forked from digitalcytometry/ecotyper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEcoTyper_discovery_bulk.R
301 lines (260 loc) · 14 KB
/
EcoTyper_discovery_bulk.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
suppressPackageStartupMessages({
library(config)
library(argparse)
source("pipeline/lib/config.R")
source("pipeline/lib/misc.R")
source("pipeline/lib/multithreading.R")
})
parser <- ArgumentParser(add_help = F)
arguments = parser$add_argument_group('Arguments')
arguments$add_argument("-c", "--config", type = "character", metavar="<PATH>",
help="Path to the config files [required].")
arguments$add_argument("-h", "--help", action='store_true', help="Print help message.")
args <- parser$parse_args()
#print(args)
if(args$h || is.null(args$config))
{
parser$print_help()
quit()
}
config_file = abspath(args$config)
config <- config::get(file = config_file)
check_discovery_configuration(config)
discovery = config$Input$"Discovery dataset name"
discovery_type = config$Input$"Expression type"
CSx_username = config$Input$"CIBERSORTx username"
CSx_token = config$Input$"CIBERSORTx token"
scale_column = config$Input$"Annotation file column to scale by"
additional_columns = config$Input$"Annotation file column(s) to plot"
fractions = config$Input$"Cell type fractions"
final_output = config$"Output"$"Output folder"
n_threads = config$"Pipeline settings"$"Number of threads"
nmf_restarts = config$"Pipeline settings"$"Number of NMF restarts"
max_clusters = config$"Pipeline settings"$"Maximum number of states per cell type"
cohpenetic_cutoff = config$"Pipeline settings"$"Cophenetic coefficient cutoff"
skip_steps = config$"Pipeline settings"$"Pipeline steps to skip"
CSx_singularity_path_fractions = config$"Pipeline settings"$"CIBERSORTx fractions Singularity path"
CSx_singularity_path_hires = config$"Pipeline settings"$"CIBERSORTx hires Singularity path"
suppressWarnings({
final_output = abspath(final_output)
if(!fractions %in% c("Carcinoma_Fractions", "Lymphoma_Fractions"))
{
fractions_path = abspath(fractions)
}
})
#Starting EcoTyper
setwd("pipeline")
start = Sys.time()
if(!fractions %in% c("Carcinoma_Fractions", "Lymphoma_Fractions"))
{
fractions = "Custom"
}
if(!1 %in% skip_steps)
{
cat("\nStep 1 (cell type fraction estimation): Running CIBERSORTxFractions on the discovery dataset...\n")
if(fractions %in% c("Carcinoma_Fractions", "Lymphoma_Fractions"))
{
if(discovery_type == "RNA-seq")
{
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "TR4", "no_batch", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "LM22", "B_mode", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions_two_tiered.R", "discovery", discovery, "TR4", "no_batch", "LM22", "B_mode", fractions))
RunJobQueue()
}else{
if(discovery_type == "Affymetrix")
{
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "TR4", "B_mode", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "LM22", "no_batch", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions_two_tiered.R", "discovery", discovery, "TR4", "B_mode", "LM22", "no_batch", fractions))
RunJobQueue()
}else{
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "LM22", "B_mode", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions.R", "discovery", discovery, "TR4", "B_mode", CSx_username, CSx_token, CSx_singularity_path_fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript csx_fractions_two_tiered.R", "discovery", discovery, "TR4", "B_mode", "LM22", "B_mode", fractions))
RunJobQueue()
}
}
}else{
cat("Step 1 (cell type fraction estimation): Loading user-provided cell type fractions...\n")
dir.create(file.path("../CIBERSORTx/fractions/discovery", discovery, fractions), recursive = T, showWarnings = F)
PushToJobQueue(paste("cp -f", fractions_path, file.path("../CIBERSORTx/fractions/discovery", discovery, fractions, "CIBERSORTx_Adjusted.txt")))
RunJobQueue()
}
cat("Step 1 (cell type fraction estimation) finished successfully!\n")
}else{
cat("Skipping step 1 (cell type fraction estimation)...\n")
}
if(!2 %in% skip_steps)
{
cat("\nStep 2 (cell type expression purification): Running CIBERSORTxHiRes...\n")
PushToJobQueue(paste("Rscript csx_hires_scheduler.R", "discovery", discovery, fractions, CSx_username, CSx_token, n_threads, CSx_singularity_path_hires))
RunJobQueue()
cat("Step 2 (cell type expression purification): Aggregating CIBERSORTxHiRes results...\n")
PushToJobQueue(paste("Rscript csx_hires_aggregate_worker_results.R", "discovery", discovery, fractions))
RunJobQueue()
cat("Step 2 (cell type expression purification) finished successfully!\n")
}else{
cat("Skipping step 2 (cell type expression purification)...\n")
}
if(!3 %in% skip_steps)
{
cat("\nStep 3 (cell state discovery): Preparing the NMF input...\n")
classes_path = file.path(file.path("../CIBERSORTx/hires", discovery, fractions, "classes.txt"))
classes = read.delim(classes_path)
for(cell_type in colnames(classes))
{
PushToJobQueue(paste("Rscript state_discovery_extract_features.R", discovery, fractions, cell_type, scale_column))
}
RunJobQueue()
cat("Step 3 (cell state discovery): Running NMF (Warning: This step might take a long time!)...\n")
classes_path = file.path(file.path("../CIBERSORTx/hires", discovery, fractions, "classes.txt"))
classes = read.delim(classes_path)
for(cell_type in colnames(classes))
{
if(!file.exists(file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, "expression_top_genes_scaled.txt")))
{
next
}
for(n_clusters in 2:max_clusters)
{
for(restart in 1:nmf_restarts)
{
if(!file.exists(file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "restarts", restart, "estim.RData")))
{
PushToJobQueue(paste("Rscript state_discovery_NMF.R", "discovery", discovery, fractions, cell_type, n_clusters, restart))
}else{
cat(paste0("Warning: Skipping NMF on '", cell_type, "' (number of states = ", n_clusters, ", restart ", restart, "), as the output file '", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "restarts", restart, "estim.RData"), "' already exists!\n"))
}
}
}
}
RunJobQueue()
classes_path = file.path(file.path("../CIBERSORTx/hires", discovery, fractions, "classes.txt"))
classes = read.delim(classes_path)
cat("Step 3 (cell state discovery): Aggregating NMF results...\n")
for(cell_type in colnames(classes))
{
if(!file.exists(file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, "expression_top_genes_scaled.txt")))
{
next
}
PushToJobQueue(paste("Rscript state_discovery_combine_NMF_restarts.R", "discovery", discovery, fractions, cell_type, max_clusters, nmf_restarts))
}
RunJobQueue()
cat("Step 3 (cell state discovery) finished successfully!\n")
}else{
cat("Skipping step 3 (cell state discovery)...\n")
}
if(!4 %in% skip_steps)
{
cat("\nStep 4 (choosing the number of cell states)...\n")
PushToJobQueue(paste("Rscript state_discovery_rank_selection.R", "discovery", discovery, fractions, max_clusters, cohpenetic_cutoff))
RunJobQueue()
cat("Step 4 (choosing the number of cell states) finished successfully!\n")
}else{
cat("Skipping step 4 (choosing the number of cell states)...\n")
}
if(!5 %in% skip_steps)
{
cat("\nStep 5 (extracting cell state information)...\n")
system(paste("cp -f ", config_file, file.path("../EcoTyper", discovery, "config_used.yml")))
key = read.delim(file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_data.txt"))
for(cell_type in key[,1])
{
cat(paste("Extracting cell states information for:", cell_type, "\n"))
n_clusters = key[key[,1] == cell_type, 2]
PushToJobQueue(paste("Rscript state_discovery_initial_plots.R", "discovery", discovery, fractions, cell_type, n_clusters, "State", paste(additional_columns, collapse = " ")))
}
RunJobQueue()
cat("Step 5 (extracting cell state information) finished successfully!\n")
}else{
cat("\nSkipping step 5 (extracting cell state information)...\n")
}
if(!6 %in% skip_steps)
{
cat("\nStep 6 (cell state QC filter)...\n")
key = read.delim(file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_data.txt"))
for(cell_type in key[,1])
{
cat(paste("Filtering low-quality cell states for:", cell_type, "\n"))
n_clusters = key[key[,1] == cell_type, 2]
PushToJobQueue(paste("Rscript state_discovery_first_filter.R", discovery, fractions, cell_type, n_clusters, "State", paste(additional_columns, collapse = " ")))
}
RunJobQueue()
cat("Step 6 (cell state QC filter) finished successfully!\n")
}else{
cat("\nSkipping step 6 (cell state QC filter)...\n")
}
if(!7 %in% skip_steps)
{
cat("\nStep 7 (advanced cell state QC filter). Warning: This filter is not recommended, unless your discovery dataset is composed of samples that can be confounded by serious biological or technical differences (e.g. it contains multiple tumor types).\n")
PushToJobQueue(paste("Rscript state_discovery_calculate_dropout_score.R", discovery, fractions))
RunJobQueue()
key = read.delim(file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_data.txt"))
for(cell_type in key[,1])
{
cat(paste("Filtering low-quality cell states for:", cell_type, "\n"))
n_clusters = key[key[,1] == cell_type, 2]
PushToJobQueue(paste("Rscript state_discovery_second_filter.R", discovery, fractions, cell_type, n_clusters, "State", paste(additional_columns, collapse = " ")))
}
RunJobQueue()
cat("Step 7 (advanced cell state QC filter) finished successfully!\n")
}else{
cat("\nSkipping step 7 (advanced cell state QC filter)...\n")
}
if(!8 %in% skip_steps)
{
cat("\nStep 8 (ecotype discovery)...\n")
PushToJobQueue(paste("Rscript ecotypes.R", discovery, fractions))
RunJobQueue()
PushToJobQueue(paste("Rscript ecotypes_assign_samples.R", discovery, fractions, "State",paste(additional_columns, collapse = " ")))
cat("Step 8 (ecotype discovery) finished successfully!\n")
RunJobQueue()
}else{
cat("Skipping step 8 (ecotype discovery)...\n")
}
cat("\nCopying EcoTyper results to the output folder!\n")
if(file.exists(final_output) && length(list.files(final_output)) > 0)
{
old_results_folder = paste0(final_output, format(Sys.time(), " %a %b %d %X %Y"))
dir.create(old_results_folder, recursive = T, showWarnings = F)
warning(paste0("The output folder contains files from a previous run. Moving those files to: '", old_results_folder, "'"))
system(paste0("mv -f ", final_output, "/* '", old_results_folder, "'"))
}
dir.create(final_output, recursive = T, showWarnings = F)
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_data.txt"), final_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_plot.pdf"), final_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_plot.png"), final_output))
key = read.delim(file.path("../EcoTyper", discovery, fractions, "Analysis", "rank_selection", "rank_data.txt"))
for(cell_type in key[,1])
{
n_clusters = key[key[,1] == cell_type, 2]
ct_output = file.path(final_output, cell_type)
dir.create(ct_output, recursive = T, showWarnings = F)
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "gene_info.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "state_abundances.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "state_assignment.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "state_assignment_heatmap.pdf"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "state_assignment_heatmap.png"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "heatmap_data.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Cell_States", "discovery", cell_type, n_clusters, "heatmap_top_ann.txt"), ct_output))
}
ct_output = file.path(final_output, "Ecotypes")
dir.create(ct_output, recursive = T, showWarnings = F)
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "ecotypes.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "ecotype_assignment.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "ecotype_abundance.txt"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "heatmap_assigned_samples_viridis.pdf"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "heatmap_assigned_samples_viridis.png"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "jaccard_matrix.pdf"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "jaccard_matrix.png"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "nclusters_jaccard.png"), ct_output))
system(paste("cp -f", file.path("../EcoTyper", discovery, fractions, "Ecotypes", "discovery", "nclusters_jaccard.pdf"), ct_output))
end = Sys.time()
cat(paste0("\nEcoTyper finished succesfully! Please find the results in: '", final_output, "'.\nRun time: ", format(end - start, digits = 1), "\n"))