-
Notifications
You must be signed in to change notification settings - Fork 3
/
meanreturns.log
626 lines (532 loc) · 24.8 KB
/
meanreturns.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
___ ____ ____ ____ ____ (R)
/__ / ____/ / ____/
___/ / /___/ / /___/ 16.0 Copyright 1985-2019 StataCorp LLC
Statistics/Data Analysis StataCorp
4905 Lakeway Drive
MP - Parallel Edition College Station, Texas 77845 USA
800-STATA-PC http://www.stata.com
979-696-4600 [email protected]
979-696-4601 (fax)
Single-user 2-core Stata perpetual license:
Serial number: 501606204617
Licensed to: Miklos Koren
CEU MicroData
Notes:
1. Stata is running in batch mode.
2. Unicode is supported; see help unicode_advice.
3. More than 2 billion observations are allowed; see help obs_advice.
4. Maximum number of variables is set to 5000; see help set_maxvar.
. do meanreturns.do
. use "data/unido/unido-dollar.dta", clear
. gen ccode=.
(96,430 missing values generated)
.
. * rename
. ren ind isic
.
. * drop weird stuff
. * drop if cnum==""
. drop if isic==300
(0 observations deleted)
.
. * create categ variables
. egen countrysector = group(cnum isic)
.
. gen share = empl
(35,852 missing values generated)
. gen logshock = log(val)-log(empl) if (val~=.)&(empl~=.)
(44,735 missing values generated)
.
. * deflate logshock TO INTERNATIONAL DOLLARS not domestic constant price
. sort cnum year
. merge cnum year using "data/pwt/pwt_prices.dta"
(note: you are using old merge syntax; see [D] merge for new syntax)
variables cnum year do not uniquely identify observations in the master data
. tab _
_merge | Freq. Percent Cum.
------------+-----------------------------------
1 | 4,980 4.92 4.92
2 | 4,855 4.79 9.71
3 | 91,450 90.29 100.00
------------+-----------------------------------
Total | 101,285 100.00
. drop if _==2
(4,855 observations deleted)
. drop _
.
. sort cnum year
. merge cnum year using "data/wdi/wdinew.dta"
(note: you are using old merge syntax; see [D] merge for new syntax)
variables cnum year do not uniquely identify observations in the master data
(note: variable ccode was str3 in the using data, but will be float now)
(note: variable cname was str32, now str34 to accommodate using data's
values)
. tab _
_merge | Freq. Percent Cum.
------------+-----------------------------------
1 | 11,875 11.88 11.88
2 | 3,515 3.52 15.40
3 | 84,555 84.60 100.00
------------+-----------------------------------
Total | 99,945 100.00
. drop if _==2
(3,515 observations deleted)
. drop _
.
. gen temp=cpi if cnum==840
(95,727 missing values generated)
. egen cpiUSA=mean(temp), by(year)
(1637 missing values generated)
.
. * use cpi here but PPPfa elsewhere
. replace logshock = logshock-log(p)-log(cpiUSA)
(51,695 real changes made, 6,442 to missing)
.
. * now back for the level of labor prod
. * <=. WAS WRONG
. gen laborprod0 = (val/p*100)/empl if (val+empl+p<.)
(50,602 missing values generated)
.
. su laborprod0, d
laborprod0
-------------------------------------------------------------
Percentiles Smallest
1% 1.070421 -159.1546
5% 2.629073 -42.08187
10% 3.925706 -17.84368 Obs 45,828
25% 7.359031 -14.06624 Sum of Wgt. 45,828
50% 14.57732 Mean 22.6615
Largest Std. Dev. 30.57024
75% 28.56588 823.3418
90% 48.23658 824.1932 Variance 934.5397
95% 63.77706 1416.589 Skewness 12.46141
99% 125.2678 1835.237 Kurtosis 450.5568
.
. tsset countrysector year
panel variable: countrysector (unbalanced)
time variable: year, 1963 to 2000, but with gaps
delta: 1 unit
.
. gen Dshock = logshock-L5.logshock
(62,141 missing values generated)
. * to take fifth difference
. * alternatively, we may take a fancier filter, e.g. Baxter-King, Hodrick-Pres
> cott
. * these programs are avaiable for Stata
.
. * drop outliers
.
.
. ************FOR UNIDO DATA
. drop if (cname=="Peru") & (year>=1979) & (year<=1981)
(57 observations deleted)
. drop if (cname=="Angola")
(704 observations deleted)
. drop if (cname=="Azerbaijan")
(95 observations deleted)
. drop if (cname=="Brazil") & (year==1985)
(17 observations deleted)
.
. count if (Dshock>5*log(2))&(Dshock!=.)
78
. l cname year isic Dshock if (Dshock>5*log(2))&(Dshock!=.)
+-----------------------------------+
| cname year isic Dshock |
|-----------------------------------|
7629. | Brazil 1990 311 20.02413 |
7666. | Brazil 1990 321 19.932 |
7799. | Brazil 1990 331 20.11984 |
7836. | Brazil 1990 332 20.57726 |
7873. | Brazil 1990 341 19.99116 |
|-----------------------------------|
7910. | Brazil 1990 342 20.41765 |
7947. | Brazil 1990 351 19.74609 |
7984. | Brazil 1990 355 19.71843 |
8021. | Brazil 1990 356 20.07973 |
8058. | Brazil 1990 361 20.38589 |
|-----------------------------------|
8127. | Brazil 1990 381 20.6492 |
8164. | Brazil 1990 383 20.03058 |
8201. | Brazil 1990 384 20.14464 |
43000. | Jamaica 1969 371 3.747217 |
43001. | Jamaica 1970 371 3.531042 |
|-----------------------------------|
43002. | Jamaica 1971 371 3.760158 |
44380. | Jordan 1976 381 5.095486 |
52410. | Malawi 1998 361 3.569022 |
63959. | Nigeria 1996 384 3.557865 |
67418. | Peru 1984 311 14.91828 |
|-----------------------------------|
67419. | Peru 1985 311 14.72851 |
67420. | Peru 1986 311 14.40442 |
67453. | Peru 1984 321 15.0054 |
67454. | Peru 1985 321 14.98823 |
67455. | Peru 1986 321 14.68074 |
|-----------------------------------|
67488. | Peru 1984 322 15.29756 |
67489. | Peru 1985 322 14.85804 |
67490. | Peru 1986 322 14.73667 |
67523. | Peru 1984 323 14.62147 |
67524. | Peru 1985 323 14.24103 |
|-----------------------------------|
67525. | Peru 1986 323 14.7304 |
67558. | Peru 1984 324 14.87209 |
67559. | Peru 1985 324 14.57669 |
67560. | Peru 1986 324 14.18979 |
67593. | Peru 1984 331 14.53943 |
|-----------------------------------|
67594. | Peru 1985 331 14.35476 |
67595. | Peru 1986 331 14.13841 |
67628. | Peru 1984 332 15.049 |
67629. | Peru 1985 332 14.43611 |
67630. | Peru 1986 332 13.49648 |
|-----------------------------------|
67663. | Peru 1984 341 15.03092 |
67664. | Peru 1985 341 14.79048 |
67665. | Peru 1986 341 14.4397 |
67698. | Peru 1984 342 15.32601 |
67699. | Peru 1985 342 14.90226 |
|-----------------------------------|
67700. | Peru 1986 342 14.43399 |
67733. | Peru 1984 351 15.84165 |
67734. | Peru 1985 351 15.99331 |
67735. | Peru 1986 351 15.11001 |
67768. | Peru 1984 355 15.74734 |
|-----------------------------------|
67769. | Peru 1985 355 15.15907 |
67770. | Peru 1986 355 14.76474 |
67803. | Peru 1984 356 15.29914 |
67804. | Peru 1985 356 15.04368 |
67805. | Peru 1986 356 14.63203 |
|-----------------------------------|
67838. | Peru 1984 361 15.48235 |
67839. | Peru 1985 361 15.0633 |
67840. | Peru 1986 361 14.82481 |
67873. | Peru 1984 371 14.42303 |
67874. | Peru 1985 371 14.16069 |
|-----------------------------------|
67875. | Peru 1986 371 14.26081 |
67908. | Peru 1984 381 14.87351 |
67909. | Peru 1985 381 14.6337 |
67910. | Peru 1986 381 14.49028 |
67943. | Peru 1984 383 15.19822 |
|-----------------------------------|
67944. | Peru 1985 383 14.85837 |
67945. | Peru 1986 383 14.59187 |
67978. | Peru 1984 384 15.16282 |
67979. | Peru 1985 384 14.52876 |
67980. | Peru 1986 384 14.5245 |
|-----------------------------------|
68013. | Peru 1984 385 15.404 |
68014. | Peru 1985 385 15.11253 |
68015. | Peru 1986 385 14.66162 |
68048. | Peru 1984 390 15.07403 |
68049. | Peru 1985 390 14.4357 |
|-----------------------------------|
68050. | Peru 1986 390 14.56088 |
82507. | Thailand 1991 342 5.007933 |
88240. | Egypt 1998 323 4.17321 |
+-----------------------------------+
. ************change this!!!
. drop if (Dshock>5*log(2))&(Dshock!=.)
(78 observations deleted)
.
. ***********change this!!!
. count if Dshock<-5*log(2)
8
. l cname year isic Dshock if Dshock<-5*log(2)
+-------------------------------------------------------+
| cname year isic Dshock |
|-------------------------------------------------------|
19127. | Costa Rica 1999 385 -4.169993 |
55345. | Mauritius 1998 361 -3.664863 |
63401. | Nigeria 1996 321 -4.909962 |
63509. | Nigeria 1996 324 -3.630276 |
63905. | Nigeria 1996 383 -3.902119 |
|-------------------------------------------------------|
88158. | Egypt 1993 323 -4.530517 |
89558. | United Republic of Tanzania 1995 323 -4.380703 |
89559. | United Republic of Tanzania 1996 323 -4.91194 |
+-------------------------------------------------------+
. drop if Dshock<-5*log(2)
(8 observations deleted)
.
.
. * now try to balance it somehow
. egen numind = count(laborprod0), by(cnum year)
. su numind
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
numind | 95,471 8.895727 9.045071 0 19
. keep if numind==r(max)
(62,392 observations deleted)
. egen numyea = count(laborprod0), by(cnum isic)
. tab numyea
numyea | Freq. Percent Cum.
------------+-----------------------------------
2 | 114 0.34 0.34
4 | 76 0.23 0.57
5 | 380 1.15 1.72
6 | 114 0.34 2.07
7 | 133 0.40 2.47
8 | 152 0.46 2.93
9 | 342 1.03 3.96
10 | 380 1.15 5.11
11 | 418 1.26 6.38
12 | 228 0.69 7.06
13 | 494 1.49 8.56
14 | 266 0.80 9.36
15 | 285 0.86 10.22
18 | 342 1.03 11.26
19 | 722 2.18 13.44
20 | 380 1.15 14.59
21 | 399 1.21 15.80
22 | 418 1.26 17.06
23 | 874 2.64 19.70
24 | 456 1.38 21.08
25 | 950 2.87 23.95
27 | 513 1.55 25.50
28 | 1,064 3.22 28.72
29 | 551 1.67 30.38
30 | 3,420 10.34 40.72
31 | 1,178 3.56 44.28
32 | 608 1.84 46.12
33 | 4,389 13.27 59.39
34 | 1,938 5.86 65.25
36 | 684 2.07 67.32
37 | 703 2.13 69.44
38 | 10,108 30.56 100.00
------------+-----------------------------------
Total | 33,079 100.00
. su numyea
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
numyea | 33,079 30.15221 8.6864 2 38
.
. ************** THRESHOLD ******************
. * keep only if more than 20 years
. keep if (numyea>=20)&(numyea!=.)
(4,446 observations deleted)
.
.
. tab cname if laborprod0<.
cname | Freq. Percent Cum.
-----------------------------------+-----------------------------------
Australia | 570 1.99 1.99
Austria | 722 2.52 4.51
Bangladesh | 532 1.86 6.37
Bolivia | 513 1.79 8.16
Canada | 722 2.52 10.68
Chile | 722 2.52 13.21
China, Hong Kong SAR | 475 1.66 14.86
China, Taiwan Province | 456 1.59 16.46
Colombia | 722 2.52 18.98
Denmark | 551 1.92 20.90
Ecuador | 684 2.39 23.29
Egypt | 627 2.19 25.48
El Salvador | 380 1.33 26.81
Finland | 608 2.12 28.93
France | 627 2.19 31.12
Germany, Western Part | 437 1.53 32.65
Ghana | 418 1.46 34.11
Greece | 722 2.52 36.63
Hungary | 589 2.06 38.69
India | 722 2.52 41.21
Indonesia | 437 1.53 42.73
Iran, Islamic Republic of | 570 1.99 44.72
Ireland | 722 2.52 47.25
Israel | 627 2.19 49.44
Italy | 646 2.26 51.69
Japan | 722 2.52 54.21
Korea, Republic of | 722 2.52 56.74
Malaysia | 627 2.19 58.93
Netherlands | 627 2.19 61.11
New Zealand | 532 1.86 62.97
Nicaragua | 399 1.39 64.37
Norway | 722 2.52 66.89
Pakistan | 570 1.99 68.88
Philippines | 646 2.26 71.13
Poland | 570 1.99 73.13
Portugal | 570 1.99 75.12
Singapore | 722 2.52 77.64
South Africa | 646 2.26 79.89
Spain | 722 2.52 82.42
Sri Lanka | 475 1.66 84.07
Sweden | 722 2.52 86.60
Turkey | 722 2.52 89.12
United Kingdom | 589 2.06 91.17
United States of America | 627 2.19 93.36
Uruguay | 570 1.99 95.36
Venezuela | 627 2.19 97.54
Zimbabwe | 703 2.46 100.00
-----------------------------------+-----------------------------------
Total | 28,633 100.00
.
.
. * create categ
. egen country=group(cnum)
. su country
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
country | 28,633 24.50896 13.6194 1 47
. global J = r(max)
.
. egen sector=group(isic)
. su sector
Variable | Obs Mean Std. Dev. Min Max
-------------+---------------------------------------------------------
sector | 28,633 10 5.477321 1 19
. global S = r(max)
.
. * now demean it country by country and sector by sector
. egen mind = mean(Dshock), by(sector)
. egen mcnt = mean(Dshock), by(country)
. egen moverall = mean(Dshock)
. *egen mean = mean(Dshock), by(sector country)
.
. gen shock = Dshock-mind-mcnt+moverall
(4,829 missing values generated)
.
. * then the shares
. egen sumshare = sum(share), by(country year)
. replace share = share/sumshare
(28,633 real changes made)
.
. save "data/derived/shares.dta", replace
file data/derived/shares.dta saved
.
. * go for the means
. collapse (mean) laborprod = laborprod0, by(cnum country isic sector)
. su laborprod, d
(mean) laborprod0
-------------------------------------------------------------
Percentiles Smallest
1% 3.171845 2.494038
5% 6.270967 2.56112
10% 8.927624 2.584828 Obs 893
25% 13.41063 2.594552 Sum of Wgt. 893
50% 20.17905 Mean 23.29936
Largest Std. Dev. 16.926
75% 28.38597 138.9766
90% 39.60019 142.8606 Variance 286.4894
95% 49.03619 159.8158 Skewness 3.784294
99% 93.29829 201.1104 Kurtosis 28.75851
.
. sort cnum isic
. save "data/derived/meanlaborprod_long.dta", replace
file data/derived/meanlaborprod_long.dta saved
.
. keep sector country laborprod
. reshape wide laborprod, i(country) j(sector)
(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
Data long -> wide
-----------------------------------------------------------------------------
Number of obs. 893 -> 47
Number of variables 3 -> 20
j variable (19 values) sector -> (dropped)
xij variables:
laborprod -> laborprod1 laborprod2 ... laborp
> rod19
-----------------------------------------------------------------------------
.
. sort country
. save "data/derived/meanlaborprod_wide.dta", replace
file data/derived/meanlaborprod_wide.dta saved
.
.
. * now do the WIDE stuff
. use "data/derived/shares.dta", clear
.
. keep share country year sector cnum
. reshape wide share, i(country cnum year) j(sector)
(note: j = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
Data long -> wide
-----------------------------------------------------------------------------
Number of obs. 28633 -> 1507
Number of variables 5 -> 22
j variable (19 values) sector -> (dropped)
xij variables:
share -> share1 share2 ... share19
-----------------------------------------------------------------------------
.
. sort cnum year
. save "data/derived/preparedshares.dta", replace
file data/derived/preparedshares.dta saved
.
. ********************************************
. * will need to create the sample second moment matrix here
.
. use "data/derived/shares.dta", clear
. * this is a unique identifier w/ last 2 digits = sector
. gen cntsec = country*100+sector
. keep cntsec year shock
. reshape wide shock, i(year) j(cntsec)
(note: j = 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
> 118 119 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 2
> 18 219 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 31
> 8 319 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
> 419 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
> 519 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 6
> 19 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 71
> 9 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
> 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
> 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 10
> 16 1017 1018 1019 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
> 1113 1114 1115 1116 1117 1118 1119 1201 1202 1203 1204 1205 1206 1207 1208 1
> 209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1301 1302 1303 1304 130
> 5 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1401
> 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 14
> 17 1418 1419 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
> 1514 1515 1516 1517 1518 1519 1601 1602 1603 1604 1605 1606 1607 1608 1609 1
> 610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1701 1702 1703 1704 1705 170
> 6 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1801 1802
> 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 18
> 18 1819 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
> 1915 1916 1917 1918 1919 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2
> 011 2012 2013 2014 2015 2016 2017 2018 2019 2101 2102 2103 2104 2105 2106 210
> 7 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2201 2202 2203
> 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 22
> 19 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
> 2316 2317 2318 2319 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2
> 412 2413 2414 2415 2416 2417 2418 2419 2501 2502 2503 2504 2505 2506 2507 250
> 8 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2601 2602 2603 2604
> 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 27
> 01 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
> 2717 2718 2719 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2
> 813 2814 2815 2816 2817 2818 2819 2901 2902 2903 2904 2905 2906 2907 2908 290
> 9 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 3001 3002 3003 3004 3005
> 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3101 31
> 02 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
> 3118 3119 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3
> 214 3215 3216 3217 3218 3219 3301 3302 3303 3304 3305 3306 3307 3308 3309 331
> 0 3311 3312 3313 3314 3315 3316 3317 3318 3319 3401 3402 3403 3404 3405 3406
> 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3501 3502 35
> 03 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
> 3519 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3
> 615 3616 3617 3618 3619 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 371
> 1 3712 3713 3714 3715 3716 3717 3718 3719 3801 3802 3803 3804 3805 3806 3807
> 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3901 3902 3903 39
> 04 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
> 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4
> 016 4017 4018 4019 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 411
> 2 4113 4114 4115 4116 4117 4118 4119 4201 4202 4203 4204 4205 4206 4207 4208
> 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4301 4302 4303 4304 43
> 05 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4401
> 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4
> 417 4418 4419 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 451
> 3 4514 4515 4516 4517 4518 4519 4601 4602 4603 4604 4605 4606 4607 4608 4609
> 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4701 4702 4703 4704 4705 47
> 06 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719)
Data long -> wide
-----------------------------------------------------------------------------
Number of obs. 28633 -> 38
Number of variables 3 -> 894
j variable (893 values) cntsec -> (dropped)
xij variables:
shock -> shock101 shock102 ... shock4719
-----------------------------------------------------------------------------
. * this is very wide, may need more memory
.
.
.
end of do-file