-
Notifications
You must be signed in to change notification settings - Fork 0
/
lap2d_jacobi.m
108 lines (90 loc) · 2.79 KB
/
lap2d_jacobi.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
function [Jerrv,Jerrvh,Jerrvk] = lap2d_jacobi(m,maxiter,tol)
%=======================================================================
% This code solves the Laplace problem using the Jacobi method on a
% (m+2) x (m+2) grid with an m x m grid of unknowns and h = 1/(m+1)
%
% Inputs:
% m = number of interior gridpoints along each axis
% maxiter = max number of iterations allowed for iterative method
%
% Outputs:
% plots exact, direct and iterative solutions
% returns ERRV, a vector of inf-norm errors vs exact solution
% returns ERRVH, a vector of inf-norm errors vs direct solution
%
%=======================================================================
% Notes:
% - Use the 'help' command in MATLAB to figure out what the command
% 'reshape' does.
%
% - Use 'help' to figure out what 'numgrid' and 'delsq' do.
%
% - Use 'help mldivide' to understand the direct solve 'A\b'.
%
% - Uncomment the 'while' statement to add a stopping criteria.
%Set up the grid
h = 1/(m+1);
x = 0:h:1;
y = 0:h:1;
[X,Y] = meshgrid(x,y);
%==============Exact Solution================================
ue = (sin(pi*X).*sinh(pi*Y))./sinh(pi);
% plot solution
figure(1)
subplot(3,1,1)
surf(X,Y,ue);
axis('tight')
title('exact')
%==============Direct Method================================
uhs=zeros(m+2);
uhs(m+2,:) = sin(pi*x);
% create right-hand-side vector with boundary values
b=reshape(uhs(3:m+2,2:m+1),m^2,1);
% create the 5-pt stencil matrix
A=delsq(numgrid('S',m+2));
% solve system using sparse lu-factorization and backsubstitution
uhsv=A\b;
% add computed values to solution
uhs(2:m+1,2:m+1)=reshape(uhsv,m,m);
% plot solution
figure(1)
subplot(3,1,2)
surf(X,Y,uhs);
axis('tight')
title('direct')
%==============Jacobi Method================================
% assign size to the iterative solution and let it contain all zeros
uhn=zeros(m+2);
% assign the boundary condition
uhn(m+2,:) = sin(pi*x);
%define a new temp vector and assign it all zero values
unew = uhn;
%counter for number of iterations
iter = 0;
%define an error tolerance (for stopping criteria)
%define the error to be some arbitrary large number > tol
err = 1;
tic
while (err > tol) && (iter <=maxiter)
for j =2:(m+1)
for i = 2:(m+1)
unew(i,j) = 0.25*(uhn(i-1,j)+uhn(i+1,j)+uhn(i,j-1)+uhn(i,j+1));
end
end
iter = iter +1;
uhn = unew;
%compute the infinity norm for the global error
err = norm(reshape(ue-uhn,(m+2)^2,1),inf);
Jerrv(iter) = err;
%compute the error between direct and iterative solutions
Jerrvh(iter) = norm(reshape(uhs-uhn,(m+2)^2,1),inf);
%compute the error between direct and exact solutions
Jerrvk(iter) = norm(reshape(uhs-ue,(m+2)^2,1),inf);
end
toc
% plot the solution obtained using the iterative method
figure(1)
subplot(3,1,3)
surf(X,Y,uhn);
axis('tight')
title('Jacobi')