-
Notifications
You must be signed in to change notification settings - Fork 97
CrsMatrix
Luc Berger edited this page Jun 25, 2020
·
21 revisions
The CrsMatrix class provides a compressed sparse row implementation of a sparse matrix, as described, for example, in Saad (2nd ed.).
template<class ScalarType,
class OrdinalType,
class Device,
class MemoryTraits = void,
class SizeType = typename Kokkos::ViewTraits<OrdinalType*, Device, void, void>::size_type>
class CrsMatrix {
public:
//! Type of the matrix's execution space.
typedef typename Device::execution_space execution_space;
//! Type of the matrix's memory space.
typedef typename Device::memory_space memory_space;
//! Type of the matrix's device type.
typedef Kokkos::Device<execution_space, memory_space> device_type;
//! Type of each value in the matrix.
typedef ScalarType value_type;
//! Type of each (column) index in the matrix.
typedef OrdinalType ordinal_type;
typedef MemoryTraits memory_traits;
/// \brief Type of each entry of the "row map."
///
/// The "row map" corresponds to the \c ptr array of row offsets in
/// compressed sparse row (CSR) storage.
typedef SizeType size_type;
//! Type of a host-memory mirror of the sparse matrix.
typedef CrsMatrix<ScalarType, OrdinalType, host_mirror_space, MemoryTraits> HostMirror;
//! Type of the graph structure of the sparse matrix.
typedef Kokkos::StaticCrsGraph<ordinal_type, Kokkos::LayoutLeft, execution_space, memory_traits, size_type> StaticCrsGraphType;
//! Type of the graph structure of the sparse matrix - consistent with Kokkos.
typedef Kokkos::StaticCrsGraph<ordinal_type, Kokkos::LayoutLeft, execution_space, memory_traits, size_type> staticcrsgraph_type;
//! Type of column indices in the sparse matrix.
typedef typename staticcrsgraph_type::entries_type index_type;
//! Const version of the type of column indices in the sparse matrix.
typedef typename index_type::const_value_type const_ordinal_type;
//! Nonconst version of the type of column indices in the sparse matrix.
typedef typename index_type::non_const_value_type non_const_ordinal_type;
//! Type of the "row map" (which contains the offset for each row's data).
typedef typename staticcrsgraph_type::row_map_type row_map_type;
//! Const version of the type of row offsets in the sparse matrix.
typedef typename row_map_type::const_value_type const_size_type;
//! Nonconst version of the type of row offsets in the sparse matrix.
typedef typename row_map_type::non_const_value_type non_const_size_type;
//! Kokkos Array type of the entries (values) in the sparse matrix.
typedef Kokkos::View<value_type*, Kokkos::LayoutRight, device_type, MemoryTraits> values_type;
//! Const version of the type of the entries in the sparse matrix.
typedef typename values_type::const_value_type const_value_type;
//! Nonconst version of the type of the entries in the sparse matrix.
typedef typename values_type::non_const_value_type non_const_value_type;
/// \name Storage of the actual sparsity structure and values.
///
/// CrsMatrix uses the compressed sparse row (CSR) storage format to
/// store the sparse matrix. CSR is also called "compressed row
/// storage"; hence the name, which it inherits from Tpetra and from
/// Epetra before it.
//@{
//! The graph (sparsity structure) of the sparse matrix.
staticcrsgraph_type graph;
//! The 1-D array of values of the sparse matrix.
values_type values;
//@}
/// \brief Default constructor; constructs an empty sparse matrix.
KOKKOS_INLINE_FUNCTION
CrsMatrix () :
numCols_ (0)
{}
//! Copy constructor (shallow copy).
template<typename SType,
typename OType,
class DType,
class MTType,
typename IType>
KOKKOS_INLINE_FUNCTION
CrsMatrix (const CrsMatrix<SType,OType,DType,MTType,IType> & B)
}
/// \brief Construct with a graph that will be shared.
///
/// Allocate the values array for subsquent fill.
CrsMatrix (const std::string& arg_label,
const staticcrsgraph_type& arg_graph)
/// \brief Constructor that copies raw arrays of host data in
/// coordinate format.
///
/// On input, each entry of the sparse matrix is stored in val[k],
/// with row index rows[k] and column index cols[k]. We assume that
/// the entries are sorted in increasing order by row index.
///
/// This constructor is mainly useful for benchmarking or for
/// reading the sparse matrix's data from a file.
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param val [in] The entries.
/// \param rows [in] The row indices. rows[k] is the row index of
/// val[k].
/// \param cols [in] The column indices. cols[k] is the column
/// index of val[k].
/// \param pad [in] If true, pad the sparse matrix's storage with
/// zeros in order to improve cache alignment and / or
/// vectorization.
CrsMatrix (const std::string &label,
OrdinalType nrows,
OrdinalType ncols,
size_type annz,
ScalarType* val,
OrdinalType* rows,
OrdinalType* cols)
/// \brief Constructor that accepts a row map, column indices, and
/// values.
///
/// The matrix will store and use the row map, indices, and values
/// directly (by view, not by deep copy).
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param vals [in/out] The entries.
/// \param rows [in/out] The row map (containing the offsets to the
/// data in each row).
/// \param cols [in/out] The column indices.
CrsMatrix (const std::string& /* label */,
const OrdinalType nrows,
const OrdinalType ncols,
const size_type annz,
const values_type& vals,
const row_map_type& rows,
const index_type& cols)
/// \brief Constructor that accepts a a static graph, and values.
///
/// The matrix will store and use the row map, indices, and values
/// directly (by view, not by deep copy).
///
/// \param label [in] The sparse matrix's label.
/// \param nrows [in] The number of rows.
/// \param ncols [in] The number of columns.
/// \param annz [in] The number of entries.
/// \param vals [in/out] The entries.
/// \param rows [in/out] The row map (containing the offsets to the
/// data in each row).
/// \param cols [in/out] The column indices.
CrsMatrix (const std::string& /* label */,
const OrdinalType& ncols,
const values_type& vals,
const staticcrsgraph_type& graph_)
//! Attempt to assign the input matrix to \c *this.
template<typename aScalarType, typename aOrdinalType, class aDevice, class aMemoryTraits,typename aSizeType>
CrsMatrix&
operator= (const CrsMatrix<aScalarType, aOrdinalType, aDevice, aMemoryTraits, aSizeType>& mtx)
//! The number of rows in the sparse matrix.
KOKKOS_INLINE_FUNCTION ordinal_type numRows () const
//! The number of columns in the sparse matrix.
KOKKOS_INLINE_FUNCTION ordinal_type numCols () const
//! The number of stored entries in the sparse matrix.
KOKKOS_INLINE_FUNCTION size_type nnz () const
Location: example/wiki/sparse/KokkosSparse_wiki_crsmatrix.cpp
#include <sstream>
#include "Kokkos_Core.hpp"
#include "KokkosKernels_default_types.hpp"
#include "KokkosSparse_CrsMatrix.hpp"
#include "KokkosSparse_spmv.hpp"
using Scalar = default_scalar;
using Ordinal = default_lno_t;
using Offset = default_size_type;
using Layout = default_layout;
int main(int argc, char* argv[]) {
Kokkos::initialize();
using device_type = typename Kokkos::Device<Kokkos::DefaultExecutionSpace,
typename Kokkos::DefaultExecutionSpace::memory_space>;
using matrix_type = typename KokkosSparse::CrsMatrix<Scalar, Ordinal, device_type, void, Offset>;
using graph_type = typename matrix_type::staticcrsgraph_type;
using row_map_type = typename graph_type::row_map_type;
using entries_type = typename graph_type::entries_type;
using values_type = typename matrix_type::values_type;
const Scalar SC_ONE = Kokkos::ArithTraits<Scalar>::one();
Ordinal numRows = 10;
{
const Offset numNNZ = 2 + (numRows - 2)*3 + 2;
typename row_map_type::non_const_type row_map("row pointers", numRows + 1);
typename entries_type::non_const_type entries("column indices", numNNZ);
typename values_type::non_const_type values("values", numNNZ);
{
// Build the row pointers and store numNNZ
typename row_map_type::HostMirror row_map_h = Kokkos::create_mirror_view(row_map);
for(Ordinal rowIdx = 1; rowIdx < numRows + 1; ++rowIdx) {
if( (rowIdx == 1) || (rowIdx == numRows) ){
row_map_h(rowIdx) = row_map_h(rowIdx - 1) + 2;
} else {
row_map_h(rowIdx) = row_map_h(rowIdx - 1) + 3;
}
}
Kokkos::deep_copy(row_map, row_map_h);
if(row_map_h(numRows) != numNNZ) {
std::ostringstream error_msg;
error_msg << "error: row_map(numRows) != numNNZ, row_map_h(numRows)=" << row_map_h(numRows)
<< ", numNNZ=" << numNNZ;
throw std::runtime_error(error_msg.str());
}
typename entries_type::HostMirror entries_h = Kokkos::create_mirror_view(entries);
typename values_type::HostMirror values_h = Kokkos::create_mirror_view(values);
for(Ordinal rowIdx = 0; rowIdx < numRows; ++rowIdx) {
if(rowIdx == 0) {
entries_h(row_map_h(rowIdx)) = rowIdx;
entries_h(row_map_h(rowIdx) + 1) = rowIdx + 1;
values_h(row_map_h(rowIdx)) = SC_ONE;
values_h(row_map_h(rowIdx) + 1) = -SC_ONE;
} else if(rowIdx == numRows - 1) {
entries_h(row_map_h(rowIdx)) = rowIdx - 1;
entries_h(row_map_h(rowIdx) + 1) = rowIdx;
values_h(row_map_h(rowIdx)) = -SC_ONE;
values_h(row_map_h(rowIdx) + 1) = SC_ONE;
} else {
entries_h(row_map_h(rowIdx)) = rowIdx - 1;
entries_h(row_map_h(rowIdx) + 1) = rowIdx;
entries_h(row_map_h(rowIdx) + 2) = rowIdx + 1;
values_h(row_map_h(rowIdx)) = -SC_ONE;
values_h(row_map_h(rowIdx) + 1) = SC_ONE + SC_ONE;
values_h(row_map_h(rowIdx) + 2) = -SC_ONE;
}
}
Kokkos::deep_copy(entries, entries_h);
Kokkos::deep_copy(values, values_h);
}
graph_type myGraph(entries, row_map);
matrix_type myMatrix("test matrix", numRows, values, myGraph);
}
Kokkos::finalize();
return 0;
}
- SpMV
- SpADD
- SpGEMM
SAND2020-6386 W