forked from TPRU-India/taxdata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gst_data_prep.py
302 lines (247 loc) · 15.8 KB
/
gst_data_prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import pandas as pd
# import matplotlib.pyplot as plt
# import seaborn as sns
import numpy as np
import json
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
# Data Preparation to read Household Survey Files and generate csv files to use
"""
df_cons_summ_full = pd.read_stata('Summary of Consumer Expenditure - Block 12 - Level 11 - 68.dta')
print(df_cons_summ_full.dtypes)
df_cons_summ_full.to_csv('consumer_expend_summ_2011.csv')
df_cons_summ_all = df_cons_summ_full[["Srl_no", "Value", "HHID", "Sector"]]
df_cons_summ_all.to_csv('consumer_expend_summ_2011_short.csv', index=False)
household_bl3_l2_file = "Household Characteristics - Block 3 - Level 2 - 68.dta"
df_hh_bl3_l2_data = pd.read_stata(household_bl3_l2_file, preserve_dtypes=False)
print(df_hh_bl3_l2_data.dtypes)
df_hh_bl3_l2_data.to_csv('hh_characteristics_block3_level2_2011.csv', index=False)
df_hh_bl3_l2_data["URBAN"] = np.where(df_hh_bl3_l2_data["Sector"] == 2,
1, 0)
df_hh_bl3_l2_short = df_hh_bl3_l2_data[['HHID', 'HH_Size', 'URBAN',
'District', 'State_code', 'Combined_multiplier']]
df_hh_bl3_l2_short.to_csv('hh_characteristics_block3_level2_2011_short.csv')
# household_bl3_l3_file = "Household characteristics - Block 3 - Level 3.dta"
# df_hh_bl3_l3_data = pd.read_stata(household_bl3_l3_file, preserve_dtypes=False)
# print(df_hh_bl3_l3_data.dtypes)
# df_hh_bl3_l3_data.to_csv('hh_characteristics_block3_level3_2011.csv')
# df_hh_bl3_l3_short = df_hh_bl3_l3_data[['HHID', 'HH_Size',
# 'Combined_multiplier']]
"""
df_hh_bl3_l2_short = pd.read_csv('hh_characteristics_block3_level2_2011_short.csv')
df_hh_bl3_l2_short = df_hh_bl3_l2_short.drop('Unnamed: 0', axis=1)
df_cons_summ_all = pd.read_csv('consumer_expend_summ_2011_short.csv')
# df_rates = pd.read_csv('GST Rates India 2019-work.csv', encoding='cp1252')
df_rates = pd.read_csv('GST Rates India 2019-work.csv')
df_rates["Srl_no"] = df_rates["Srl_no"].fillna(0).astype(int)
df_rates_group = df_rates.groupby(['item_category_1'])['gst_rate'].mean()
df_rates_group = df_rates_group.to_frame()
df_rates_group = df_rates_group.reset_index()
df_rates_group = df_rates_group[~df_rates_group.item_category_1.str.contains(
"sub-total")]
df_item_category = df_rates[df_rates.item_category_1.str.contains(
"sub-total")]
df_item_category = df_item_category[['item_category_1', 'Srl_no', 'duration']]
df_item_category['item_category_1'] = df_item_category['item_category_1'].str.replace("sub-total: ", "")
df_item_rates_category = pd.merge(df_rates_group, df_item_category,
how="inner", on="item_category_1")
# df_item_rates_category.sort_values('Srl_no')
"""
Generate JSON File for Policy by looping through the variables
"""
df_item_rates_for_json = df_item_rates_category.pivot(columns='item_category_1', values='gst_rate')
df_item_rates_for_json.iloc[0,:]=df_item_rates_for_json[df_item_rates_for_json.columns].max()
df_item_rates_for_json = df_item_rates_for_json.iloc[0:1,:]
df_item_rates_for_json.columns= "_gst_rate_" + df_item_rates_for_json.columns
for i in range(0,17):
df_item_rates_for_json = pd.concat([df_item_rates_for_json, pd.DataFrame([[np.nan] *
df_item_rates_for_json.shape[1]], columns=df_item_rates_for_json.columns)], ignore_index=True)
#df_item_rates_for_json.iloc[13,:] = '['+ str(df_item_rates_for_json.iloc[0,:]) + ']'
df_item_rates_for_json.iloc[13,:] = df_item_rates_for_json.iloc[0,:]/100
d = [[i] for i in df_item_rates_for_json.iloc[13,:]]
df_item_rates_for_json.loc[len(df_item_rates_for_json)]=d
df_item_rates_for_json.iloc[13,:] = df_item_rates_for_json.iloc[18,:]
df_item_rates_for_json = df_item_rates_for_json[:-1]
df_item_rates_for_json['gst_rate_benchmark']= ""
row_label_year = [["2017"] for i in df_item_rates_for_json.iloc[13,:]]
range_rate = [{"min": 0, "max": 1} for i in df_item_rates_for_json.iloc[13,:]]
df_item_rates_for_json['gst_rate_benchmark']= ""
df_item_rates_for_json.iloc[0,:] = df_item_rates_for_json.columns.str.replace('_gst_rate_','GST Rate for ')
df_item_rates_for_json.iloc[1,:] = df_item_rates_for_json.columns.str.replace('_gst_rate_','GST Rate relevant for consumption of ')
df_item_rates_for_json.iloc[2,:] = "GST Rules"
df_item_rates_for_json.iloc[3,:] = ""
df_item_rates_for_json.iloc[4,:] = "AYEAR"
df_item_rates_for_json.iloc[5,:] = row_label_year
df_item_rates_for_json.iloc[6,:] = 2017
df_item_rates_for_json.iloc[7,:] = False
df_item_rates_for_json.iloc[8,:] = False
df_item_rates_for_json.iloc[9,:] = ""
df_item_rates_for_json.iloc[10,:] = ""
df_item_rates_for_json.iloc[11,:] = False
df_item_rates_for_json.iloc[12,:] = False
df_item_rates_for_json.iloc[14,:] = range_rate
df_item_rates_for_json.iloc[15,:] = ""
df_item_rates_for_json.iloc[16,:] = ""
df_item_rates_for_json.iloc[17,:] = "stop"
d=[0.18]
#yr=["2017"]
#df_item_rates_for_json['gst_rate_benchmark']= ""
df_item_rates_for_json.iloc[0,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= "GST Benchmark Rate"
df_item_rates_for_json.iloc[1,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= "GST Benchmark Rate to calculate Policy Gap"
df_item_rates_for_json.iloc[2,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= "Benchmark Rate"
df_item_rates_for_json.iloc[3,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= ""
df_item_rates_for_json.iloc[4,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= "AYEAR"
#df_item_rates_for_json.iloc[5,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= row_label_year
df_item_rates_for_json.iloc[6,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= 2017
df_item_rates_for_json.iloc[7,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= False
df_item_rates_for_json.iloc[8,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= False
df_item_rates_for_json.iloc[9,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= ""
df_item_rates_for_json.iloc[10,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= ""
df_item_rates_for_json.iloc[11,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= False
df_item_rates_for_json.iloc[12,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= False
df_item_rates_for_json.iloc[13,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= d
#df_item_rates_for_json.iloc[14,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= range_rate
df_item_rates_for_json.iloc[15,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= ""
df_item_rates_for_json.iloc[16,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= ""
df_item_rates_for_json.iloc[17,df_item_rates_for_json.columns.get_loc('gst_rate_benchmark')]= "stop"
df_item_rates_for_json['ind'] = ""
df_item_rates_for_json.iloc[0, df_item_rates_for_json.columns.get_loc('ind')] = "long_name"
df_item_rates_for_json.iloc[1, df_item_rates_for_json.columns.get_loc('ind')] = "description"
df_item_rates_for_json.iloc[2, df_item_rates_for_json.columns.get_loc('ind')] = "itr_ref"
df_item_rates_for_json.iloc[3, df_item_rates_for_json.columns.get_loc('ind')] = "notes"
df_item_rates_for_json.iloc[4, df_item_rates_for_json.columns.get_loc('ind')] = "row_var"
df_item_rates_for_json.iloc[5, df_item_rates_for_json.columns.get_loc('ind')] = "row_label"
df_item_rates_for_json.iloc[6, df_item_rates_for_json.columns.get_loc('ind')] = "start_year"
df_item_rates_for_json.iloc[7, df_item_rates_for_json.columns.get_loc('ind')] = "cpi_inflatable"
df_item_rates_for_json.iloc[8, df_item_rates_for_json.columns.get_loc('ind')] = "cpi_inflated"
df_item_rates_for_json.iloc[9, df_item_rates_for_json.columns.get_loc('ind')] = "col_var"
df_item_rates_for_json.iloc[10, df_item_rates_for_json.columns.get_loc('ind')] = "col_label"
df_item_rates_for_json.iloc[11, df_item_rates_for_json.columns.get_loc('ind')] = "boolean_value"
df_item_rates_for_json.iloc[12, df_item_rates_for_json.columns.get_loc('ind')] = "integer_value"
df_item_rates_for_json.iloc[13, df_item_rates_for_json.columns.get_loc('ind')] = "value"
df_item_rates_for_json.iloc[14, df_item_rates_for_json.columns.get_loc('ind')] = "range"
df_item_rates_for_json.iloc[15, df_item_rates_for_json.columns.get_loc('ind')] = "out_of_range_minmsg"
df_item_rates_for_json.iloc[16, df_item_rates_for_json.columns.get_loc('ind')] = "out_of_range_maxmsg"
df_item_rates_for_json.iloc[17, df_item_rates_for_json.columns.get_loc('ind')] = "out_of_range_action"
df_item_rates_for_json.set_index('ind', inplace=True)
item_rates_dict_for_json = df_item_rates_for_json.to_dict()
with open('current_law_policy_pit_cit.json', 'r') as f:
current_law_policy_dict = json.load(f)
current_law_policy_dict.update(item_rates_dict_for_json)
with open("current_law_policy.json", "w") as f:
json.dump(current_law_policy_dict, f, indent=4, sort_keys=False)
# df_item_rates_for_json.to_json('gst_policy1.json')
"""
Generate gst.csv which contains consumption information from Summary table
Block 12 - One record for each household
"""
df_cons_summ = df_cons_summ_all[['HHID','Srl_no','Value']]
df_cons_summ = pd.merge(df_cons_summ, df_item_rates_category,
how="inner", on="Srl_no")
"""
Adjusting monthly consumption to yearly consumption for
certian items of monthly recall period
"""
df_cons_summ['Value'] = np.where(df_cons_summ['duration']=="monthly",
df_cons_summ['Value']*(365/30),
df_cons_summ['Value'])
"""
Gross Private Final Consumption Expenditure in 2011 and in
Assessment Year 2017 or financial year 2016 -
Source: Annual Estimate of GDP at Current Prices base 2011-12
Ministry of Statistics and Program Implementation MOSPI
mospi.nic.in/data
"""
HHS_TOTAL_WEIGHT = 2210659
GPFCE_2011 = 4910447
GPFCE_2016 = 9004904
GPFCE_2017 = 10083000
GPFCE_2018 = 11333000
INFLATOR_2011 = (GPFCE_2011/HHS_TOTAL_WEIGHT)
"""
Extraploating 2011 data to assessment year 2017
"""
#df_cons_summ['Value'] = df_cons_summ['Value'] * (GPFCE_2016/GPFCE_2011)
df_cons_summ['Value'] = df_cons_summ['Value'] * INFLATOR_2011
df_cons_summ['Value'] = df_cons_summ['Value'] * (GPFCE_2016/GPFCE_2011)
df_cons_summ['item_category_1'] = "cons_" + df_cons_summ['item_category_1']
df_cons_summ_trans = df_cons_summ.pivot(index='HHID', columns='item_category_1', values='Value')
df_cons_summ_trans = df_cons_summ_trans.fillna(0)
df_cons_summ_trans = df_cons_summ_trans.reset_index()
df_cons_summ_trans = pd.merge(df_cons_summ_trans, df_hh_bl3_l2_short,
how="inner", on="HHID")
df_cons_summ_trans.columns = df_cons_summ_trans.columns.str.upper()
df_cons_summ_trans = df_cons_summ_trans.rename(columns={'HHID': 'ID_NO'})
df_cons_summ_trans = df_cons_summ_trans.rename(columns={'COMBINED_MULTIPLIER': 'WEIGHT'})
df_cons_summ_trans['ASSESSMENT_YEAR'] = 2017
df_cons_summ_trans.to_csv('gst.csv', index=False)
"""
Generate JSON File for the gst record variables which declares all variables
used in gst.csv
"""
df_gst_for_json_read = df_cons_summ_trans.drop(df_cons_summ_trans.index)
df_gst_for_json_read = pd.concat([df_gst_for_json_read, pd.DataFrame([[np.nan] * df_gst_for_json_read.shape[1]], columns=df_gst_for_json_read.columns)], ignore_index=True)
df_gst_for_json_read = pd.concat([df_gst_for_json_read, pd.DataFrame([[np.nan] * df_gst_for_json_read.shape[1]], columns=df_gst_for_json_read.columns)], ignore_index=True)
df_gst_for_json_read = pd.concat([df_gst_for_json_read, pd.DataFrame([[np.nan] * df_gst_for_json_read.shape[1]], columns=df_gst_for_json_read.columns)], ignore_index=True)
form_cons_data = [{"2017": "Household Survey 48th Round Block 12"} for i in df_gst_for_json_read.iloc[0,:]]
form_hh_data = [{"2017": "Household Survey 48th Round Block 3 Level 2"} for i in df_gst_for_json_read.iloc[0,:]]
df_gst_for_json_read.loc[len(df_gst_for_json_read)]=form_hh_data
df_gst_for_json_read.loc[0, df_gst_for_json_read.columns.str.startswith('CONS_')]="float"
df_gst_for_json_read.loc[1, :] = df_gst_for_json_read.columns.str.replace('CONS_','CONSUMPTION OF ')
df_gst_for_json_read.iloc[2, :] = form_cons_data
df_gst_for_json_read = df_gst_for_json_read.rename(columns={'WEIGHT': 'weight'})
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('weight')]= "float"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('weight')]= "Household unit sampling weight"
df_gst_for_json_read.at[2,'weight'] = df_gst_for_json_read.at[3,'weight']
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('ID_NO')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('ID_NO')]= "Household ID HHID"
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('HH_SIZE')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('HH_SIZE')]= "Household Size"
df_gst_for_json_read.at[2,'HH_SIZE'] = df_gst_for_json_read.at[3,'HH_SIZE']
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('URBAN')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('URBAN')]= "URBAN=1, RURAL=0"
df_gst_for_json_read.at[2,'URBAN'] = df_gst_for_json_read.at[3,'URBAN']
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('DISTRICT')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('DISTRICT')]= "District Code"
df_gst_for_json_read.at[2,'DISTRICT'] = df_gst_for_json_read.at[3,'DISTRICT']
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('STATE_CODE')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('STATE_CODE')]= "State Code"
df_gst_for_json_read.at[2,'STATE_CODE'] = df_gst_for_json_read.at[3,'STATE_CODE']
df_gst_for_json_read.iloc[0,df_gst_for_json_read.columns.get_loc('ASSESSMENT_YEAR')]= "int"
df_gst_for_json_read.iloc[1,df_gst_for_json_read.columns.get_loc('ASSESSMENT_YEAR')]= "Year of Consumption"
df_gst_for_json_read = df_gst_for_json_read[:-1]
df_gst_for_json_read['ind'] = "type"
df_gst_for_json_read.iloc[1, df_gst_for_json_read.columns.get_loc('ind')] = "desc"
df_gst_for_json_read.iloc[2, df_gst_for_json_read.columns.get_loc('ind')] = "form"
df_gst_for_json_read.set_index('ind', inplace=True)
# Create json ditionary for read variables
dict_gst_read = df_gst_for_json_read.to_dict()
df_gst_for_json_calc = df_gst_for_json_read
calc_cols = df_gst_for_json_calc.columns[df_gst_for_json_calc.columns.str.startswith('CONS_')]
df_gst_for_json_calc = df_gst_for_json_calc[calc_cols]
calc_cols = calc_cols.str.replace('CONS_', 'gst_').str.lower()
df_gst_for_json_calc.columns = calc_cols
form_calc_data = [{"2017": "Calculated"} for i in df_gst_for_json_calc.iloc[0,:]]
df = pd.DataFrame(columns = calc_cols)
df1 = pd.concat([df, pd.DataFrame([[np.nan] *
len(calc_cols)], columns=calc_cols)], ignore_index=True)
df1.iloc[0,:] = "float"
df1 = pd.concat([df1, pd.DataFrame([[np.nan] *
len(calc_cols)], columns=calc_cols)], ignore_index=True)
cols = df1.columns.str.upper()
df1.iloc[1,:] = cols.str.replace('GST_','GST paid by Household on consumption of ')
df1 = pd.concat([df1, pd.DataFrame([[np.nan] *
len(calc_cols)], columns=calc_cols)], ignore_index=True)
df1.iloc[2,:] = form_calc_data
df2 = pd.DataFrame({'ind':["type", "desc", "form"],
'total consumption':["float","Total Consumption by Household during the year in Rupees", {"2017": "Calculated"}],
'gst':["float","Potential GST paid by Household during the year in Rupees", {"2017": "Calculated"}]})
df_gst_for_json_calc = pd.concat([df1,df2], axis=1)
df_gst_for_json_calc.set_index('ind', inplace=True)
# Create json ditionary for calc variables
dict_gst_calc = df_gst_for_json_calc.to_dict()
# Merging the two dictionary along with adding "read" and "calc"
dict_gst_rec = {"read": dict_gst_read, "calc": dict_gst_calc}
# Pretty Print dictionary into json file
with open("gstrecords_variables.json", "w") as f:
json.dump(dict_gst_rec, f, indent=4, sort_keys=True)