-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathconfig.py
128 lines (95 loc) · 2.33 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import numpy as np
class mnist_config:
dataset = 'mnist'
image_size = 28 * 28
num_label = 10
gen_emb_size = 20
noise_size = 100
dis_lr = 3e-3
enc_lr = 1e-3
gen_lr = 1e-3
eval_period = 600
vis_period = 100
data_root = 'data'
size_labeled_data = 100
train_batch_size = 100
train_batch_size_2 = 100
dev_batch_size = 200
seed = 13
feature_match = True
top_k = 5
top1_weight = 1.
supervised_only = False
feature_match = True
p_loss_weight = 1e-4
p_loss_prob = 0.1
max_epochs = 2000
pixelcnn_path = 'model/mnist.True.3.best.pixel'
class svhn_config:
dataset = 'svhn'
image_size = 3 * 32 * 32
num_label = 10
gen_emb_size = 20
noise_size = 100
dis_lr = 1e-3
enc_lr = 1e-3
gen_lr = 1e-3
min_lr = 1e-4
eval_period = 730
vis_period = 730
data_root = 'data'
size_labeled_data = 1000
train_batch_size = 64
train_batch_size_2 = 64
dev_batch_size = 200
max_epochs = 900
ent_weight = 0.1
pt_weight = 0.8
p_loss_weight = 1e-4
p_loss_prob = 0.1
class cifar_config:
dataset = 'cifar'
image_size = 3 * 32 * 32
num_label = 10
gen_emb_size = 20
noise_size = 100
dis_lr = 6e-4
enc_lr = 3e-4
gen_lr = 3e-4
eval_period = 500
vis_period = 500
data_root = 'data'
size_labeled_data = 4000
train_batch_size = 100
train_batch_size_2 = 100
dev_batch_size = 200
max_epochs = 1200
vi_weight = 1e-2
class pixelcnn_config:
dataset = 'mnist'
image_wh = 28 if dataset == 'mnist' else 32
n_channel = 1 if dataset == 'mnist' else 3
image_size = 28 * 28 if dataset == 'mnist' else 32 * 32
if dataset == 'cifar':
train_batch_size = 20 * 4
test_batch_size = 20 * 4
lr = 1e-3 * 96 / train_batch_size
disable_third = False
nr_resnet = 5
dropout_p = 0.5
elif dataset == 'svhn':
train_batch_size = 30 * 4
test_batch_size = 30 * 4
lr = 2e-4
disable_third = True
nr_resnet = 3
dropout_p = 0.0
elif dataset == 'mnist':
train_batch_size = 40 * 1
test_batch_size = 40 * 1
lr = 2e-4
disable_third = True
nr_resnet = 3
dropout_p = 0.0
eval_period = 30
save_period = 5