forked from yoheinakajima/babyagi
-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathbabyagi.py
executable file
·387 lines (305 loc) · 12.7 KB
/
babyagi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import time
import logging
from collections import deque
from typing import Dict, List
import importlib
import chromadb
from dotenv import load_dotenv
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
from chromadb.utils.embedding_functions import InstructorEmbeddingFunction
from llama_cpp import Llama
# Load default environment variables (.env)
load_dotenv()
# Engine configuration
LLM_MODEL = "GPT4All"
# Table config
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", ""))
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m"
# Run configuration
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI"))
COOPERATIVE_MODE = "none"
JOIN_EXISTING_OBJECTIVE = False
# Goal configuation
OBJECTIVE = os.getenv("OBJECTIVE", "")
INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))
# Model configuration
TEMPERATURE = float(os.getenv("TEMPERATURE", 0.2))
VERBOSE = (os.getenv("VERBOSE", "false").lower() == "true")
# Extensions support begin
def can_import(module_name):
try:
importlib.import_module(module_name)
return True
except ImportError:
return False
print("\033[95m\033[1m"+"\n*****CONFIGURATION*****\n"+"\033[0m\033[0m")
print(f"Name : {INSTANCE_NAME}")
print(f"Mode : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}")
print(f"LLM : {LLM_MODEL}")
# Check if we know what we are doing
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m"
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m"
MODEL_PATH = os.getenv("MODEL_PATH", "models/gpt4all-lora-quantized-ggml.bin")
print(f"GPT4All : {MODEL_PATH}" + "\n")
assert os.path.exists(MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m"
#CTX_MAX = 2048
#CTX_MAX = 8192
CTX_MAX = 16384
#THREADS_NUM = 16
THREADS_NUM = 4
llm = Llama(
model_path=MODEL_PATH,
n_ctx=CTX_MAX, n_threads=THREADS_NUM,
use_mlock=True,
verbose=False,
)
print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")
if not JOIN_EXISTING_OBJECTIVE: print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
else: print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m")
# Results storage using local ChromaDB
class DefaultResultsStorage:
def __init__(self):
logging.getLogger('chromadb').setLevel(logging.ERROR)
# Create Chroma collection
chroma_persist_dir = "chroma"
chroma_client = chromadb.Client(
settings=chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=chroma_persist_dir,
)
)
metric = "cosine"
embedding_function = InstructorEmbeddingFunction()
self.collection = chroma_client.get_or_create_collection(
name=RESULTS_STORE_NAME,
metadata={"hnsw:space": metric},
embedding_function=embedding_function,
)
def add(self, task: Dict, result: Dict, result_id: str, vector: List):
embeddings = self.collection._embedding_function([vector])
if (len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0): # Check if the result already exists
self.collection.update(
ids=result_id,
embeddings=embeddings,
documents=vector,
metadatas={"task": task["task_name"], "result": result},
)
else:
self.collection.add(
ids=result_id,
embeddings=embeddings,
documents=vector,
metadatas={"task": task["task_name"], "result": result},
)
def query(self, query: str, top_results_num: int) -> List[dict]:
count: int = self.collection.count()
if count == 0:
return []
results = self.collection.query(
query_texts=query,
n_results=min(top_results_num, count),
include=["metadatas"]
)
tasks = []
count = len(results["ids"][0])
for i in range(count):
resultidstr = results["ids"][0][i]
id = int(resultidstr[7:])
item = results["metadatas"][0][i]
task = {'task_id': id, 'task_name': item["task"]}
tasks.append(task)
return tasks
# Initialize results storage
results_storage = DefaultResultsStorage()
# Task storage supporting only a single instance of BabyAGI
class SingleTaskListStorage:
def __init__(self):
self.tasks = deque([])
self.task_id_counter = 0
def append(self, task: Dict):
self.tasks.append(task)
def replace(self, tasks: List[Dict]):
self.tasks = deque(tasks)
def popleft(self):
return self.tasks.popleft()
def is_empty(self):
return False if self.tasks else True
def next_task_id(self):
self.task_id_counter += 1
return self.task_id_counter
def get_task_names(self):
return [t["task_name"] for t in self.tasks]
# Initialize tasks storage
tasks_storage = SingleTaskListStorage()
def gpt_call(prompt: str, temperature: float = TEMPERATURE, max_tokens: int = 256):
result = llm(prompt[:CTX_MAX], echo=True, temperature=temperature, max_tokens=max_tokens)
return result['choices'][0]['text'][len(prompt):].strip()
def strip_numbered_list(nl: List[str]) -> List[str]:
result_list = []
filter_chars = ['#', '(', ')', '[', ']', '.', ':', ' ']
for line in nl:
line = line.strip()
if len(line) > 0:
parts = line.split(" ", 1)
if len(parts) == 2:
left_part = ''.join(x for x in parts[0] if not x in filter_chars)
if left_part.isnumeric():
result_list.append(parts[1].strip())
else:
result_list.append(line)
else:
result_list.append(line)
# filter result_list
result_list = [line for line in result_list if len(line) > 3]
# remove duplicates
result_list = list(set(result_list))
return result_list
def fix_prompt(prompt: str) -> str:
lines = prompt.split("\n") if "\n" in prompt else [prompt]
return "\n".join([line.strip() for line in lines])
def task_creation_agent(
objective: str, result: Dict, task_description: str, task_list: List[str]
):
prompt = f"""
Your objective: {objective}\n
Take into account these previously completed tasks but don't repeat them: {task_list}.\n
The last completed task has the result: {result["data"]}.\n
Develop a task list based on the result.\n
Response:"""
prompt = fix_prompt(prompt)
response = gpt_call(prompt)
pos = response.find("1")
if (pos > 0):
response = response[pos - 1:]
if response == '':
print("\n*** Empty Response from task_creation_agent***")
new_tasks_list = result["data"].split("\n") if len(result) > 0 else [response]
else:
new_tasks = response.split("\n") if "\n" in response else [response]
new_tasks_list = strip_numbered_list(new_tasks)
return [{"task_name": task_name} for task_name in (t for t in new_tasks_list if not t == '')]
def prioritization_agent():
task_names = tasks_storage.get_task_names()
next_task_id = tasks_storage.next_task_id()
prompt = f"""
Please prioritize, summarize and consolidate the following tasks: {task_names}.\n
Consider the ultimate objective: {OBJECTIVE}.\n
Return the result as a numbered list.
"""
prompt = fix_prompt(prompt)
response = gpt_call(prompt)
pos = response.find("1")
if (pos > 0):
response = response[pos - 1:]
new_tasks = response.split("\n") if "\n" in response else [response]
new_tasks = strip_numbered_list(new_tasks)
new_tasks_list = []
i = 0
for task_string in new_tasks:
new_tasks_list.append({"task_id": i + next_task_id, "task_name": task_string})
i += 1
if len(new_tasks_list) > 0:
tasks_storage.replace(new_tasks_list)
# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
"""
Executes a task based on the given objective and previous context.
Args:
objective (str): The objective or goal for the AI to perform the task.
task (str): The task to be executed by the AI.
Returns:
str: The response generated by the AI for the given task.
"""
context = context_agent(query=objective, top_results_num=5)
context_list = [t['task_name'] for t in context if t['task_name'] != INITIAL_TASK]
#context_list = [t['task_name'] for t in context]
# remove duplicates
context_list = list(set(context_list))
if VERBOSE and len(context_list) > 0:
print("\n*******RELEVANT CONTEXT******\n")
print(context_list)
if task == INITIAL_TASK:
prompt = f"""
You are an AI who performs one task based on the following objective: {objective}.\n
Your task: {task}\nResponse:"""
else:
prompt = f"""
Your objective: {objective}.\n
Take into account these previously completed tasks but don't repeat them: {context_list}.\n
Your task: {task}\n
Response:"""
#Give an advice how to achieve your task!\n
prompt = fix_prompt(prompt)
result = gpt_call(prompt)
pos = result.find("1")
if (pos > 0):
result = result[pos - 1:]
return result
# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
"""
Retrieves context for a given query from an index of tasks.
Args:
query (str): The query or objective for retrieving context.
top_results_num (int): The number of top results to retrieve.
Returns:
list: A list of tasks as context for the given query, sorted by relevance.
"""
results = results_storage.query(query=query, top_results_num=top_results_num)
#print("\n***** RESULTS *****")
#print(results)
return results
# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
initial_task = {
"task_id": tasks_storage.next_task_id(),
"task_name": INITIAL_TASK
}
tasks_storage.append(initial_task)
def main ():
while True:
# As long as there are tasks in the storage...
if not tasks_storage.is_empty():
# Print the task list
print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
for t in tasks_storage.get_task_names():
print(" • "+t)
# Step 1: Pull the first incomplete task
task = tasks_storage.popleft()
print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
print(task['task_name'])
# Send to execution function to complete the task based on the context
result = execution_agent(OBJECTIVE, task["task_name"])
print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
print(result)
# Step 2: Enrich result and store in the results storage
# This is where you should enrich the result if needed
enriched_result = {
"data": result
}
# extract the actual result from the dictionary
# since we don't do enrichment currently
vector = enriched_result["data"]
result_id = f"result_{task['task_id']}"
results_storage.add(task, result, result_id, vector)
# Step 3: Create new tasks and reprioritize task list
# only the main instance in cooperative mode does that
new_tasks = task_creation_agent(
OBJECTIVE,
enriched_result,
task["task_name"],
tasks_storage.get_task_names(),
)
for new_task in new_tasks:
if not new_task['task_name'] == '':
new_task.update({"task_id": tasks_storage.next_task_id()})
tasks_storage.append(new_task)
if not JOIN_EXISTING_OBJECTIVE: prioritization_agent()
# Sleep a bit before checking the task list again
time.sleep(5)
else:
print ("Ready, no more tasks.")
if __name__ == "__main__":
main()