forked from japerk/nltk-trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze_chunker_coverage.py
95 lines (71 loc) · 3.13 KB
/
analyze_chunker_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
#!/usr/bin/python
import argparse, collections
import nltk.corpus, nltk.corpus.reader, nltk.data, nltk.tag, nltk.metrics
from nltk.corpus.util import LazyCorpusLoader
from nltk.probability import FreqDist
from nltk.tag.simplify import simplify_wsj_tag
from nltk_trainer import load_corpus_reader
########################################
## command options & argument parsing ##
########################################
parser = argparse.ArgumentParser(description='Analyze a part-of-speech tagged corpus',
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('corpus',
help='''The name of a tagged corpus included with NLTK, such as treebank,
brown, cess_esp, floresta, or the root path to a corpus directory,
which can be either an absolute path or relative to a nltk_data directory.''')
parser.add_argument('--tagger', default=nltk.tag._POS_TAGGER,
help='''pickled tagger filename/path relative to an nltk_data directory
default is NLTK's default tagger''')
parser.add_argument('--chunker', default=nltk.chunk._MULTICLASS_NE_CHUNKER,
help='''pickled chunker filename/path relative to an nltk_data directory
default is NLTK's default multiclass chunker''')
parser.add_argument('--trace', default=1, type=int,
help='How much trace output you want, defaults to 1. 0 is no trace output.')
parser.add_argument('--score', action='store_true', default=False,
help='Evaluate chunk score of chunker using corpus.chunked_sents()')
corpus_group = parser.add_argument_group('Corpus Reader Options')
corpus_group.add_argument('--reader', default=None,
help='''Full module path to a corpus reader class, such as
nltk.corpus.reader.chunked.ChunkedCorpusReader''')
corpus_group.add_argument('--fileids', default=None,
help='Specify fileids to load from corpus')
corpus_group.add_argument('--fraction', default=1.0, type=float,
help='''The fraction of the corpus to use for testing coverage''')
args = parser.parse_args()
###################
## corpus reader ##
###################
corpus = load_corpus_reader(args.corpus, reader=args.reader, fileids=args.fileids)
if args.score and not hasattr(corpus, 'chunked_sents'):
raise ValueError('%s does not support scoring' % args.corpus)
############
## tagger ##
############
if args.trace:
print 'loading tagger %s' % args.tagger
tagger = nltk.data.load(args.tagger)
if args.trace:
print 'loading chunker %s' % args.chunker
chunker = nltk.data.load(args.chunker)
#######################
## coverage analysis ##
#######################
if args.score:
if args.trace:
print 'evaluating chunker score\n'
print chunker.evaluate(corpus.chunked_sents()), '\n'
if args.trace:
print 'analyzing chunker coverage of %s with %s\n' % (args.corpus, chunker.__class__.__name__)
iobs_found = FreqDist()
for sent in corpus.sents():
tree = chunker.parse(tagger.tag(sent))
for child in tree.subtrees(lambda t: t.node != 'S'):
iobs_found.inc(child.node)
iobs = iobs_found.samples()
justify = max(7, *[len(iob) for iob in iobs])
print 'IOB'.center(justify) + ' Found '
print '='*justify + ' ========='
for iob in sorted(iobs):
print ' '.join([iob.ljust(justify), str(iobs_found[iob]).rjust(9)])
print '='*justify + ' ========='