forked from kyleolsz/TB-Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
logger.py
75 lines (59 loc) · 2.45 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import tensorflow as tf
import numpy as np
import scipy.misc
try:
from StringIO import StringIO # Python 2.7
except ImportError:
from io import BytesIO # Python 3.x
class Logger(object):
def __init__(self, log_dir, suffix=None):
self.writer = tf.summary.FileWriter(log_dir, filename_suffix=suffix)
def scalar_summary(self, tag, value, step):
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)])
self.writer.add_summary(summary, step)
def image_summary(self, tag, images, step):
img_summaries = []
for i, img in enumerate(images):
# Write the image to a string
try:
s = StringIO()
except:
s = BytesIO()
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()
def video_summary(self, tag, videos, step):
sh = list(videos.shape)
sh[-1] = 1
separator = np.zeros(sh, dtype=videos.dtype)
videos = np.concatenate([videos, separator], axis=-1)
img_summaries = []
for i, vid in enumerate(videos):
# Concat a video
try:
s = StringIO()
except:
s = BytesIO()
v = vid.transpose(1, 2, 3, 0)
v = [np.squeeze(f) for f in np.split(v, v.shape[0], axis=0)]
img = np.concatenate(v, axis=1)[:, :-1, :]
scipy.misc.toimage(img).save(s, format="png")
# Create an Image object
img_sum = tf.Summary.Image(encoded_image_string=s.getvalue(),
height=img.shape[0],
width=img.shape[1])
# Create a Summary value
img_summaries.append(tf.Summary.Value(tag='%s/%d' % (tag, i), image=img_sum))
# Create and write Summary
summary = tf.Summary(value=img_summaries)
self.writer.add_summary(summary, step)
self.writer.flush()