forked from prophesier/diff-svc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpre_check.py
155 lines (139 loc) · 7.38 KB
/
pre_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import re
import yaml
solutions = {'yaml': 'yaml路径不正确,可能导致yaml污染或预处理失败\r\n',
'hubert': 'hubert不存在,请到群文件里下载hubert_torch.zip并解压到checkpoints文件夹下\r\n',
'raw_data_dir': '数据集目录与yaml不匹配,请检查数据集目录与yaml内"raw_data_dir:"栏是否匹配\r\n',
'vocoder': "与yaml匹配的声码器不存在,24k声码器请到群文件里下载basics.zip并解压到checkpoints文件夹下\r\n44.1k声码器请到“https://github.com/openvpi/vocoders”github发布页下载并解压到checkpoints下\r\n如已下载并解压,请核对声码器文件名与yaml内“vocoder_ckpt:”栏的声码器文件名与checkpoints文件夹下声码器文件夹内的声码器文件名是否匹配\r\n",
'torch': '你未安装torch三件套或torch三件套异常,解决方法见语雀安装torch相关,\r\n复制链接粘贴到浏览器即可直达相关网页:\r\n通用命令安装torch:https://www.yuque.com/jiuwei-nui3d/qng6eg/sc8ivoge8vww4lu6#9mQgt\r\nwindows下手动安装torch:https://www.yuque.com/jiuwei-nui3d/qng6eg/ea0ntd\r\n',
'urllib.parse': '载入urllib.parse失败,解决方法见语雀常见错误①,\r\n复制链接粘贴到浏览器即可直达相关网页:https://www.yuque.com/jiuwei-nui3d/qng6eg/gdpi5orf3niv9mwb#SyTom\r\n',
'utils.hparams': '载入utils.hparams失败,解决方法见语雀常见错误③,\r\n复制链接粘贴到浏览器即可直达相关网页:https://www.yuque.com/jiuwei-nui3d/qng6eg/abaxpwozc2h5yltt#MOddD\r\n',
'config_path': 'config_path路径,即yaml路径格式不正确,应为:training/xxxx.yaml\r\n'}
def get_end_file(dir_path, end):
file_lists = []
for root, dirs, files in os.walk(dir_path):
files = [f for f in files if f[0] != '.']
dirs[:] = [d for d in dirs if d[0] != '.']
for f_file in files:
if f_file.endswith(end):
file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
return file_lists
def scan(path):
model_str = ""
path_lists = get_end_file(path, "yaml")
for i in range(0, len(path_lists)):
if re.search(u'[\u4e00-\u9fa5]', path_lists[i]):
print(f'{path_lists[i]}:中文路径!此项跳过')
continue
model_str += f"{i}:{path_lists[i]}\r\n"
if (i + 1) % 5 == 0:
print(f"{model_str}")
model_str = ""
if len(path_lists) % 5 != 0:
print(model_str)
return path_lists
# 检测文件夹大小的函数
def get_dir_size(path, size=0):
for root, dirs, files in os.walk(path):
for f in files:
size += os.path.getsize(os.path.join(root, f))
return size
# 意义不明的try_except
def try_except():
print("请等待10秒")
res_str = ""
try:
import torch
import torchvision
import torchaudio
print('成功加载torch')
cuda = f"cuda vision: {torch.cuda_version}" if torch.cuda.is_available() else "cuda不存在或版本不匹配,请查阅相关资料自行安装"
print(cuda)
except Exception as e:
res_str += solutions['torch']
try:
from urllib.parse import quote
print('成功载入urllib.parse')
except Exception as e:
res_str += solutions['urllib.parse']
try:
from utils.hparams import set_hparams, hparams
print('成功载入utils.hparams')
except Exception as e:
res_str += solutions['utils.hparams']
if res_str:
print("\r\n*=====================\r\n", "错误及解决方法:\r\n", res_str)
def test_part(test):
res_str = ""
print("\r\n*=====================")
for k, v in test.items():
if isinstance(v, list):
for i in v:
if os.path.exists(i):
print(f"{k}-{i}: 通过" + (
",绝对路径只能在当前平台运行,更换平台训练请使用相对路径" if os.path.isabs(i) else ""))
elif os.path.exists(v):
print(
f"{k}: 通过" + (",绝对路径只能在当前平台运行,更换平台训练请使用相对路径" if os.path.isabs(v) else ""))
else:
print(f"{k}: 不通过")
res_str += f"{k}:{solutions[k]}\r\n"
if res_str:
print("\r\n解决方法:\r\n", res_str)
else:
return True
if __name__ == '__main__':
print("选择:")
print("0.环境检测")
print("1.配置文件检测")
f = int(input("请输入选项:"))
if f == 0:
# 调用try函数
try_except()
elif f == 1:
path_list = scan("./configs")
a = input("请输入选项:")
project_path = path_list[int(a)]
with open(project_path, "r") as f:
data = yaml.safe_load(f)
with open("./configs/base.yaml", "r") as f:
base = yaml.safe_load(f)
test_model = {'yaml': data["config_path"], 'hubert': data["hubert_path"],
'raw_data_dir': data["raw_data_dir"], 'vocoder': base["vocoder_ckpt"],
'config_path': data["config_path"]}
try_except()
yaml_path = data["config_path"]
model_name = data["binary_data_dir"].split("/")[-1]
if test_part(test_model):
if get_dir_size(data["binary_data_dir"]) > 100 * 1024 ** 2:
print("\r\ntrain.data通过初步检测(不排除数据集制作时的失误)")
print("\r\n*====================="
"\r\n### 训练"
"\r\ncd进入diff-svc的目录下执行以下命令:"
"\r\n*====================="
"\r\n# windows,**使用cmd窗口**"
"\r\nset CUDA_VISIBLE_DEVICES=0"
f"\r\npython run.py --config {yaml_path} --exp_name {model_name} --reset"
"\r\n*====================="
"\r\n# linux"
f"\r\nCUDA_VISIBLE_DEVICES=0 python run.py --config {yaml_path} --exp_name {model_name} --reset"
"\r\n*=====================")
else:
print("\r\n未进行预处理或预处理错误,请参考语雀教程:https://www.yuque.com/jiuwei-nui3d/qng6eg")
print("\r\n*====================="
"\r\n### 数据预处理"
"\r\ncd进入diff-svc的目录下执行以下命令:"
"\r\n*====================="
"\r\n# windows,**使用cmd窗口**"
"\r\nset PYTHONPATH=."
"\r\nset CUDA_VISIBLE_DEVICES=0"
f"\r\npython preprocessing/svc_binarizer.py --config {yaml_path}"
"\r\n*====================="
"\r\n# linux"
"\r\nexport PYTHONPATH=."
f"\r\nCUDA_VISIBLE_DEVICES=0 python preprocessing/svc_binarizer.py --config {yaml_path}"
"\r\n*=====================")
print("预处理完请重新运行此脚本选项1,届时提供训练命令")
else:
print("请依据以上提示解决问题后,重新运行此脚本")
exit()