-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQues_1.py
104 lines (83 loc) · 3.69 KB
/
Ques_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
"""
authors: Adam Villarreal
depending on your environment you may need to install:
pandas>=1.0.3
numpy>=1.18
sqlalchemy>=1.3
tqdm>=4.44
psycopg2>=2.8
matplotlib>=3.1
seaborn==0.9
"""
import sqlalchemy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#Connecting to the Database Server
username = "krmiddlebrook"
password = "Transit13"
CONNECTION_STRING = f"dbname='bsdsclass' user='{username}' host='bsds200.c3ogcwmqzllz.us-east-1.rds.amazonaws.com' password='{password}'" # noqa: E501
db_url = f"postgresql://{username}:{password}@bsds200.c3ogcwmqzllz.us-east-1.rds.amazonaws.com/bsdsclass" # noqa: E501
schema_name = "song_pop"
engine = sqlalchemy.create_engine(db_url)
def get_names(data, num_tracks, top_num):
subset = data.loc[data.total_tracks==num_tracks, :]
names = subset.nlargest(top_num, 'follower_count').loc[:, ['artist_name', 'follower_count', 'instagram']]
return names
def main():
query = f"""
SELECT lhs2.artist_id, follower_count, total_tracks, artist_name, instagram
FROM (
SELECT lhs.artist_id, follower_count, total_tracks, instagram
FROM (
SELECT artist_id, MAX(follower_count) as follower_count, MAX(instagram) as instagram
FROM song_pop.artist_socials
WHERE username in (SELECT DISTINCT username FROM song_pop.twitter)
GROUP BY artist_id) as lhs
INNER JOIN
(SELECT artist_id, SUM(track_count) as total_tracks
FROM song_pop.albums
GROUP BY artist_id) as rhs
ON lhs.artist_id = rhs.artist_id
WHERE total_tracks <= 500) as lhs2
INNER JOIN
(SELECT DISTINCT(artist_id), artist_name FROM song_pop.tracks) as rhs2
ON lhs2.artist_id = rhs2.artist_id;"""
#Getting data from SQL Query
with engine.connect() as con:
data = pd.read_sql(query, con)
#Adding categorical bins for the number of tracks
new_row = np.empty(data.shape[0])
new_row[:] = np.nan#A numpy array full of Nans
data.loc[:, 'track_bins'] = new_row
#Categoring the Data
data.loc[data.total_tracks>200, 'track_bins'] = '200+'
data.loc[data.total_tracks<=200, 'track_bins'] = '176-200'
data.loc[data.total_tracks<=175, 'track_bins'] = '151-175'
data.loc[data.total_tracks<=150, 'track_bins'] = '126-150'
data.loc[data.total_tracks<=125, 'track_bins'] = '101-125'
data.loc[data.total_tracks<=100, 'track_bins'] = '76-100'
data.loc[data.total_tracks<=75, 'track_bins'] = '51-75'
data.loc[data.total_tracks<=50, 'track_bins'] = '26-50'
data.loc[data.total_tracks<=25, 'track_bins'] = '1-25'
print('\nThe distribution of artists by category:')
print(data.track_bins.value_counts())
#Getting the threshold of what makes a person popular
popular_threshold = data.follower_count.quantile(0.9)
print('\nPopularity threshold:', popular_threshold)
#Subsetting the data to get only the data of popular artists
popular_data = data.loc[data.follower_count > popular_threshold, :]
#Getting the Avg Follower Count for each bin
avg_table = popular_data.groupby('track_bins').agg({'follower_count':'mean'}).round()
avg_table.columns = ['Avg Followers']
avg_table = avg_table.reindex(['200+', '176-200', '151-175', '126-150',
'101-125', '76-100', '51-75', '26-50', '1-25'])
print('\nTable of Average Follower Count for each bin:')
print(avg_table)
top_5_1 = get_names(data, num_tracks=1, top_num=5)
print('\nTop 5 Artists with 1 track:')
print(top_5_1)
message = f"""IMPORTANT: There are many artists with 1 track, however we lost a lot of data in our query. You are invited for further investigation"""
print(message)
if __name__ == '__main__':
main()