-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path02-infer-with-pb.py
98 lines (93 loc) · 4.11 KB
/
02-infer-with-pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import tensorflow as tf
import os
import sys
from tensorflow.python.platform import gfile
import numpy as np
from scipy.misc import imread, imresize
class ImageFolderDataSource:
def __init__(self, folder, batch_size, labels):
if not os.path.exists(folder):
raise Exception("Folder doesn't exist: {}".format(folder))
if set(labels) != set(os.listdir(folder)):
raise Exception("The labels are not consistent with folder structure.")
self.labels = labels
self.n_classes = len(self.labels)
self.labels_index = np.arange(self.n_classes)
self.index_map = dict(zip(self.labels, self.labels_index))
self.label_map = dict(zip(self.labels_index, self.labels))
self.folder = folder
self.batch_size = batch_size
self.label_pool = []
self.file_pool = []
for label in self.labels:
label_one_hot = self.one_hot(self.index_map[label])
label_folder = os.path.join(folder, label)
label_files = list(map(
lambda f: os.path.join(label_folder, f),
os.listdir(label_folder)
))
self.file_pool.extend(label_files)
self.label_pool.extend(np.repeat([label_one_hot], len(label_files), axis=0))
self.n_files = len(self.file_pool)
self.label_pool = np.array(self.label_pool)
self.file_pool = np.array(self.file_pool)
def one_hot(self, index):
res = np.repeat(0, self.n_classes).astype(np.float32)
res[index] = 1.0
return res
def rand_index(self):
return np.random.choice(np.arange(self.n_files), self.batch_size)
def get_batch(self):
index = self.rand_index()
batch_labels = self.label_pool[index]
batch_files = self.file_pool[index]
batch_data = np.array(list(
map(
lambda f: imread(f),
batch_files
)
))
return batch_labels, batch_data, batch_files
with tf.Session() as persisted_sess:
def run_inference_on_image():
with open("latest_labels.txt") as fh:
label_names = [x.strip() for x in fh.readlines()]
batch_reader = ImageFolderDataSource("/home/kaiyin/PycharmProjects/demo-load-pb-tensorflow/images/validate", 5, label_names)
labels, data, files = batch_reader.get_batch()
print(files)
data = np.divide(data, np.float32(255.0))
answer = None
# # Print all operators in the graph
# for op in persisted_sess.graph.get_operations():
# print(op)
# # Print all tensors produced by each operator in the graph
# for op in persisted_sess.graph.get_operations():
# print(op.values())
# tensor_names = [[v.name for v in op.values()] for op in persisted_sess.graph.get_operations()]
# tensor_names = np.squeeze(tensor_names)
# print(tensor_names)
softmax_tensor = persisted_sess.graph.get_tensor_by_name('import/final_result:0')
def predict(img):
predictions = persisted_sess.run(softmax_tensor, {'import/input:0': img})
predictions = np.squeeze(predictions)
print("##################")
top_k = predictions.argsort()[:][::-1] # Getting top 3 predictions, reverse order
for node_id in top_k:
human_string = batch_reader.labels[node_id]
score = predictions[node_id]
print('%s (score = %.5f)' % (human_string, score))
answer = batch_reader.labels[top_k[0]]
return answer
for index in range(len(labels)):
img = data[index]
label_index = np.nonzero(labels[index])[0][0]
label_name = batch_reader.label_map[label_index]
if img.shape != (224, 224, 3):
img = imresize(img, (224, 224, 3))
predict(np.expand_dims(img, axis=0))
with gfile.FastGFile("latest.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
persisted_sess.graph.as_default()
tf.import_graph_def(graph_def)
run_inference_on_image()