From 7616d793042138aa9a83c257fe98ab53d3a28047 Mon Sep 17 00:00:00 2001 From: Isabella Basso do Amaral Date: Mon, 13 May 2024 15:52:13 -0300 Subject: [PATCH] GHA: test python client connection Signed-off-by: Isabella Basso do Amaral --- .github/workflows/build-image-pr.yml | 38 ++++-- test/python/test_mlmetadata.py | 176 --------------------------- test/python/test_mr_conn.py | 29 +++++ 3 files changed, 59 insertions(+), 184 deletions(-) delete mode 100644 test/python/test_mlmetadata.py create mode 100644 test/python/test_mr_conn.py diff --git a/.github/workflows/build-image-pr.yml b/.github/workflows/build-image-pr.yml index 3f30b981..ea9e53f5 100644 --- a/.github/workflows/build-image-pr.yml +++ b/.github/workflows/build-image-pr.yml @@ -2,14 +2,14 @@ name: Test container image build and deployment on: pull_request: paths-ignore: - - 'LICENSE*' - - '**.gitignore' - - '**.md' - - '**.txt' - - '.github/ISSUE_TEMPLATE/**' - - '.github/dependabot.yml' - - 'docs/**' - - 'clients/python/**' + - "LICENSE*" + - "**.gitignore" + - "**.md" + - "**.txt" + - ".github/ISSUE_TEMPLATE/**" + - ".github/dependabot.yml" + - "docs/**" + - "clients/python/docs/**" env: IMG_ORG: kubeflow IMG_REPO: model-registry @@ -61,3 +61,25 @@ jobs: kubectl wait --for=condition=available -n kubeflow deployment/model-registry-db --timeout=5m kubectl wait --for=condition=available -n kubeflow deployment/model-registry-deployment --timeout=5m kubectl logs -n kubeflow deployment/model-registry-deployment + - name: Set up Python + uses: actions/setup-python@v5 + with: + python-version: "3.10" + - name: Upgrade pip + run: | + pip install --constraint=.github/workflows/constraints.txt pip + pip --version + - name: Install Poetry + run: | + pipx install --pip-args=--constraint=${{ github.workspace }}/.github/workflows/constraints.txt poetry + poetry --version + - name: Build package + working-directory: clients/python + run: | + poetry build --ansi + pip install dist/*.whl + - name: Connect with Python client + run: | + kubectl port-forward -n kubeflow service/model-registry-service 9090:9090 & + sleep 5 + python test/python/test_mr_conn.py localhost 9090 diff --git a/test/python/test_mlmetadata.py b/test/python/test_mlmetadata.py deleted file mode 100644 index 463f31d4..00000000 --- a/test/python/test_mlmetadata.py +++ /dev/null @@ -1,176 +0,0 @@ -from grpc import insecure_channel - -# from ml_metadata.metadata_store import metadata_store -from ml_metadata.proto import metadata_store_pb2 -from ml_metadata.proto import metadata_store_service_pb2 -from ml_metadata.proto import metadata_store_service_pb2_grpc - - -def main(): - # connection_config = metadata_store_pb2.ConnectionConfig() - # connection_config.sqlite.filename_uri = './metadata.sqlite' - # connection_config.sqlite.connection_mode = 3 # READWRITE_OPENCREATE - # store = metadata_store.MetadataStore(connection_config) - - # connection_config = metadata_store_pb2.ConnectionConfig() - # connection_config.mysql.host = 'localhost' - # connection_config.mysql.port = 3306 - # connection_config.mysql.database = 'mlmetadata' - # connection_config.mysql.user = 'root' - # connection_config.mysql.password = 'my-secret-pw' - # store = metadata_store.MetadataStore(connection_config, enable_upgrade_migration=True) - - channel = insecure_channel("localhost:8080") - store = metadata_store_service_pb2_grpc.MetadataStoreServiceStub(channel) - - # Create ArtifactTypes, e.g., Data and Model - data_type = metadata_store_pb2.ArtifactType() - data_type.name = "DataSet" - data_type.properties["day"] = metadata_store_pb2.INT - data_type.properties["split"] = metadata_store_pb2.STRING - - request = metadata_store_service_pb2.PutArtifactTypeRequest() - request.all_fields_match = True - request.artifact_type.CopyFrom(data_type) - response = store.PutArtifactType(request) - data_type_id = response.type_id - - model_type = metadata_store_pb2.ArtifactType() - model_type.name = "SavedModel" - model_type.properties["version"] = metadata_store_pb2.INT - model_type.properties["name"] = metadata_store_pb2.STRING - - request.artifact_type.CopyFrom(model_type) - response = store.PutArtifactType(request) - model_type_id = response.type_id - - request = metadata_store_service_pb2.GetArtifactTypeRequest() - request.type_name = "SavedModel" - response = store.GetArtifactType(request) - assert response.artifact_type.id == model_type_id - assert response.artifact_type.name == "SavedModel" - - # Query all registered Artifact types. - # artifact_types = store.GetArtifactTypes() - - # Create an ExecutionType, e.g., Trainer - trainer_type = metadata_store_pb2.ExecutionType() - trainer_type.name = "Trainer" - trainer_type.properties["state"] = metadata_store_pb2.STRING - - request = metadata_store_service_pb2.PutExecutionTypeRequest() - request.execution_type.CopyFrom(trainer_type) - response = store.PutExecutionType(request) - # trainer_type_id = response.type_id - - # # Query a registered Execution type with the returned id - # [registered_type] = store.GetExecutionTypesByID([trainer_type_id]) - - # Create an input artifact of type DataSet - data_artifact = metadata_store_pb2.Artifact() - data_artifact.uri = "path/to/data" - data_artifact.properties["day"].int_value = 1 - data_artifact.properties["split"].string_value = "train" - data_artifact.type_id = data_type_id - - request = metadata_store_service_pb2.PutArtifactsRequest() - request.artifacts.extend([data_artifact]) - response = store.PutArtifacts(request) - # data_artifact_id = response.artifact_ids[0] - - # # Query all registered Artifacts - # artifacts = store.GetArtifacts() - # - # # Plus, there are many ways to query the same Artifact - # [stored_data_artifact] = store.GetArtifactsByID([data_artifact_id]) - # artifacts_with_uri = store.GetArtifactsByURI(data_artifact.uri) - # artifacts_with_conditions = store.GetArtifacts( - # list_options=mlmd.ListOptions( - # filter_query='uri LIKE "%/data" AND properties.day.int_value > 0')) - # - # # Register the Execution of a Trainer run - # trainer_run = metadata_store_pb2.Execution() - # trainer_run.type_id = trainer_type_id - # trainer_run.properties["state"].string_value = "RUNNING" - # [run_id] = store.PutExecutions([trainer_run]) - # - # # Query all registered Execution - # executions = store.GetExecutionsByID([run_id]) - # # Similarly, the same execution can be queried with conditions. - # executions_with_conditions = store.GetExecutions( - # list_options = mlmd.ListOptions( - # filter_query='type = "Trainer" AND properties.state.string_value IS NOT NULL')) - # - # # Define the input event - # input_event = metadata_store_pb2.Event() - # input_event.artifact_id = data_artifact_id - # input_event.execution_id = run_id - # input_event.type = metadata_store_pb2.Event.DECLARED_INPUT - # - # # Record the input event in the metadata store - # store.put_events([input_event]) - # - # # Declare the output artifact of type SavedModel - # model_artifact = metadata_store_pb2.Artifact() - # model_artifact.uri = 'path/to/model/file' - # model_artifact.properties["version"].int_value = 1 - # model_artifact.properties["name"].string_value = 'MNIST-v1' - # model_artifact.type_id = model_type_id - # [model_artifact_id] = store.PutArtifacts([model_artifact]) - # - # # Declare the output event - # output_event = metadata_store_pb2.Event() - # output_event.artifact_id = model_artifact_id - # output_event.execution_id = run_id - # output_event.type = metadata_store_pb2.Event.DECLARED_OUTPUT - # - # # Submit output event to the Metadata Store - # store.PutEvents([output_event]) - # - # trainer_run.id = run_id - # trainer_run.properties["state"].string_value = "COMPLETED" - # store.PutExecutions([trainer_run]) - - # Create a ContextType, e.g., Experiment with a note property - experiment_type = metadata_store_pb2.ContextType() - experiment_type.name = "Experiment" - experiment_type.properties["note"] = metadata_store_pb2.STRING - request = metadata_store_service_pb2.PutContextTypeRequest() - request.context_type.CopyFrom(experiment_type) - response = store.PutContextType(request) - # experiment_type_id = response.type_id - - # # Group the model and the trainer run to an experiment. - # my_experiment = metadata_store_pb2.Context() - # my_experiment.type_id = experiment_type_id - # # Give the experiment a name - # my_experiment.name = "exp1" - # my_experiment.properties["note"].string_value = "My first experiment." - # [experiment_id] = store.PutContexts([my_experiment]) - # - # attribution = metadata_store_pb2.Attribution() - # attribution.artifact_id = model_artifact_id - # attribution.context_id = experiment_id - # - # association = metadata_store_pb2.Association() - # association.execution_id = run_id - # association.context_id = experiment_id - # - # store.PutAttributionsAndAssociations([attribution], [association]) - # - # # Query the Artifacts and Executions that are linked to the Context. - # experiment_artifacts = store.GetArtifactsByContext(experiment_id) - # experiment_executions = store.GetExecutionsByContext(experiment_id) - # - # # You can also use neighborhood queries to fetch these artifacts and executions - # # with conditions. - # experiment_artifacts_with_conditions = store.GetArtifacts( - # list_options = mlmd.ListOptions( - # filter_query=('contexts_a.type = "Experiment" AND contexts_a.name = "exp1"'))) - # experiment_executions_with_conditions = store.GetExecutions( - # list_options = mlmd.ListOptions( - # filter_query=('contexts_a.id = {}'.format(experiment_id)))) - - -if __name__ == "__main__": - main() diff --git a/test/python/test_mr_conn.py b/test/python/test_mr_conn.py new file mode 100644 index 00000000..5b8633e8 --- /dev/null +++ b/test/python/test_mr_conn.py @@ -0,0 +1,29 @@ +from model_registry import ModelRegistry + + +def main(server: str, port: int): + mr = ModelRegistry(server, port, author="test", is_secure=False) + + model = mr.register_model( + "my-model", + "https://mybucket.uri/", + version="2.0.0", + model_format_name="onnx", + model_format_version="1", + storage_key="my-data-connection", + storage_path="path/to/model", + metadata={ + "day": 1, + "split": "train", + }, + ) + + m = mr.get_registered_model("my-model") + assert m + assert model.id == m.id, f"{model} != {m}" + + +if __name__ == "__main__": + import sys + + main(sys.argv[1], int(sys.argv[2]))