From a367f5675917275c814af7a5645ff0bd6896f4a8 Mon Sep 17 00:00:00 2001 From: satyajandhyala Date: Fri, 29 Sep 2023 11:00:44 -0700 Subject: [PATCH] [JS/Web] Add ConvTranspose implementation using MatMul (#17573) ### Description Add ConvTranspose implementation using MatMul to increase perf. ### Motivation and Context --- .../ops/3rd-party/conv_backprop_mm_webgpu.ts | 243 ++++++++++++++++++ .../ops/3rd-party/conv_backprop_webgpu.ts | 4 +- .../wasm/jsep/webgpu/ops/conv-transpose.ts | 66 ++++- .../jsep/webgpu/ops/conv2dtranspose-mm.ts | 29 +++ js/web/test/data/ops/conv-transpose.jsonc | 131 +++++++++- .../providers/js/operators/conv_transpose.h | 17 ++ 6 files changed, 471 insertions(+), 19 deletions(-) create mode 100644 js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts create mode 100644 js/web/lib/wasm/jsep/webgpu/ops/conv2dtranspose-mm.ts diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts new file mode 100644 index 0000000000000..3925e1cb4f564 --- /dev/null +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_mm_webgpu.ts @@ -0,0 +1,243 @@ +/** + * @license + * Copyright 2021 Google LLC. All Rights Reserved. + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ============================================================================= + */ + +// sampled from [@tensorflow/tfjs] tfjs-backend-webgpu/src/conv_backprop_mm_webgpu.ts +// +// modified to fit the needs of the project + +import {LOG_DEBUG} from '../../../log'; +import {TensorView} from '../../../tensor-view'; +import {ShapeUtil} from '../../../util'; +import {GpuDataType, ProgramInfo, ProgramMetadata} from '../../types'; +import {ConvTransposeAttributes} from '../conv-transpose'; + +import {Activation, activationFnSnippet, biasActivationSnippet, typeSnippet} from './activation_util'; +import {utilFunctions} from './conv_util'; +import {makeMatMulPackedSource, makeMatMulPackedVec4Source} from './matmul_packed_webgpu'; + +const conv2dTransposeCommonSnippet = + (isChannelsLast: boolean, addBias = false, activation?: Activation, hasPreluActivationWeights = false, + innerElementSize = 4): string => { + const getWSnippet = (innerElementSize: number) => { + switch (innerElementSize) { + case 1: + return 'return W[getIndexFromCoords4D(coord, wShape)];'; + case 4: + return ` + let coord1 = vec4(coordX, coordY, col + 1, rowInner); + let coord2 = vec4(coordX, coordY, col + 2, rowInner); + let coord3 = vec4(coordX, coordY, col + 3, rowInner); + let v0 = W[getIndexFromCoords4D(coord, wShape)]; + let v1 = W[getIndexFromCoords4D(coord1, wShape)]; + let v2 = W[getIndexFromCoords4D(coord2, wShape)]; + let v3 = W[getIndexFromCoords4D(coord3, wShape)]; + return vec4(v0, v1, v2, v3); + `; + default: + throw new Error(`innerElementSize ${innerElementSize} is not supported.`); + } + }; + const coordASnippet = isChannelsLast ? ` + let coord = vec4(batch, iXR, iXC, xCh); + ` : + ` + let coord = vec4(batch, xCh, iXR, iXC); + `; + + const coordResSnippet = isChannelsLast ? ` + let coords = vec4( + batch, + row / outWidth, + row % outWidth, + col); + ` : + ` + let coords = vec4( + batch, + row, + col / outWidth, + col % outWidth); + `; + + const xHeight = isChannelsLast ? 'outBackprop[1]' : 'outBackprop[2]'; + const xWidth = isChannelsLast ? 'outBackprop[2]' : 'outBackprop[3]'; + const row = isChannelsLast ? 'row' : 'col'; + const col = isChannelsLast ? 'col' : 'row'; + + const readASnippet = ` + let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'}; + let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'}; + let outRow = ${row} / outWidth; + let outCol = ${row} % outWidth; + + let WRow = ${col} / (filterDims[1] * inChannels); + let WCol = ${col} / inChannels % filterDims[1]; + let xR = f32(outRow - pads[0] + dilation[0] * WRow) / f32(strides[0]); + let xC = f32(outCol - pads[1] + dilation[1] * WCol) / f32(strides[1]); + if (xR < 0.0 || xR >= f32(${xHeight}) || fract(xR) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); + } + if (xC < 0.0 || xC >= f32(${xWidth}) || fract(xC) > 0.0) { + return ${typeSnippet(innerElementSize)}(0.0); + } + let iXR = i32(xR); + let iXC = i32(xC); + let xCh = ${col} % inChannels; + ${coordASnippet} + return x[getIndexFromCoords4D(coord, xShape)/${innerElementSize}];`; + + const sampleA = isChannelsLast ? ` + let col = colIn * ${innerElementSize}; + if (row < dimAOuter && col < dimInner) { + ${readASnippet} + } + return ${typeSnippet(innerElementSize)}(0.0);` : + ` + let col = colIn * ${innerElementSize}; + if (row < dimInner && col < dimBOuter) { + ${readASnippet} + } + return ${typeSnippet(innerElementSize)}(0.0);`; + + const sampleW = ` + let col = colIn * ${innerElementSize}; + let inChannels = ${isChannelsLast ? 'outBackprop[3]' : 'outBackprop[1]'}; + let coordX = filterDims.x - 1 - row / (filterDims[1] * inChannels); + let coordY = filterDims.y - 1 - (row / inChannels) % filterDims[1]; + if (${ + isChannelsLast ? 'row < dimInner && col < dimBOuter' : + 'row < dimInner && col < dimAOuter'} && coordX >= 0 && coordY >= 0) { + let rowInner = row % inChannels; + let coord = vec4(coordX, coordY, col, rowInner); + ${getWSnippet(innerElementSize)} + } + return ${typeSnippet(innerElementSize)}(0.0); + `; + + + const userCode = ` + ${activationFnSnippet(activation, hasPreluActivationWeights, innerElementSize === 4, 4)} + fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + ${isChannelsLast ? sampleA : sampleW} + } + + fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${typeSnippet(innerElementSize)} { + ${isChannelsLast ? sampleW : sampleA} + } + + fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${typeSnippet(innerElementSize)}) { + let col = colIn * ${innerElementSize}; + if (row < dimAOuter && col < dimBOuter) { + var value = valueInput; + let outWidth = ${isChannelsLast ? 'outShape[2]' : 'outShape[3]'}; + ${coordResSnippet} + ${biasActivationSnippet(addBias, activation)} + result[getIndexFromCoords4D(coords, outShape)/${innerElementSize}] = value; + } + }`; + return userCode; + }; + +export const createConv2DTransposeMatMulProgramInfo = + (inputs: readonly TensorView[], metadata: ProgramMetadata, attributes: ConvTransposeAttributes, + outputShape: readonly number[], dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean, + sequentialAccessByThreads: boolean): ProgramInfo => { + const isChannelsLast = attributes.format === 'NHWC'; + const inChannels = isChannelsLast ? inputs[0].dims[3] : inputs[0].dims[1]; + const batchSize = outputShape[0]; + const outWidth = isChannelsLast ? outputShape[2] : outputShape[3]; + const outHeight = isChannelsLast ? outputShape[1] : outputShape[2]; + const outChannels = isChannelsLast ? outputShape[3] : outputShape[1]; + const isVec4 = + isChannelsLast ? inChannels % 4 === 0 && outChannels % 4 === 0 : outWidth % 4 === 0 && outChannels % 4 === 0; + + // TODO: fine tune size + const dispatchX = isChannelsLast ? outChannels : outWidth * outHeight; + const dispatchY = isChannelsLast ? outWidth * outHeight : outChannels; + const workGroupSize: [number, number, number] = isVec4 ? + [8, 8, 1] : + [(dispatchX <= 4 || dispatchY <= 4) ? 4 : 16, dispatchX > 4 && dispatchY <= 4 ? 4 : 16, 1]; + const elementsPerThread = + isVec4 ? [4, 4, 1] : [dispatchX <= 4 ? 1 : 4, dispatchX > 4 && dispatchY <= 4 ? 1 : 4, 1]; + const dispatch = [ + Math.ceil(dispatchX / workGroupSize[0] / elementsPerThread[0]), + Math.ceil(dispatchY / workGroupSize[1] / elementsPerThread[1]), + Math.ceil(batchSize / workGroupSize[2] / elementsPerThread[2]) + ]; + + LOG_DEBUG('verbose', () => `[conv_backprop_mm_webgpu] dispatch = ${dispatch}`); + + const innerElementSize = isVec4 ? 4 : 1; + const tileInner = Math.max(workGroupSize[0] * innerElementSize, workGroupSize[1]); + + + const declareInputs = [ + `@group(0) @binding(0) var x: array<${isVec4 ? 'vec4' : 'f32'}>;`, + '@group(0) @binding(1) var W: array;' + ]; + let declareFunctions = ''; + if (hasBias) { + declareInputs.push(`@group(0) @binding(2) var bias: array<${isVec4 ? 'vec4' : 'f32'}>;`); + declareFunctions += ` + fn getBiasByOutputCoords(coords : vec4) -> ${isVec4 ? 'vec4' : 'f32'} { + return bias[coords.${isChannelsLast ? 'w' : 'y'}${isVec4 ? '/ 4' : ''}]; + }`; + } + return { + ...metadata, + outputs: [{dims: outputShape, dataType: inputs[0].dataType, gpuDataType: GpuDataType.default}], + dispatchGroup: () => ({x: dispatch[0], y: dispatch[1], z: dispatch[2]}), + getShaderSource: () => ` + ${utilFunctions} + ${declareInputs.join('\n')} + @group(0) @binding(${declareInputs.length}) var result: array<${ + isVec4 ? 'vec4' : 'f32'}>; + const outBackprop : vec4 = vec4(${inputs[0].dims.join(',')}); + const xShape : vec4 = vec4(${inputs[0].dims.join(',')}); + const wShape : vec4 = vec4(${inputs[1].dims.join(',')}); + const outShape : vec4 = vec4(${outputShape.join(',')}); + const outShapeStrides : vec3 = vec3(${ShapeUtil.computeStrides(outputShape).slice(0, 3).join(',')}); + const filterDims : vec2 = vec2(${attributes.kernelShape[isChannelsLast ? 1 : 2]}, ${ + attributes.kernelShape[isChannelsLast ? 2 : 3]}); + const effectiveFilterDims : vec2 = filterDims + vec2( + ${ + attributes.dilations[0] <= 1 ? + 0 : + (attributes.kernelShape[isChannelsLast ? 1 : 2] - 1) * (attributes.dilations[0] - 1)}, + ${ + attributes.dilations[1] <= 1 ? + 0 : + (attributes.kernelShape[isChannelsLast ? 2 : 3] - 1) * (attributes.dilations[1] - 1)}); + const pads : vec2 = vec2(i32(effectiveFilterDims[0]) - 1 - (${ + attributes.pads[0] + attributes.pads[2]})/2, + i32(effectiveFilterDims[1]) - 1 - (${ + attributes.pads[1] + attributes.pads[3]})/2); + const strides : vec2 = vec2(${attributes.strides[0]}, ${attributes.strides[1]}); + const dilation : vec2 = vec2(${attributes.dilations[0]}, ${attributes.dilations[1]}); + const dimAOuter : i32 = ${dimAOuter}; + const dimBOuter : i32 = ${dimBOuter}; + const dimInner : i32 = ${dimInner}; + ${declareFunctions} + ${conv2dTransposeCommonSnippet(isChannelsLast, hasBias, undefined, false, innerElementSize)} + ${ + isVec4 ? + makeMatMulPackedVec4Source(elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner) : + makeMatMulPackedSource( + elementsPerThread, workGroupSize, undefined, !isChannelsLast, tileInner, false, undefined, + sequentialAccessByThreads)}` + }; + }; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts index ec6df438129fb..4c8922238ac5b 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/3rd-party/conv_backprop_webgpu.ts @@ -197,14 +197,14 @@ const createConvTranspose2DOpProgramShaderSource = continue; } let idyC: u32 = u32(dyC); - + var inputChannel = groupId * ${inputChannelsPerGroup}; for (var d2: u32 = 0; d2 < ${inputChannelsPerGroup}; d2 = d2 + 1) { - let inputChannel = groupId * ${inputChannelsPerGroup} + d2; let xValue = ${ isChannelsLast ? dy.get('batch', 'idyR', 'idyC', 'inputChannel') : dy.get('batch', 'inputChannel', 'idyR', 'idyC')}; let wValue = ${w.get('inputChannel', 'wOutChannel', 'u32(wRPerm)', 'u32(wCPerm)')}; dotProd = dotProd + xValue * wValue; + inputChannel = inputChannel + 1; } } } diff --git a/js/web/lib/wasm/jsep/webgpu/ops/conv-transpose.ts b/js/web/lib/wasm/jsep/webgpu/ops/conv-transpose.ts index e7d1ddf771650..5641386cce849 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/conv-transpose.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/conv-transpose.ts @@ -8,7 +8,9 @@ import {ComputeContext, GpuDataType, ProgramInfoLoader, ProgramMetadata} from '. import {createConvTranspose2DProgramInfo} from './3rd-party/conv_backprop_webgpu'; import {ConvAttributes} from './conv'; +import {createConv2DTransposeMatMulProgramInfoLoader} from './conv2dtranspose-mm'; import {parseInternalActivationAttributes} from './fuse-utils'; +import {createTransposeProgramInfo, TransposeAttributes, transposeProgramMetadata} from './transpose'; const computeTotalPad = (inDim: number, stride: number, adj: number, kernel: number, dilation: number, outSize: number) => @@ -63,7 +65,7 @@ const getAdjustedConvTransposeAttributes = (attributes: T, inputs: readonly TensorView[]): T => { const kernelShape = attributes.kernelShape.slice(); // if kernelShape is not specified in the attributes of this op, infer it from the weight tensor dims - if (attributes.kernelShape.length === 0 || attributes.kernelShape.reduce((a, b) => a * b, 0) === 0) { + if (attributes.kernelShape.length === 0 || attributes.kernelShape.reduce((a, b) => a * b, 1) === 0) { kernelShape.length = 0; for (let i = 2; i < inputs[1].dims.length; ++i) { kernelShape.push(inputs[1].dims[i]); @@ -95,9 +97,11 @@ const getAdjustedConvTransposeAttributes = // always return a new object so does not modify the original attributes const newAttributes: T = Object.assign({}, attributes); - Object.assign( - newAttributes, - {kernelShape, pads, outputPadding, outputShape, dilations, strides, cacheKey: attributes.cacheKey}); + const cacheKey = attributes.cacheKey + [ + kernelShape.join('n,'), pads.join(','), strides.join(','), outputPadding.join(','), outputShape.join(','), + dilations.join(',') + ].join('_'); + Object.assign(newAttributes, {kernelShape, pads, outputPadding, outputShape, dilations, strides, cacheKey}); return newAttributes; }; @@ -226,12 +230,64 @@ const createConvTranspose2DProgramInfoLoader = }; }; +// for transposing weight tensor from [C, M/group, KH, KW] to [KH, KW, M/group, C] +const weightTransposeAttribute: TransposeAttributes = createAttributeWithCacheKey({perm: [2, 3, 1, 0]}); + const convTranspose2d = (context: ComputeContext, inputs: readonly TensorView[], attributes: ConvTransposeAttributes): void => { const adjustedAttributes = getAdjustedConvTransposeAttributes(attributes, inputs); + const isChannelsLast = attributes.format === 'NHWC'; + const hasBias = inputs.length === 3; + if (adjustedAttributes.group !== 1) { + context.compute(createConvTranspose2DProgramInfoLoader(inputs, adjustedAttributes)); + return; + } + const outputShape = adjustedAttributes.outputShape; + const outHeight = outputShape[isChannelsLast ? 1 : 2]; + const outWidth = outputShape[isChannelsLast ? 2 : 3]; + const outChannels = outputShape[isChannelsLast ? 3 : 1]; + const weightHeight = inputs[1].dims[2]; + const weightWidth = inputs[1].dims[3]; + const inputChannels = inputs[0].dims[isChannelsLast ? 3 : 1]; + + const dimAOuter = isChannelsLast ? outHeight * outWidth : outChannels; + const dimBOuter = isChannelsLast ? outChannels : outHeight * outWidth; + const dimInner = weightHeight * weightWidth * inputChannels; + + const sequentialAccessByThreads = /* backend.adapterInfo.isIntel() */ true; + - context.compute(createConvTranspose2DProgramInfoLoader(inputs, adjustedAttributes)); + // STEP.1: transpose weight + const transposedWeight = (context.kernelCustomData.wT as TensorView | undefined) ?? + context.compute( + { + ...transposeProgramMetadata, + cacheHint: weightTransposeAttribute.cacheKey, + get: () => createTransposeProgramInfo(inputs[1], weightTransposeAttribute.perm) + }, + {inputs: [1], outputs: [attributes.wIsConst ? -2 : -1]})[0]; + if (attributes.wIsConst && !context.kernelCustomData.wT) { + context.kernelCustomData.wT = transposedWeight; + } + + // STEP.2: prepare reshaped inputs + const convTransposeInputs = [inputs[0], transposedWeight]; + if (hasBias) { + if (!isChannelsLast && inputs[2].dims.length === 1) { + convTransposeInputs.push(inputs[2].reshape([inputs[2].dims[0], 1, 1])); + } else { + convTransposeInputs.push(inputs[2]); + } + } + + // STEP.3: compute matmul + context.compute( + createConv2DTransposeMatMulProgramInfoLoader( + convTransposeInputs, adjustedAttributes, outputShape, dimAOuter, dimBOuter, dimInner, hasBias, + sequentialAccessByThreads), + {inputs: convTransposeInputs}); }; + const convTranspose1d = (context: ComputeContext, attributes: ConvTransposeAttributes): void => { // extend the input to 2D by adding H dimension const isChannelLast = attributes.format === 'NHWC'; diff --git a/js/web/lib/wasm/jsep/webgpu/ops/conv2dtranspose-mm.ts b/js/web/lib/wasm/jsep/webgpu/ops/conv2dtranspose-mm.ts new file mode 100644 index 0000000000000..da04b5063a9f0 --- /dev/null +++ b/js/web/lib/wasm/jsep/webgpu/ops/conv2dtranspose-mm.ts @@ -0,0 +1,29 @@ +// Copyright (c) Microsoft Corporation. All rights reserved. +// Licensed under the MIT License. + +import {TensorView} from '../../tensor-view'; +import {GpuDataType, ProgramInfoLoader, ProgramMetadata} from '../types'; + +import {createConv2DTransposeMatMulProgramInfo} from './3rd-party/conv_backprop_mm_webgpu'; +import {ConvTransposeAttributes} from './conv-transpose'; + + +const createConv2DTransposeMatMulProgramMetadata = (hasBias: boolean, cacheHint: string): ProgramMetadata => ({ + name: 'Conv2DTransposeMatMul', + inputTypes: hasBias ? [GpuDataType.default, GpuDataType.default, GpuDataType.default] : + [GpuDataType.default, GpuDataType.default], + cacheHint +}); + +export const createConv2DTransposeMatMulProgramInfoLoader = + (inputs: readonly TensorView[], attributes: ConvTransposeAttributes, outputShape: readonly number[], + dimAOuter: number, dimBOuter: number, dimInner: number, hasBias: boolean, + sequentialAccessByThreads: boolean): ProgramInfoLoader => { + const metadata = createConv2DTransposeMatMulProgramMetadata(hasBias, attributes.cacheKey); + return { + ...metadata, + get: () => createConv2DTransposeMatMulProgramInfo( + inputs, metadata, attributes, outputShape, dimAOuter, dimBOuter, dimInner, hasBias, + sequentialAccessByThreads) + }; + }; diff --git a/js/web/test/data/ops/conv-transpose.jsonc b/js/web/test/data/ops/conv-transpose.jsonc index a249dc807fa0b..7038e2a4f8766 100644 --- a/js/web/test/data/ops/conv-transpose.jsonc +++ b/js/web/test/data/ops/conv-transpose.jsonc @@ -28,6 +28,37 @@ } ] }, + { + "name": "ConvTranspose without bias addition A - NHWC", + "inputShapeDefinitions": "rankOnly", + "opset": { "domain": "", "version": 17 }, + "operator": "ConvTranspose", + "attributes": [{ "name": "kernel_shape", "data": [2, 2], "type": "ints" }], + "cases": [ + { + "name": "T[0]", + "inputs": [ + { + "data": [10, 20, 30, 40], + "dims": [1, 1, 2, 2], + "type": "float32" + }, + { + "data": [1, 2, 3, 4], + "dims": [1, 1, 2, 2], + "type": "float32" + } + ], + "outputs": [ + { + "data": [10, 40, 40, 60, 200, 160, 90, 240, 160], + "dims": [1, 1, 3, 3], + "type": "float32" + } + ] + } + ] + }, { "name": "ConvTranspose without bias addition B", "operator": "ConvTranspose", @@ -74,26 +105,22 @@ }, { "data": [ - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64 ], "dims": [4, 4, 2, 2], "type": "float32" }, { - "data": [0.1, 0.2, 0.3, 0.4], + "data": [65, 66, 67, 68], "dims": [4], "type": "float32" } ], "outputs": [ { - "data": [ - 100.0999984741211, 100.0999984741211, 100.0999984741211, 100.0999984741211, 100.19999694824219, - 100.19999694824219, 100.19999694824219, 100.19999694824219, 100.30000305175781, 100.30000305175781, - 100.30000305175781, 100.30000305175781, 100.4000015258789, 100.4000015258789, 100.4000015258789, - 100.4000015258789 - ], + "data": [3365, 3465, 3565, 3665, 3766, 3866, 3966, 4066, 4167, 4267, 4367, 4467, 4568, 4668, 4768, 4868], "dims": [1, 4, 2, 2], "type": "float32" } @@ -115,7 +142,43 @@ "type": "float32" }, { - "data": [1, 1, 1, 1], + "data": [1, 2, 3, 4], + "dims": [1, 1, 2, 2], + "type": "float32" + }, + { + "data": [5], + "dims": [1], + "type": "float32" + } + ], + "outputs": [ + { + "data": [11, 25, 28, 19, 32, 86, 99, 55, 40, 114, 131, 67, 29, 73, 80, 41], + "dims": [1, 1, 4, 4], + "type": "float32" + } + ] + } + ] + }, + { + "name": "ConvTranspose with bias addition B - NHWC", + "operator": "ConvTranspose", + "inputShapeDefinitions": "rankOnly", + "opset": { "domain": "", "version": 17 }, + "attributes": [{ "name": "kernel_shape", "data": [2, 2], "type": "ints" }], + "cases": [ + { + "name": "T[0]", + "inputs": [ + { + "data": [6, 8, 7, 9, 15, 11, 8, 12, 9], + "dims": [1, 1, 3, 3], + "type": "float32" + }, + { + "data": [1, 2, 3, 4], "dims": [1, 1, 2, 2], "type": "float32" }, @@ -127,7 +190,7 @@ ], "outputs": [ { - "data": [11, 19, 20, 12, 20, 43, 46, 23, 22, 49, 52, 25, 13, 25, 26, 14], + "data": [11, 25, 28, 19, 32, 86, 99, 55, 40, 114, 131, 67, 29, 73, 80, 41], "dims": [1, 1, 4, 4], "type": "float32" } @@ -251,7 +314,6 @@ } ] }, - { "name": "ConvTranspose- pointwise", "operator": "ConvTranspose", @@ -285,5 +347,50 @@ ] } ] + }, + { + "name": "ConvTranspose with bias addition C", + "operator": "ConvTranspose", + "inputShapeDefinitions": "rankOnly", + "opset": { "domain": "", "version": 17 }, + "attributes": [{ "name": "kernel_shape", "data": [1, 1], "type": "ints" }], + "cases": [ + { + "name": "T[0]", + "inputs": [ + { + "data": [ + 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, + 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, 64 + ], + "dims": [1, 4, 4, 4], + "type": "float32" + }, + { + "data": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], + "dims": [4, 4, 1, 1], + "type": "float32" + }, + { + "data": [1, 2, 3, 4], + "dims": [4], + "type": "float32" + } + ], + "outputs": [ + { + "data": [ + 1021, 1049, 1077, 1105, 1133, 1161, 1189, 1217, 1245, 1273, 1301, 1329, 1357, 1385, 1413, 1441, 1122, + 1154, 1186, 1218, 1250, 1282, 1314, 1346, 1378, 1410, 1442, 1474, 1506, 1538, 1570, 1602, 1223, 1259, + 1295, 1331, 1367, 1403, 1439, 1475, 1511, 1547, 1583, 1619, 1655, 1691, 1727, 1763, 1324, 1364, 1404, + 1444, 1484, 1524, 1564, 1604, 1644, 1684, 1724, 1764, 1804, 1844, 1884, 1924 + ], + "dims": [1, 4, 4, 4], + "type": "float32" + } + ] + } + ] } ] diff --git a/onnxruntime/core/providers/js/operators/conv_transpose.h b/onnxruntime/core/providers/js/operators/conv_transpose.h index a5aeae8646373..c3babbc5ce81f 100644 --- a/onnxruntime/core/providers/js/operators/conv_transpose.h +++ b/onnxruntime/core/providers/js/operators/conv_transpose.h @@ -108,6 +108,23 @@ class ConvTranspose : public JsKernel { } } + Status PrePack(const Tensor& tensor, int input_idx, AllocatorPtr alloc, + /*out*/ bool& is_packed, + /*out*/ PrePackedWeights* /* prepacked_weights */) override { + is_packed = false; + + if (input_idx == 1) { + // Only handle the common case of conv2D + if (tensor.Shape().NumDimensions() != 4 || tensor.SizeInBytes() == 0) { + return Status::OK(); + } + + w_is_const_ = true; + } + + return Status::OK(); + } + protected: ConvTransposeAttributes conv_transpose_attrs_; bool w_is_const_;