-
Notifications
You must be signed in to change notification settings - Fork 230
/
kitti_object.py
984 lines (856 loc) · 31.4 KB
/
kitti_object.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
""" Helper class and functions for loading KITTI objects
Author: Charles R. Qi
Date: September 2017
"""
from __future__ import print_function
import os
import sys
import numpy as np
import cv2
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = os.path.dirname(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, "mayavi"))
import kitti_util as utils
import argparse
try:
raw_input # Python 2
except NameError:
raw_input = input # Python 3
cbox = np.array([[0, 70.4], [-40, 40], [-3, 1]])
class kitti_object(object):
"""Load and parse object data into a usable format."""
def __init__(self, root_dir, split="training", args=None):
"""root_dir contains training and testing folders"""
self.root_dir = root_dir
self.split = split
print(root_dir, split)
self.split_dir = os.path.join(root_dir, split)
if split == "training":
self.num_samples = 7481
elif split == "testing":
self.num_samples = 7518
else:
print("Unknown split: %s" % (split))
exit(-1)
lidar_dir = "velodyne"
depth_dir = "depth"
pred_dir = "pred"
if args is not None:
lidar_dir = args.lidar
depth_dir = args.depthdir
pred_dir = args.preddir
self.image_dir = os.path.join(self.split_dir, "image_2")
self.label_dir = os.path.join(self.split_dir, "label_2")
self.calib_dir = os.path.join(self.split_dir, "calib")
self.depthpc_dir = os.path.join(self.split_dir, "depth_pc")
self.lidar_dir = os.path.join(self.split_dir, lidar_dir)
self.depth_dir = os.path.join(self.split_dir, depth_dir)
self.pred_dir = os.path.join(self.split_dir, pred_dir)
def __len__(self):
return self.num_samples
def get_image(self, idx):
assert idx < self.num_samples
img_filename = os.path.join(self.image_dir, "%06d.png" % (idx))
return utils.load_image(img_filename)
def get_lidar(self, idx, dtype=np.float32, n_vec=4):
assert idx < self.num_samples
lidar_filename = os.path.join(self.lidar_dir, "%06d.bin" % (idx))
print(lidar_filename)
return utils.load_velo_scan(lidar_filename, dtype, n_vec)
def get_calibration(self, idx):
assert idx < self.num_samples
calib_filename = os.path.join(self.calib_dir, "%06d.txt" % (idx))
return utils.Calibration(calib_filename)
def get_label_objects(self, idx):
assert idx < self.num_samples and self.split == "training"
label_filename = os.path.join(self.label_dir, "%06d.txt" % (idx))
return utils.read_label(label_filename)
def get_pred_objects(self, idx):
assert idx < self.num_samples
pred_filename = os.path.join(self.pred_dir, "%06d.txt" % (idx))
is_exist = os.path.exists(pred_filename)
if is_exist:
return utils.read_label(pred_filename)
else:
return None
def get_depth(self, idx):
assert idx < self.num_samples
img_filename = os.path.join(self.depth_dir, "%06d.png" % (idx))
return utils.load_depth(img_filename)
def get_depth_image(self, idx):
assert idx < self.num_samples
img_filename = os.path.join(self.depth_dir, "%06d.png" % (idx))
return utils.load_depth(img_filename)
def get_depth_pc(self, idx):
assert idx < self.num_samples
lidar_filename = os.path.join(self.depthpc_dir, "%06d.bin" % (idx))
is_exist = os.path.exists(lidar_filename)
if is_exist:
return utils.load_velo_scan(lidar_filename), is_exist
else:
return None, is_exist
# print(lidar_filename, is_exist)
# return utils.load_velo_scan(lidar_filename), is_exist
def get_top_down(self, idx):
pass
def isexist_pred_objects(self, idx):
assert idx < self.num_samples and self.split == "training"
pred_filename = os.path.join(self.pred_dir, "%06d.txt" % (idx))
return os.path.exists(pred_filename)
def isexist_depth(self, idx):
assert idx < self.num_samples and self.split == "training"
depth_filename = os.path.join(self.depth_dir, "%06d.txt" % (idx))
return os.path.exists(depth_filename)
class kitti_object_video(object):
""" Load data for KITTI videos """
def __init__(self, img_dir, lidar_dir, calib_dir):
self.calib = utils.Calibration(calib_dir, from_video=True)
self.img_dir = img_dir
self.lidar_dir = lidar_dir
self.img_filenames = sorted(
[os.path.join(img_dir, filename) for filename in os.listdir(img_dir)]
)
self.lidar_filenames = sorted(
[os.path.join(lidar_dir, filename) for filename in os.listdir(lidar_dir)]
)
print(len(self.img_filenames))
print(len(self.lidar_filenames))
# assert(len(self.img_filenames) == len(self.lidar_filenames))
self.num_samples = len(self.img_filenames)
def __len__(self):
return self.num_samples
def get_image(self, idx):
assert idx < self.num_samples
img_filename = self.img_filenames[idx]
return utils.load_image(img_filename)
def get_lidar(self, idx):
assert idx < self.num_samples
lidar_filename = self.lidar_filenames[idx]
return utils.load_velo_scan(lidar_filename)
def get_calibration(self, unused):
return self.calib
def viz_kitti_video():
video_path = os.path.join(ROOT_DIR, "dataset/2011_09_26/")
dataset = kitti_object_video(
os.path.join(video_path, "2011_09_26_drive_0023_sync/image_02/data"),
os.path.join(video_path, "2011_09_26_drive_0023_sync/velodyne_points/data"),
video_path,
)
print(len(dataset))
for _ in range(len(dataset)):
img = dataset.get_image(0)
pc = dataset.get_lidar(0)
cv2.imshow("video", img)
draw_lidar(pc)
raw_input()
pc[:, 0:3] = dataset.get_calibration().project_velo_to_rect(pc[:, 0:3])
draw_lidar(pc)
raw_input()
return
def show_image_with_boxes(img, objects, calib, show3d=True, depth=None):
""" Show image with 2D bounding boxes """
img1 = np.copy(img) # for 2d bbox
img2 = np.copy(img) # for 3d bbox
#img3 = np.copy(img) # for 3d bbox
#TODO: change the color of boxes
for obj in objects:
if obj.type == "DontCare":
continue
if obj.type == "Car":
cv2.rectangle(
img1,
(int(obj.xmin), int(obj.ymin)),
(int(obj.xmax), int(obj.ymax)),
(0, 255, 0),
2,
)
if obj.type == "Pedestrian":
cv2.rectangle(
img1,
(int(obj.xmin), int(obj.ymin)),
(int(obj.xmax), int(obj.ymax)),
(255, 255, 0),
2,
)
if obj.type == "Cyclist":
cv2.rectangle(
img1,
(int(obj.xmin), int(obj.ymin)),
(int(obj.xmax), int(obj.ymax)),
(0, 255, 255),
2,
)
box3d_pts_2d, _ = utils.compute_box_3d(obj, calib.P)
if box3d_pts_2d is None:
print("something wrong in the 3D box.")
continue
if obj.type == "Car":
img2 = utils.draw_projected_box3d(img2, box3d_pts_2d, color=(0, 255, 0))
elif obj.type == "Pedestrian":
img2 = utils.draw_projected_box3d(img2, box3d_pts_2d, color=(255, 255, 0))
elif obj.type == "Cyclist":
img2 = utils.draw_projected_box3d(img2, box3d_pts_2d, color=(0, 255, 255))
# project
# box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
# box3d_pts_32d = utils.box3d_to_rgb_box00(box3d_pts_3d_velo)
# box3d_pts_32d = calib.project_velo_to_image(box3d_pts_3d_velo)
# img3 = utils.draw_projected_box3d(img3, box3d_pts_32d)
# print("img1:", img1.shape)
cv2.imshow("2dbox", img1)
# print("img3:",img3.shape)
# Image.fromarray(img3).show()
show3d = True
if show3d:
# print("img2:",img2.shape)
cv2.imshow("3dbox", img2)
if depth is not None:
cv2.imshow("depth", depth)
return img1, img2
def show_image_with_boxes_3type(img, objects, calib, objects2d, name, objects_pred):
""" Show image with 2D bounding boxes """
img1 = np.copy(img) # for 2d bbox
type_list = ["Pedestrian", "Car", "Cyclist"]
# draw Label
color = (0, 255, 0)
for obj in objects:
if obj.type not in type_list:
continue
cv2.rectangle(
img1,
(int(obj.xmin), int(obj.ymin)),
(int(obj.xmax), int(obj.ymax)),
color,
3,
)
startx = 5
font = cv2.FONT_HERSHEY_SIMPLEX
text_lables = [obj.type for obj in objects if obj.type in type_list]
text_lables.insert(0, "Label:")
for n in range(len(text_lables)):
text_pos = (startx, 25 * (n + 1))
cv2.putText(img1, text_lables[n], text_pos, font, 0.5, color, 0, cv2.LINE_AA)
# draw 2D Pred
color = (0, 0, 255)
for obj in objects2d:
cv2.rectangle(
img1,
(int(obj.box2d[0]), int(obj.box2d[1])),
(int(obj.box2d[2]), int(obj.box2d[3])),
color,
2,
)
startx = 85
font = cv2.FONT_HERSHEY_SIMPLEX
text_lables = [type_list[obj.typeid - 1] for obj in objects2d]
text_lables.insert(0, "2D Pred:")
for n in range(len(text_lables)):
text_pos = (startx, 25 * (n + 1))
cv2.putText(img1, text_lables[n], text_pos, font, 0.5, color, 0, cv2.LINE_AA)
# draw 3D Pred
if objects_pred is not None:
color = (255, 0, 0)
for obj in objects_pred:
if obj.type not in type_list:
continue
cv2.rectangle(
img1,
(int(obj.xmin), int(obj.ymin)),
(int(obj.xmax), int(obj.ymax)),
color,
1,
)
startx = 165
font = cv2.FONT_HERSHEY_SIMPLEX
text_lables = [obj.type for obj in objects_pred if obj.type in type_list]
text_lables.insert(0, "3D Pred:")
for n in range(len(text_lables)):
text_pos = (startx, 25 * (n + 1))
cv2.putText(
img1, text_lables[n], text_pos, font, 0.5, color, 0, cv2.LINE_AA
)
cv2.imshow("with_bbox", img1)
cv2.imwrite("imgs/" + str(name) + ".png", img1)
def get_lidar_in_image_fov(
pc_velo, calib, xmin, ymin, xmax, ymax, return_more=False, clip_distance=2.0
):
""" Filter lidar points, keep those in image FOV """
pts_2d = calib.project_velo_to_image(pc_velo)
fov_inds = (
(pts_2d[:, 0] < xmax)
& (pts_2d[:, 0] >= xmin)
& (pts_2d[:, 1] < ymax)
& (pts_2d[:, 1] >= ymin)
)
fov_inds = fov_inds & (pc_velo[:, 0] > clip_distance)
imgfov_pc_velo = pc_velo[fov_inds, :]
if return_more:
return imgfov_pc_velo, pts_2d, fov_inds
else:
return imgfov_pc_velo
def get_lidar_index_in_image_fov(
pc_velo, calib, xmin, ymin, xmax, ymax, return_more=False, clip_distance=2.0
):
""" Filter lidar points, keep those in image FOV """
pts_2d = calib.project_velo_to_image(pc_velo)
fov_inds = (
(pts_2d[:, 0] < xmax)
& (pts_2d[:, 0] >= xmin)
& (pts_2d[:, 1] < ymax)
& (pts_2d[:, 1] >= ymin)
)
fov_inds = fov_inds & (pc_velo[:, 0] > clip_distance)
return fov_inds
def depth_region_pt3d(depth, obj):
b = obj.box2d
# depth_region = depth[b[0]:b[2],b[2]:b[3],0]
pt3d = []
# import pdb; pdb.set_trace()
for i in range(int(b[0]), int(b[2])):
for j in range(int(b[1]), int(b[3])):
pt3d.append([j, i, depth[j, i]])
return np.array(pt3d)
def get_depth_pt3d(depth):
pt3d = []
for i in range(depth.shape[0]):
for j in range(depth.shape[1]):
pt3d.append([i, j, depth[i, j]])
return np.array(pt3d)
def show_lidar_with_depth(
pc_velo,
objects,
calib,
fig,
img_fov=False,
img_width=None,
img_height=None,
objects_pred=None,
depth=None,
cam_img=None,
constraint_box=False,
pc_label=False,
save=False,
):
""" Show all LiDAR points.
Draw 3d box in LiDAR point cloud (in velo coord system) """
if "mlab" not in sys.modules:
import mayavi.mlab as mlab
from viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d
print(("All point num: ", pc_velo.shape[0]))
if img_fov:
pc_velo_index = get_lidar_index_in_image_fov(
pc_velo[:, :3], calib, 0, 0, img_width, img_height
)
pc_velo = pc_velo[pc_velo_index, :]
print(("FOV point num: ", pc_velo.shape))
print("pc_velo", pc_velo.shape)
draw_lidar(pc_velo, fig=fig, pc_label=pc_label)
# Draw depth
if depth is not None:
depth_pc_velo = calib.project_depth_to_velo(depth, constraint_box)
indensity = np.ones((depth_pc_velo.shape[0], 1)) * 0.5
depth_pc_velo = np.hstack((depth_pc_velo, indensity))
print("depth_pc_velo:", depth_pc_velo.shape)
print("depth_pc_velo:", type(depth_pc_velo))
print(depth_pc_velo[:5])
draw_lidar(depth_pc_velo, fig=fig, pts_color=(1, 1, 1))
if save:
data_idx = 0
vely_dir = "data/object/training/depth_pc"
save_filename = os.path.join(vely_dir, "%06d.bin" % (data_idx))
print(save_filename)
# np.save(save_filename+".npy", np.array(depth_pc_velo))
depth_pc_velo = depth_pc_velo.astype(np.float32)
depth_pc_velo.tofile(save_filename)
# color = (0, 1, 0)
for obj in objects:
if obj.type == "DontCare":
continue
# Draw 3d bounding box
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
print("box3d_pts_3d_velo:")
print(box3d_pts_3d_velo)
#TODO: change the color of boxes
if obj.type == "Car":
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=(0,1,0), label=obj.type)
elif obj.type == "Pedestrian":
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=(0,1,1), label=obj.type)
elif obj.type == "Cyclist":
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=(1,1,0), label=obj.type)
if objects_pred is not None:
color = (1, 0, 0)
for obj in objects_pred:
if obj.type == "DontCare":
continue
# Draw 3d bounding box
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
print("box3d_pts_3d_velo:")
print(box3d_pts_3d_velo)
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=color)
# Draw heading arrow
_, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
x1, y1, z1 = ori3d_pts_3d_velo[0, :]
x2, y2, z2 = ori3d_pts_3d_velo[1, :]
mlab.plot3d(
[x1, x2],
[y1, y2],
[z1, z2],
color=color,
tube_radius=None,
line_width=1,
figure=fig,
)
mlab.show(1)
def save_depth0(
data_idx,
pc_velo,
calib,
img_fov,
img_width,
img_height,
depth,
constraint_box=False,
):
if img_fov:
pc_velo_index = get_lidar_index_in_image_fov(
pc_velo[:, :3], calib, 0, 0, img_width, img_height
)
pc_velo = pc_velo[pc_velo_index, :]
type = np.zeros((pc_velo.shape[0], 1))
pc_velo = np.hstack((pc_velo, type))
print(("FOV point num: ", pc_velo.shape))
# Draw depth
if depth is not None:
depth_pc_velo = calib.project_depth_to_velo(depth, constraint_box)
indensity = np.ones((depth_pc_velo.shape[0], 1)) * 0.5
depth_pc_velo = np.hstack((depth_pc_velo, indensity))
type = np.ones((depth_pc_velo.shape[0], 1))
depth_pc_velo = np.hstack((depth_pc_velo, type))
print("depth_pc_velo:", depth_pc_velo.shape)
depth_pc = np.concatenate((pc_velo, depth_pc_velo), axis=0)
print("depth_pc:", depth_pc.shape)
vely_dir = "data/object/training/depth_pc"
save_filename = os.path.join(vely_dir, "%06d.bin" % (data_idx))
depth_pc = depth_pc.astype(np.float32)
depth_pc.tofile(save_filename)
def save_depth(
data_idx,
pc_velo,
calib,
img_fov,
img_width,
img_height,
depth,
constraint_box=False,
):
if depth is not None:
depth_pc_velo = calib.project_depth_to_velo(depth, constraint_box)
indensity = np.ones((depth_pc_velo.shape[0], 1)) * 0.5
depth_pc = np.hstack((depth_pc_velo, indensity))
print("depth_pc:", depth_pc.shape)
vely_dir = "data/object/training/depth_pc"
save_filename = os.path.join(vely_dir, "%06d.bin" % (data_idx))
depth_pc = depth_pc.astype(np.float32)
depth_pc.tofile(save_filename)
def show_lidar_with_boxes(
pc_velo,
objects,
calib,
img_fov=False,
img_width=None,
img_height=None,
objects_pred=None,
depth=None,
cam_img=None,
):
""" Show all LiDAR points.
Draw 3d box in LiDAR point cloud (in velo coord system) """
if "mlab" not in sys.modules:
import mayavi.mlab as mlab
from viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d
print(("All point num: ", pc_velo.shape[0]))
fig = mlab.figure(
figure=None, bgcolor=(0, 0, 0), fgcolor=None, engine=None, size=(1000, 500)
)
if img_fov:
pc_velo = get_lidar_in_image_fov(
pc_velo[:, 0:3], calib, 0, 0, img_width, img_height
)
print(("FOV point num: ", pc_velo.shape[0]))
print("pc_velo", pc_velo.shape)
draw_lidar(pc_velo, fig=fig)
# pc_velo=pc_velo[:,0:3]
color = (0, 1, 0)
for obj in objects:
if obj.type == "DontCare":
continue
# Draw 3d bounding box
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
print("box3d_pts_3d_velo:")
print(box3d_pts_3d_velo)
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=color)
# Draw depth
if depth is not None:
# import pdb; pdb.set_trace()
depth_pt3d = depth_region_pt3d(depth, obj)
depth_UVDepth = np.zeros_like(depth_pt3d)
depth_UVDepth[:, 0] = depth_pt3d[:, 1]
depth_UVDepth[:, 1] = depth_pt3d[:, 0]
depth_UVDepth[:, 2] = depth_pt3d[:, 2]
print("depth_pt3d:", depth_UVDepth)
dep_pc_velo = calib.project_image_to_velo(depth_UVDepth)
print("dep_pc_velo:", dep_pc_velo)
draw_lidar(dep_pc_velo, fig=fig, pts_color=(1, 1, 1))
# Draw heading arrow
_, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
x1, y1, z1 = ori3d_pts_3d_velo[0, :]
x2, y2, z2 = ori3d_pts_3d_velo[1, :]
mlab.plot3d(
[x1, x2],
[y1, y2],
[z1, z2],
color=color,
tube_radius=None,
line_width=1,
figure=fig,
)
if objects_pred is not None:
color = (1, 0, 0)
for obj in objects_pred:
if obj.type == "DontCare":
continue
# Draw 3d bounding box
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
print("box3d_pts_3d_velo:")
print(box3d_pts_3d_velo)
draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig, color=color)
# Draw heading arrow
_, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
x1, y1, z1 = ori3d_pts_3d_velo[0, :]
x2, y2, z2 = ori3d_pts_3d_velo[1, :]
mlab.plot3d(
[x1, x2],
[y1, y2],
[z1, z2],
color=color,
tube_radius=None,
line_width=1,
figure=fig,
)
mlab.show(1)
def box_min_max(box3d):
box_min = np.min(box3d, axis=0)
box_max = np.max(box3d, axis=0)
return box_min, box_max
def get_velo_whl(box3d, pc):
bmin, bmax = box_min_max(box3d)
ind = np.where(
(pc[:, 0] >= bmin[0])
& (pc[:, 0] <= bmax[0])
& (pc[:, 1] >= bmin[1])
& (pc[:, 1] <= bmax[1])
& (pc[:, 2] >= bmin[2])
& (pc[:, 2] <= bmax[2])
)[0]
# print(pc[ind,:])
if len(ind) > 0:
vmin, vmax = box_min_max(pc[ind, :])
return vmax - vmin
else:
return 0, 0, 0, 0
def stat_lidar_with_boxes(pc_velo, objects, calib):
""" Show all LiDAR points.
Draw 3d box in LiDAR point cloud (in velo coord system) """
# print(('All point num: ', pc_velo.shape[0]))
# draw_lidar(pc_velo, fig=fig)
# color=(0,1,0)
for obj in objects:
if obj.type == "DontCare":
continue
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
v_l, v_w, v_h, _ = get_velo_whl(box3d_pts_3d_velo, pc_velo)
print("%.4f %.4f %.4f %s" % (v_w, v_h, v_l, obj.type))
def show_lidar_on_image(pc_velo, img, calib, img_width, img_height):
""" Project LiDAR points to image """
img = np.copy(img)
imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(
pc_velo, calib, 0, 0, img_width, img_height, True
)
imgfov_pts_2d = pts_2d[fov_inds, :]
imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)
import matplotlib.pyplot as plt
cmap = plt.cm.get_cmap("hsv", 256)
cmap = np.array([cmap(i) for i in range(256)])[:, :3] * 255
for i in range(imgfov_pts_2d.shape[0]):
depth = imgfov_pc_rect[i, 2]
color = cmap[int(640.0 / depth), :]
cv2.circle(
img,
(int(np.round(imgfov_pts_2d[i, 0])), int(np.round(imgfov_pts_2d[i, 1]))),
2,
color=tuple(color),
thickness=-1,
)
cv2.imshow("projection", img)
return img
def show_lidar_topview_with_boxes(pc_velo, objects, calib, objects_pred=None):
""" top_view image"""
# print('pc_velo shape: ',pc_velo.shape)
top_view = utils.lidar_to_top(pc_velo)
top_image = utils.draw_top_image(top_view)
print("top_image:", top_image.shape)
# gt
def bbox3d(obj):
_, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
return box3d_pts_3d_velo
boxes3d = [bbox3d(obj) for obj in objects if obj.type != "DontCare"]
gt = np.array(boxes3d)
# print("box2d BV:",boxes3d)
lines = [obj.type for obj in objects if obj.type != "DontCare"]
top_image = utils.draw_box3d_on_top(
top_image, gt, text_lables=lines, scores=None, thickness=1, is_gt=True
)
# pred
if objects_pred is not None:
boxes3d = [bbox3d(obj) for obj in objects_pred if obj.type != "DontCare"]
gt = np.array(boxes3d)
lines = [obj.type for obj in objects_pred if obj.type != "DontCare"]
top_image = utils.draw_box3d_on_top(
top_image, gt, text_lables=lines, scores=None, thickness=1, is_gt=False
)
cv2.imshow("top_image", top_image)
return top_image
def dataset_viz(root_dir, args):
dataset = kitti_object(root_dir, split=args.split, args=args)
## load 2d detection results
#objects2ds = read_det_file("box2d.list")
if args.show_lidar_with_depth:
import mayavi.mlab as mlab
fig = mlab.figure(
figure=None, bgcolor=(0, 0, 0), fgcolor=None, engine=None, size=(1000, 500)
)
for data_idx in range(len(dataset)):
if args.ind > 0:
data_idx = args.ind
# Load data from dataset
if args.split == "training":
objects = dataset.get_label_objects(data_idx)
else:
objects = []
#objects2d = objects2ds[data_idx]
objects_pred = None
if args.pred:
# if not dataset.isexist_pred_objects(data_idx):
# continue
objects_pred = dataset.get_pred_objects(data_idx)
if objects_pred == None:
continue
if objects_pred == None:
print("no pred file")
# objects_pred[0].print_object()
n_vec = 4
if args.pc_label:
n_vec = 5
dtype = np.float32
if args.dtype64:
dtype = np.float64
pc_velo = dataset.get_lidar(data_idx, dtype, n_vec)[:, 0:n_vec]
calib = dataset.get_calibration(data_idx)
img = dataset.get_image(data_idx)
img_height, img_width, _ = img.shape
print(data_idx, "image shape: ", img.shape)
print(data_idx, "velo shape: ", pc_velo.shape)
if args.depth:
depth, _ = dataset.get_depth(data_idx)
print(data_idx, "depth shape: ", depth.shape)
else:
depth = None
# depth = cv2.cvtColor(depth, cv2.COLOR_BGR2RGB)
# depth_height, depth_width, depth_channel = img.shape
# print(('Image shape: ', img.shape))
if args.stat:
stat_lidar_with_boxes(pc_velo, objects, calib)
continue
print("======== Objects in Ground Truth ========")
n_obj = 0
for obj in objects:
if obj.type != "DontCare":
print("=== {} object ===".format(n_obj + 1))
obj.print_object()
n_obj += 1
# Draw 3d box in LiDAR point cloud
if args.show_lidar_topview_with_boxes:
# Draw lidar top view
show_lidar_topview_with_boxes(pc_velo, objects, calib, objects_pred)
# show_image_with_boxes_3type(img, objects, calib, objects2d, data_idx, objects_pred)
if args.show_image_with_boxes:
# Draw 2d and 3d boxes on image
show_image_with_boxes(img, objects, calib, True, depth)
if args.show_lidar_with_depth:
# Draw 3d box in LiDAR point cloud
show_lidar_with_depth(
pc_velo,
objects,
calib,
fig,
args.img_fov,
img_width,
img_height,
objects_pred,
depth,
img,
constraint_box=args.const_box,
save=args.save_depth,
pc_label=args.pc_label,
)
# show_lidar_with_boxes(pc_velo, objects, calib, True, img_width, img_height, \
# objects_pred, depth, img)
if args.show_lidar_on_image:
# Show LiDAR points on image.
show_lidar_on_image(pc_velo[:, 0:3], img, calib, img_width, img_height)
input_str = raw_input()
mlab.clf()
if input_str == "killall":
break
def depth_to_lidar_format(root_dir, args):
dataset = kitti_object(root_dir, split=args.split, args=args)
for data_idx in range(len(dataset)):
# Load data from dataset
pc_velo = dataset.get_lidar(data_idx)[:, 0:4]
calib = dataset.get_calibration(data_idx)
depth, _ = dataset.get_depth(data_idx)
img = dataset.get_image(data_idx)
img_height, img_width, _ = img.shape
print(data_idx, "image shape: ", img.shape)
print(data_idx, "velo shape: ", pc_velo.shape)
print(data_idx, "depth shape: ", depth.shape)
# depth = cv2.cvtColor(depth, cv2.COLOR_BGR2RGB)
# depth_height, depth_width, depth_channel = img.shape
# print(('Image shape: ', img.shape))
save_depth(
data_idx,
pc_velo,
calib,
args.img_fov,
img_width,
img_height,
depth,
constraint_box=args.const_box,
)
#input_str = raw_input()
def read_det_file(det_filename):
""" Parse lines in 2D detection output files """
#det_id2str = {1: "Pedestrian", 2: "Car", 3: "Cyclist"}
objects = {}
with open(det_filename, "r") as f:
for line in f.readlines():
obj = utils.Object2d(line.rstrip())
if obj.img_name not in objects.keys():
objects[obj.img_name] = []
objects[obj.img_name].append(obj)
# objects = [utils.Object2d(line.rstrip()) for line in f.readlines()]
return objects
if __name__ == "__main__":
import mayavi.mlab as mlab
from viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d
parser = argparse.ArgumentParser(description="KIITI Object Visualization")
parser.add_argument(
"-d",
"--dir",
type=str,
default="data/object",
metavar="N",
help="input (default: data/object)",
)
parser.add_argument(
"-i",
"--ind",
type=int,
default=0,
metavar="N",
help="input (default: data/object)",
)
parser.add_argument(
"-p", "--pred", action="store_true", help="show predict results"
)
parser.add_argument(
"-s",
"--stat",
action="store_true",
help=" stat the w/h/l of point cloud in gt bbox",
)
parser.add_argument(
"--split",
type=str,
default="training",
help="use training split or testing split (default: training)",
)
parser.add_argument(
"-l",
"--lidar",
type=str,
default="velodyne",
metavar="N",
help="velodyne dir (default: velodyne)",
)
parser.add_argument(
"-e",
"--depthdir",
type=str,
default="depth",
metavar="N",
help="depth dir (default: depth)",
)
parser.add_argument(
"-r",
"--preddir",
type=str,
default="pred",
metavar="N",
help="predicted boxes (default: pred)",
)
parser.add_argument("--gen_depth", action="store_true", help="generate depth")
parser.add_argument("--vis", action="store_true", help="show images")
parser.add_argument("--depth", action="store_true", help="load depth")
parser.add_argument("--img_fov", action="store_true", help="front view mapping")
parser.add_argument("--const_box", action="store_true", help="constraint box")
parser.add_argument(
"--save_depth", action="store_true", help="save depth into file"
)
parser.add_argument(
"--pc_label", action="store_true", help="5-verctor lidar, pc with label"
)
parser.add_argument(
"--dtype64", action="store_true", help="for float64 datatype, default float64"
)
parser.add_argument(
"--show_lidar_on_image", action="store_true", help="project lidar on image"
)
parser.add_argument(
"--show_lidar_with_depth",
action="store_true",
help="--show_lidar, depth is supported",
)
parser.add_argument(
"--show_image_with_boxes", action="store_true", help="show lidar"
)
parser.add_argument(
"--show_lidar_topview_with_boxes",
action="store_true",
help="show lidar topview",
)
args = parser.parse_args()
if args.pred:
assert os.path.exists(args.dir + "/" + args.split + "/pred")
if args.vis:
dataset_viz(args.dir, args)
if args.gen_depth:
depth_to_lidar_format(args.dir, args)