHi+mQUlCsR6m6HxQ9FckkJahbDEkGl1qw6u/ZoBgBg0X29eEYHGbVhIa4I7+mA6joVvj2aKXY51M0EQcDVggq8tiUVx68Vw9bSDF881Q82ljzniZpnsGHJ398fEomkyeX9999vcsyZM2cwbNgwWFlZwcfHBx988MFtj7N582b06tULVlZWiIyMxLZt27rrJYiupuGL4u6l+/Di+mTUqQSMCHXjKdVk9CQSCWaN0IwurT6Sgdp6boFi7K4WVGDdsUz87X/JGPjeboxeuh8bTmQDAP79aF8EudmJXCHpM4OO0W+//TZmzpyp/dne/o+FwBQKBcaMGYP4+Hh8+eWXOHv2LJ555hk4Ojri2WefBQAcOXIEkyZNwuLFizF+/HisX78eEydORFJSEiIiIrr99XSXogol1h/LwuojGSiq1ExBONpYYEqcP2YOCxC5OqLucV9kT/xr6wXklyuxJy0PYyN6il0SdQFBEPD6T+ew9k8jiJbmUvTzdcKj/b1xXyT/21PrDDos2dvbw8PDo9nb1q1bh9raWqxatQqWlpbo3bs3UlJS8NFHH2nD0scff4yxY8fi5ZdfBgC888472LVrFz799FN8+eWXzT6uUqmEUqnU/qxQKHT8qnSvqrYeJzJKcPhKIQ5fKcS5nD9q9nK0xsxhAfjLAB8OQZNJsTCT4uF+3vhi31VsOJHNsGSklv1+GWuPZkIqAWIDXDAo0AWDAp3R18eRJ7FQmxn0t+P777+Pd955B76+vnjiiScwd+5cmJtrXlJiYiKGDx8OS0tL7fEJCQlYsmQJSkpK4OTkhMTERMybN6/JYyYkJGDLli0tPufixYvx1ltvdcnr0aWaOhV+Pp2D709dR1JWCepUTdfs7+Mtx/ShARgX2RPmZgY7G0vUKX/p74Mv9l3FgUsFyCmthidXqzcq3x7NxCe7LwMA3pkYgSdjeaYbdYzBhqWXXnoJMTExcHZ2xpEjR7Bo0SLcvHkTH330EQAgNzcXAQFNp5Tc3d21tzk5OSE3N1d73a3H5Obmtvi8ixYtahKwFAoFfHx8dPWyOu1GaTW+PZqJDcezUFJVp73ey9EaQ4JdMCTYFXFBLuhhz0XUiAJcbREb4Ixj14rx3anreGl0iNglkY7sOJeL139KBQDMHh3CoESdoldhaeHChViyZEmrx1y4cAG9evVqElj69OkDS0tLPPfcc1i8eDFkMlmX1SiTybr08TvqVGYxvj54DTvO5Wo3fvRytMZTg/xwb4QH/FxseEosUTMeH+iDY9eKselkNl4cFcwzQY3AiYxivPS/ZKgFYNJAH8yJZwimztGrsDR//nxMnTq11WMCAwObvT42Nhb19fXIyMhAWFgYPDw8kJeX1+SYxp8b+5xaOqalPih9lK+owb+2XcBPKTna6+ICXfD0YH/Eh/fgFBvRHdwb0ROv/3QO10uqceRqEYaGuIpdEnXCpbxyTF99Asp6NeLD3fHOhAj+oUidpldhyc3NDW5uHTttPSUlBVKpFD169AAAxMXF4R//+Afq6upgYaHZ32zXrl0ICwuDk5OT9pjdu3djzpw52sfZtWsX4uLiOvdCukG9So21RzPx0c5LKFfWQyIBHu3njWeGBqCXh4PY5REZDCsLM0yM8sLao5nYcCKLYclA1darsSX5Bj7ceRGKmnrE+Dpi+aRo/sFIOqFXYamtEhMTcezYMYwaNQr29vZITEzE3Llz8dRTT2mD0BNPPIG33noL06dPxyuvvILU1FR8/PHHWLZsmfZxZs+ejREjRmDp0qUYN24cNmzYgJMnT2LFihVivbQ2ScoqwWs/puL8Tc1ZbX295XhnYgT6eDuKWxiRgXpsgA/WHs3EznN5KKmshZOt5Z3vRHqhUlmP/x3PwtcHNftaAkBwDzv85+kBsLbk2W6kGwYZlmQyGTZs2IA333wTSqUSAQEBmDt3bpM+Jrlcjp07d+KFF15Av3794Orqitdff127bAAADB48GOvXr8drr72GV199FSEhIdiyZYverbFUU6dCUlYJEq8W4fCVQiRllQIA5NYWWDA2DI8P8IUZ+yyIOizCS47eng44l6PAj8k38MxQrjem78qq6/DN4WtYfSQDpQ0ns/Swl2HmsEA8EesLW5lBfr2RnpIIgiDc+TBqiUKhgFwuR1lZGRwcdDf9db2kCj+l5ODI1UKczCiB8k8rDD/azxsL7+0FFzv9azYnMkRrEzPwz5/OIczdHr/NGcY+Fz125nopZq09hZwyzUiSv4sNnhsRhIdivCAz52gStU17vr8ZvfVUZlEV/r3jovZnN3sZBge5YEiQKwYHu8DbyUbE6oiMzwNRXnh36wVczCvH6etliPJxFLskasamE9l47adU1Nar4edig7+PCcN9kT05uk5dimFJT/Xzc8K9ER4YFOiCwUEuCO5hx790ibqQ3NoC90X2xI/JN7DxRBbDkp5R1qvw5s/n8b/jWQCA+HB3fPRYXzhYWYhcGZkCTsN1UldNwxFR9zuaXoTHVxyFraUZjv8jnn0veuJmWTVmfZuE09mlkEiAefGheIFrYlEntef7m+dUEhE1iA1whr+LDSprVfj1TM6d70Bd7nJeOe5ffgins0sht7bAN1MH4G+jQxiUqFsxLBERNZBIJJg00BcAsOJAOlRqDryLqay6DjP/exKFFbUI7+mAX14cipFhPcQui0wQwxIR0S2eiPWFg5U5rhZU4rfUlveJpK6lUguYsyEZGUVV8HK0xroZsfB14YktJA6GJSKiW9hbWWDaEM06S8v3XIaao0ui+L/fL2HvxQLIzKX4anI/OHOhUBIRwxIR0Z9MG+IPO5k50nLLsTstX+xyTM5vqblYvucKAOD9hyMR4SUXuSIydQxLRER/4mhjiclxfgA0o0s8abj7XM4rx/xNKQCAZ4YE4MFob3ELIgLDEhFRs2YMDYCVhRRnrpfhwOVCscsxCYqaOjy79hQqa1UYFOiMV+/rJXZJRAAYloiImuViJ8OTsQ2jS7s5utTV1GoBczek4FphJTzlVvjsiRiYm/ErivQDfxOJiFrw7PBAWJpLcTKzBEfTi8Uux6h9vPsydqflw9Jciq8m9+e+l6RXGJaIiFrg7mCFx/r7AND0LlHX+P18Hj7erXl/Fz8YiUhvNnSTfmFYIiJqxayRQTCXSnDkahFOZXJ0SdfSCyowd2MKAODpOD883I8N3aR/GJaIiFrh5WiNh2M0X+Cf7L7C3iUdqlDW49m1p1CurMdAf2e8Nv4usUsiahbDEhHRHfx1VBCkEmD/pQL8Y0sq6lRqsUsyeIIg4OXNp3ElvwLuDjJ8+mQ0LNjQTXqKv5lERHfg52KLtx7oDYkEWH8sC8+sPgFFTZ3YZRm0L/ZfxfbUXFiYSfDFU/3Qw95K7JKIWsSwRETUBpPj/LFycn/YWJrh4OVCPPz5EWQXV4ldlsG5UVqN97ZdwL93XAQAvD0hAjG+TiJXRdQ6icAJ+E5RKBSQy+UoKyuDg4OD2OUQURdLvVGG6WtOIE+hhKudJVZM6c8v+zsQBAGnMkuw6vA17DiXB1XDfntPxvriXw9Gilwdmar2fH8zLHUSwxKR6cktq8H0NSdwLkcBS3MpPnsiBvfc5S52WXqnUlmP31JzsSYxA2eul2mvHxLsgmmDAzA6vAckEomIFZIpY1jqRgxLRKapUlmP2RuS8fuFfMjMpVg/Mxb9/JzFLkt0arWAo+lF+C7pOn5LzUVVrQoAYGkuxYNRXpg21B+9PPhZSeJjWOpGDEtEpkulFvDc2lP4/UIenGws8P3zgxHoZid2WaIorFBi1aFr2JJ8AzllNdrr/V1s8Eg/b0wa6MtVuUmvMCx1I4YlItNWVVuPSSuO4vT1Mvg62+CHvw6Gq4mFglOZxfjruiTkKZQAAAcrc4zv64mHY7wQ4+vEqTbSSwxL3YhhiYgKypV46IvDyC6uRpSPI/43cxCsLc3ELqvLCYKANUcy8O7WC6hXCwjuYYd594Ti7l49YGVh/K+fDFt7vr+5dAARUSe52cuwetpAONpYICW7FC9tSNae8WWsqmrrMWdjCt785Tzq1QLG9+mJn14YgvsiezIokdFhWCIi0oEgNzusnNIfluZS7Dqfh7d+OWe0W6NcK6zEg58dwU8pOTCTSvDP8Xdh+aRo2MrMxS6NqEswLBER6cgAf2cs+0sUAOC/iZl4+psTyL2l2dkYJGWV4IFPD+FiXjnc7GX438xBmD40gH1JZNQYloiIdGhcn55Y8nAkZOZSHLhUgDHL9mNL8g2jGGU6lVmMKf85jvKaesT4OmLr34ZiYACXSyDjx7BERKRjjw3wxdaXhqGvtxyKGk1vz1/XJaGoQil2aR12IkMTlCqU9YgLdMG3M2LRw4H7uZFpYFgiIuoCwT3s8P3zgzHvnlCYSyXYnpqLhP87gP8cuoarBRUGNdJ0LL0IT686jspaFYYEu2DV1AGwsWR/EpkOLh3QSVw6gIjuJPVGGeZtSsGlvArtdV6O1hgW4ophIW4YEuwCRxtLEStsWeLVIjyz+gSq61QYFuKKlVP682w3MgpcZ6kbMSwRUVvU1Kmw7lgW9qTl4cS1EtSq1NrbzKUSJER4YMogPwwMcNaLZumyqjpsPXsTb/96DjV1agwPdcOKyf0YlMhoMCx1I4YlImqv6loVjl0rwsHLhThwqQCX8/8YcerlYY/JcX6YGOXV7afil1XVYef5XGw9exOHrxSiTqX5ehgV5oYvnmJQIuPCsNSNGJaIqLPO5yiw9mgmtiTfQHWdZuNZe5k5JkR7YnwfTwz0d4ZUevto043Samw+mY0fkm7AXCrBcyMC8XCMN8zN7tyOWqmsx5X8ClzOr8DlvHKcy1Hg2LUibUACgDB3ezwQ5YkZwwIgM2dQIuPCsNSNGJaISFfKquvw3anrWJuYgYyiKu317g4y3BfZE+P7eCLCywF7LuRjw4lsHLhcgD9/gge42mLuPaEYH9mzScAqq6rDvkv52H0hH0lZJbheUt1sDWHu9rgvsifG9fFAcA/7LnmdRPqAYakbMSwRka6p1QIOXy3ETyk52HEuF+U19drbLMwkTUZ/4gJd8NgAHxRWKPH5vqsorqwFoJnO++uoYOQravD7hTycyCi5bQsWVzsZQnrYIdTdDsHu9ogLdGZAIpPBsNSNGJaIqCsp61U4eKkQv57Jwa7zeaisVcHNXoZH+3njL/194O9qqz22QlmPVYeuYeWBdJQr6297rFB3O4wOd8ewEFeEezjAyVY/z8Aj6g4mEZb8/f2RmZnZ5LrFixdj4cKFAIB9+/Zh2bJlOH78OBQKBUJCQvDyyy/jySefbHKfzZs345///CcyMjIQEhKCJUuW4L777mtzHQxLRNRdaupUuFZYieAedrBopS+ptKoWXx1Ix88pOfB3tcHoXu6ID3eHr4tNN1ZLpN/a8/1t0KuKvf3225g5c6b2Z3v7P4aPjxw5gj59+uCVV16Bu7s7fv31V0yZMgVyuRzjx4/XHjNp0iQsXrwY48ePx/r16zFx4kQkJSUhIiKi218PEVFrrCzMEN7zzn+UOdpY4pWxvfDK2F7dUBWR8TPokaU5c+Zgzpw5bb7PuHHj4O7ujlWrVgEAHnvsMVRWVuLXX3/VHjNo0CBERUXhyy+/bNNjcmSJiIjI8LTn+9ugtzt5//334eLigujoaPz73/9Gff3tc/S3Kisrg7PzH5s+JiYmIj4+vskxCQkJSExMbPExlEolFApFkwsREREZL4OdhnvppZcQExMDZ2dnHDlyBIsWLcLNmzfx0UcfNXv8pk2bcOLECXz11Vfa63Jzc+Hu7t7kOHd3d+Tm5rb4vIsXL8Zbb72lmxdBREREek+vRpYWLlwIiUTS6iUtLQ0AMG/ePIwcORJ9+vTBrFmzsHTpUixfvhxK5e27eu/duxfTpk3DypUr0bt3707VuGjRIpSVlWkv2dnZnXo8IiIi0m96NbI0f/58TJ06tdVjAgMDm70+NjYW9fX1yMjIQFhYmPb6/fv34/7778eyZcswZcqUJvfx8PBAXl5ek+vy8vLg4eHR4vPLZDLIZLI7vBIiIiIyFnoVltzc3ODm5tah+6akpEAqlaJHjx7a6/bt24fx48djyZIlePbZZ2+7T1xcHHbv3t2kSXzXrl2Ii4vrUA1ERERkfPQqLLVVYmIijh07hlGjRsHe3h6JiYmYO3cunnrqKTg5OQHQTL2NHz8es2fPxsMPP6ztQ7K0tNQ2ec+ePRsjRozA0qVLMW7cOGzYsAEnT57EihUrRHttREREpF8McumApKQk/PWvf0VaWhqUSiUCAgIwefJkzJs3TztFNnXqVKxZs+a2+44YMQL79u3T/rx582a89tpr2kUpP/jgAy5KSUREZORMYgVvfcGwREREZHhMZp0lIiIioq7GsERERETUCoYlIiIiolYwLBERERG1gmGJiIiIqBUGuc6SPmk8mZAb6hIRERmOxu/ttiwKwLDUSeXl5QAAHx8fkSshIiKi9iovL4dcLm/1GK6z1ElqtRo5OTmwt7eHRCLR6WMrFAr4+PggOzubazh1Et9L3eL7qTt8L3WL76fuGPt7KQgCysvL4enpCam09a4kjix1klQqhbe3d5c+h4ODg1H+ooqB76Vu8f3UHb6XusX3U3eM+b2804hSIzZ4ExEREbWCYYmIiIioFQxLekwmk+GNN97Qbg5MHcf3Urf4fuoO30vd4vupO3wv/8AGbyIiIqJWcGSJiIiIqBUMS0REREStYFgiIiIiagXDEhEREVErGJZE9tlnn8Hf3x9WVlaIjY3F8ePHWz1+8+bN6NWrF6ysrBAZGYlt27Z1U6X6rz3v5erVqyGRSJpcrKysurFa/XXgwAHcf//98PT0hEQiwZYtW+54n3379iEmJgYymQzBwcFYvXp1l9dpKNr7fu7bt++2302JRILc3NzuKViPLV68GAMGDIC9vT169OiBiRMn4uLFi3e8Hz83b9eR99KUPzcZlkS0ceNGzJs3D2+88QaSkpLQt29fJCQkID8/v9njjxw5gkmTJmH69OlITk7GxIkTMXHiRKSmpnZz5fqnve8loFmV9ubNm9pLZmZmN1asvyorK9G3b1989tlnbTr+2rVrGDduHEaNGoWUlBTMmTMHM2bMwI4dO7q4UsPQ3vez0cWLF5v8fvbo0aOLKjQc+/fvxwsvvICjR49i165dqKurw5gxY1BZWdniffi52byOvJeACX9uCiSagQMHCi+88IL2Z5VKJXh6egqLFy9u9vi//OUvwrhx45pcFxsbKzz33HNdWqchaO97+c033whyubybqjNcAIQff/yx1WMWLFgg9O7du8l1jz32mJCQkNCFlRmmtryfe/fuFQAIJSUl3VKTIcvPzxcACPv372/xGH5utk1b3ktT/tzkyJJIamtrcerUKcTHx2uvk0qliI+PR2JiYrP3SUxMbHI8ACQkJLR4vKnoyHsJABUVFfDz84OPjw8mTJiAc+fOdUe5Roe/l10jKioKPXv2xD333IPDhw+LXY5eKisrAwA4Ozu3eAx/P9umLe8lYLqfmwxLIiksLIRKpYK7u3uT693d3VvsTcjNzW3X8aaiI+9lWFgYVq1ahZ9++gnffvst1Go1Bg8ejOvXr3dHyUalpd9LhUKB6upqkaoyXD179sSXX36J77//Ht9//z18fHwwcuRIJCUliV2aXlGr1ZgzZw6GDBmCiIiIFo/j5+adtfW9NOXPTXOxCyASQ1xcHOLi4rQ/Dx48GOHh4fjqq6/wzjvviFgZmbqwsDCEhYVpfx48eDCuXr2KZcuWYe3atSJWpl9eeOEFpKam4tChQ2KXYvDa+l6a8ucmR5ZE4urqCjMzM+Tl5TW5Pi8vDx4eHs3ex8PDo13Hm4qOvJd/ZmFhgejoaFy5cqUrSjRqLf1eOjg4wNraWqSqjMvAgQP5u3mLF198Eb/++iv27t0Lb2/vVo/l52br2vNe/pkpfW4yLInE0tIS/fr1w+7du7XXqdVq7N69u0lyv1VcXFyT4wFg165dLR5vKjryXv6ZSqXC2bNn0bNnz64q02jx97LrpaSk8HcTgCAIePHFF/Hjjz9iz549CAgIuON9+PvZvI68l39mUp+bYneYm7INGzYIMplMWL16tXD+/Hnh2WefFRwdHYXc3FxBEARh8uTJwsKFC7XHHz58WDA3Nxc+/PBD4cKFC8Ibb7whWFhYCGfPnhXrJeiN9r6Xb731lrBjxw7h6tWrwqlTp4THH39csLKyEs6dOyfWS9Ab5eXlQnJyspCcnCwAED766CMhOTlZyMzMFARBEBYuXChMnjxZe3x6erpgY2MjvPzyy8KFCxeEzz77TDAzMxN+++03sV6CXmnv+7ls2TJhy5YtwuXLl4WzZ88Ks2fPFqRSqfD777+L9RL0xvPPPy/I5XJh3759ws2bN7WXqqoq7TH83GybjryXpvy5ybAksuXLlwu+vr6CpaWlMHDgQOHo0aPa20aMGCE8/fTTTY7ftGmTEBoaKlhaWgq9e/cWtm7d2s0V66/2vJdz5szRHuvu7i7cd999QlJSkghV65/GU9f/fGl8/55++mlhxIgRt90nKipKsLS0FAIDA4Vvvvmm2+vWV+19P5csWSIEBQUJVlZWgrOzszBy5Ehhz5494hSvZ5p7HwE0+X3j52bbdOS9NOXPTYkgCEL3jWMRERERGRb2LBERERG1gmGJiIiIqBUMS0REREStYFgiIiIiagXDEhEREVErGJaIiIiIWsGwRERERNQKhiUiIiKiVjAsEZFBmjp1KiZOnCja80+ePBnvvfdelz3++fPn4e3tjcrKyi57DiJqG67gTUR6RyKRtHr7G2+8gblz50IQBDg6OnZPUbc4ffo07r77bmRmZsLOzq7LnueRRx5B37598c9//rPLnoOI7oxhiYj0Tm5urvb/b9y4Ea+//jouXryovc7Ozq5LQ8qdzJgxA+bm5vjyyy+79Hm2bt2KmTNnIisrC+bm5l36XETUMk7DEZHe8fDw0F7kcjkkEkmT6+zs7G6bhhs5ciT+9re/Yc6cOXBycoK7uztWrlyJyspKTJs2Dfb29ggODsb27dubPFdqairuvfde2NnZwd3dHZMnT0ZhYWGLtalUKnz33Xe4//77m1zv7++Pd999F1OmTIGdnR38/Pzw888/o6CgABMmTICdnR369OmDkydPau+TmZmJ+++/H05OTrC1tUXv3r2xbds27e333HMPiouLsX///k6+o0TUGQxLRGQ01qxZA1dXVxw/fhx/+9vf8Pzzz+PRRx/F4MGDkZSUhDFjxmDy5MmoqqoCAJSWluLuu+9GdHQ0Tp48id9++w15eXn4y1/+0uJznDlzBmVlZejfv/9tty1btgxDhgxBcnIyxo0bh8mTJ2PKlCl46qmnkJSUhKCgIEyZMgWNA/ovvPAClEolDhw4gLNnz2LJkiVNRswsLS0RFRWFgwcP6vidIqL2YFgiIqPRt29fvPbaawgJCcGiRYtgZWUFV1dXzJw5EyEhIXj99ddRVFSEM2fOAAA+/fRTREdH47333kOvXr0QHR2NVatWYe/evbh06VKzz5GZmQkzMzP06NHjttvuu+8+PPfcc9rnUigUGDBgAB599FGEhobilVdewYULF5CXlwcAyMrKwpAhQxAZGYnAwECMHz8ew4cPb/KYnp6eyMzM1PE7RUTtwbBEREajT58+2v9vZmYGFxcXREZGaq9zd3cHAOTn5wPQNGrv3btX2wNlZ2eHXr16AQCuXr3a7HNUV1dDJpM124R+6/M3Pldrz//SSy/h3XffxZAhQ/DGG29oQ9ytrK2ttSNhRCQOhiUiMhoWFhZNfpZIJE2uaww4arUaAFBRUYH7778fKSkpTS6XL1++bYSnkaurK6qqqlBbW9vq8zc+V2vPP2PGDKSnp2Py5Mk4e/Ys+vfvj+XLlzd5zOLiYri5ubXtDSCiLsGwREQmKyYmBufOnYO/vz+Cg4ObXGxtbZu9T1RUFADNOki64OPjg1mzZuGHH37A/PnzsXLlyia3p6amIjo6WifPRUQdw7BERCbrhRdeQHFxMSZNmoQTJ07g6tWr2LFjB6ZNmwaVStXsfdzc3BATE4NDhw51+vnnzJmDHTt24Nq1a0hKSsLevXsRHh6uvT0jIwM3btxAfHx8p5+LiDqOYYmITJanpycOHz4MlUqFMWPGIDIyEnPmzIGjoyOk0pY/HmfMmIF169Z1+vlVKhVeeOEFhIeHY+zYsQgNDcXnn3+uvf1///sfxowZAz8/v04/FxF1HBelJCJqp+rqaoSFhWHjxo2Ii4vrkueora1FSEgI1q9fjyFDhnTJcxBR23BkiYionaytrfHf//631cUrOysrKwuvvvoqgxKRHuDIEhEREVErOLJERERE1AqGJSIiIqJWMCwRERERtYJhiYiIiKgVDEtERERErWBYIiIiImoFwxIRERFRKxiWiIiIiFrBsERERETUiv8HzBLsH/opxOAAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "sampling_rate = (ephys.EphysRecording & insert_key).fetch1(\n", " \"sampling_rate\"\n", @@ -2769,7 +863,12 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "**Additional Resources:**\n", + "- [Interactive Tutorials](https://github.com/datajoint/datajoint-tutorials) on `datajoint-python`: Dive deep into DataJoint's fundamentals.\n", + "- [*`datajoint-python`* Documentation](https://datajoint.com/docs/core/datajoint-python/): Comprehensive documentation on DataJoint for Python.\n", + "- [Element Array Electrophysiology Documentation](https://datajoint.com/docs/elements/element-array-ephys/): Detailed guide on the DataJoint Element for Array Electrophysiology.\n" + ] } ], "metadata": { @@ -2788,7 +887,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.18" }, "orig_nbformat": 4, "vscode": {