-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_flow_from_directory.py
106 lines (89 loc) · 2.92 KB
/
train_flow_from_directory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import keras
import cv2
import math
import os
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from snsdl.evaluation import Eval
"""
For a big dataset that doesn't fit in the memory, you need to train the model
using a generator.
This code is an example of using the Keras ImageDataGenerator to feed the training
processes with batches of images.
At the end, some reports are saved in the output directory.
"""
# Configuration
imageW = 64
imageH = 64
batch_size = 32
epochs = 2
idg = ImageDataGenerator(rescale=1. / 255)
train_generator = idg.flow_from_directory(
directory="/tmp/dataset/output/train",
target_size=(imageH, imageW),
color_mode="rgb",
batch_size=batch_size,
class_mode="categorical",
shuffle=True,
seed=42
)
test_generator = idg.flow_from_directory(
directory="/tmp/dataset/output/test",
target_size=(imageH, imageW),
color_mode="rgb",
batch_size=batch_size,
class_mode="categorical",
shuffle=True,
seed=42
)
val_generator = idg.flow_from_directory(
directory="/tmp/dataset/output/val",
target_size=(imageH, imageW),
color_mode="rgb",
batch_size=batch_size,
class_mode="categorical",
shuffle=True,
seed=42
)
# Model parameters
input_shape = (imageH, imageW, 3)
num_classes = train_generator.num_classes
# CNN Model
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
# Compile model
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])
# Train model on dataset
history = model.fit_generator(
generator=train_generator,
validation_data=val_generator,
use_multiprocessing=False,
workers=1,
epochs=epochs)
# Save model
os.makedirs('saved_models', exist_ok=True)
model.save('saved_models/cnn_example.model')
# Predict new samples
steps = math.ceil(test_generator.n / batch_size)
predict = model.predict_generator(test_generator, steps=steps)
# Predicted labels
labels = test_generator.class_indices
labels = dict((v,k) for k,v in labels.items())
y_predict = [labels[k] for k in list(np.argmax(predict, axis=-1))]
# GT labels
y_true = [labels[k] for k in test_generator.classes]
# Evaluate results
class_names = sorted(test_generator.class_indices.items(), key=lambda kv: kv[1])
class_names = [item[0] for item in class_names]
Eval.plot_history(history, png_output='output/', show=False)
Eval.full_multiclass_report(y_true, y_predict, class_names, png_output='output/', show=False)