-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfig_compare_sU.py
347 lines (278 loc) · 15.5 KB
/
fig_compare_sU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 15 14:09:05 2019
Masel Lab
Project: Mutation-driven Adaptation
@author: Kevin Gomez
Description:
Script for creating a figure that compares the rates of adaptation in two
traits of an asexual population, evolving together in the concurrent mutations
regime.
"""
#libraries
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import multivariate_normal
from numpy import inf
import matplotlib.ticker as mtick
import pickle
import matplotlib as mpl
import matplotlib.pyplot as plt
import scipy as sp
import numpy as np
import matplotlib.mlab as mlab
import fig_functions as myfun # my functions in a seperate file
def get_heatmap_data(pickle_file_name):
# load processed matlab data for figure panels
# returns the relavant data for figures (see return statement)
pickle_file = open("data/" + pickle_file_name,'rb')
[N,s,U,v,parameters,grand_means,sarry,Uarry,v1_data,v2_data] = pickle.load(pickle_file)
pickle_file.close()
v1_min = 1
v2_min = 1
for i in range(v1_data.shape[0]):
for j in range(v1_data.shape[1]):
if (v1_data[i,j]>0):
v1_min = np.min([v1_min,v1_data[i,j]])
if (v2_data[i,j]>0):
v2_min = np.min([v2_min,v2_data[i,j]])
for i in range(v1_data.shape[0]):
for j in range(v1_data.shape[1]):
if (v1_data[i,j]<=0):
v1_data[i,j] = v1_min
if (v2_data[i,j]<=0):
v2_data[i,j] = v2_min
Uarry = np.flipud(Uarry)
v_max = np.amax(v1_data)
# rate_comp = v1_data/v_max
rate_comp = np.log10(v1_data/v_max)
# v_tot = v1_data+v2_data
# rate_comp = v1_data/v_tot
# for i in range(rate_comp.shape[0]):
# for j in range(rate_comp.shape[1]):
# if (rate_comp[i,j]<=-4):
# rate_comp[i,j] = -4
log_s_min = np.log10(np.amin(sarry))
log_s_max = np.log10(np.amax(sarry))
log_U_min = np.log10(np.amin(Uarry))
log_U_max = np.log10(np.amax(Uarry))
log_s_crd = np.log10(parameters[0][1])
log_U_crd = np.log10(parameters[0][2])
s1_coord = 31*(log_s_crd-log_s_min)/(log_s_max-log_s_min)
U1_coord = 61*(log_U_crd-log_U_min)/(log_U_max-log_U_min)
return [sarry, Uarry, rate_comp,s1_coord,U1_coord]
def get_vContourThry(N,s,v,log_s_lbd1,log_s_lbd2,log_s_lbd3,\
hlsmin,hlsmax,hlumin,hlumax,gridsize_s,gridsize_u):
# computes tradeoff curves given parameters. Also, the coordinates have to
# converted into those for the bounds given for the heatmap.
#
# inputs:
# s = selection coefficient
# N = Population size
# v = rate of adaptation
# log_s_lbd1 = lower bound s
# log_s_lbd2 = transition to diff regime
# log_s_lbd3 = upper bound s
# hlsmin = lower bound s of heatmap log10
# hlsmax = upper bound s of heatmap log10
# hlumin = lower bound U of heatmap log10
# hlumax = upper bound U of heatmap log10
#
# outputs:
# curves for plots
no_div,no_div1,no_div2 = [100,50,75] # spacing between s points
# setting bounds for the window and computing their log10 values for the log-plot
[s_min,s_max,U_min,U_max,sc_max,sc_trans] = myfun.sU_bounds(N,v)
log10_s_min = np.log10(s_min)
log10_s_max = np.log10(s_max)
log10_U_min = np.log10(U_min)
log10_U_max = np.log10(10*U_max)
log10_sc_max = np.log10(sc_max)
log10_sc_trans = np.log10(sc_trans)
# Define range for s and U
s1 = np.logspace(np.log10(s_min), np.log10(s_max), no_div)
u1 = np.logspace(np.log10(U_min), np.log10(U_max), no_div)
[log10_s1,log10_u1] = [np.log10(s1),np.log10(u1)]
# special set of s values to help shade the drift barrier in sU space
# s-thresholds and curves in phenotype space
log10_sd = np.log10(np.logspace(np.log10(s_min), np.log10(20*s_min), no_div/10))
# set s values between thresholds
s_reg1 = np.logspace(log_s_lbd1,log10_sc_trans,no_div1) # solid OF thry curve
s_reg2 = np.logspace(log10_sc_trans,log10_s_max,no_div1) # dashed OF thry curve
s_reg3 = np.logspace(log_s_lbd2,log10_sc_trans,no_div1) # solid MM thry curve
s_reg4 = np.logspace(log_s_lbd1,log10_s_max,no_div1) # dashed MM thry curve
s_reg5 = np.logspace(log_s_lbd2,log_s_lbd3,no_div1) # solid OFMM thry curve
s_reg6 = np.logspace(log_s_lbd1,log_s_lbd3,no_div1) # dashed OFMM thry curve
s_reg7 = np.logspace(log_s_lbd1,1.15*log_s_lbd2,no_div1) # solid DM thry curve
s_reg8 = np.logspace(log_s_lbd1,0.96*log_s_lbd2,no_div1) # dashed DM thry curve
# caluculate v-isoquant for successional regime
vCont_OF1 = np.log10(np.asarray([[s_reg1[i],myfun.vContour_OF(s_reg1[i],N,v)] for i in range(no_div1)]))
vCont_OF2 = np.log10(np.asarray([[s_reg2[i],myfun.vContour_OF(s_reg2[i],N,v)] for i in range(no_div1)]))
# caluculate v-isoquant for concurrent regime
vCont_MM1 = np.log10(np.asarray([[s_reg3[i],myfun.vContour_MM(s_reg3[i],N,v)] for i in range(no_div1)]))
vCont_MM2 = np.log10(np.asarray([[s_reg4[i],myfun.vContour_MM(s_reg4[i],N,v)] for i in range(no_div1)]))
# caluculate piecewise v-isoquant for combined regimes
vCont_OFMM1 = np.log10(np.asarray([[s_reg5[i],myfun.vContour_OFMM(s_reg5[i],N,v)] for i in range(no_div1)]))
vCont_OFMM2 = np.log10(np.asarray([[s_reg6[i],myfun.vContour_OFMM(s_reg6[i],N,v)] for i in range(no_div1)]))
# caluculate v-isoquant for using halletschek approximations (Hallatschek 20011)
vCont_DM1 = np.log10(np.asarray([[s_reg7[i],myfun.vContour_DM(s_reg7[i],N,v)] for i in range(no_div1)]))
vCont_DM2 = np.log10(np.asarray([[s_reg8[i],myfun.vContour_DM(s_reg8[i],N,v)] for i in range(no_div1)]))
# convert all values to coordinates heatmap
log_s_min = np.log10(np.amin(sarry))
log_s_max = np.log10(np.amax(sarry))
log_U_min = np.log10(np.amin(Uarry))
log_U_max = np.log10(np.amax(Uarry))
vCont_MM1[:,0] = gridsize_s*(vCont_MM1[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_MM1[:,1] = gridsize_u*(vCont_MM1[:,1]-hlumin)/(hlumax-hlumin)
vCont_MM2[:,0] = gridsize_s*(vCont_MM2[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_MM2[:,1] = gridsize_u*(vCont_MM2[:,1]-hlumin)/(hlumax-hlumin)
vCont_OF1[:,0] = gridsize_s*(vCont_OF1[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_OF1[:,1] = gridsize_u*(vCont_OF1[:,1]-hlumin)/(hlumax-hlumin)
vCont_OF2[:,0] = gridsize_s*(vCont_OF2[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_OF2[:,1] = gridsize_u*(vCont_OF2[:,1]-hlumin)/(hlumax-hlumin)
vCont_OFMM1[:,0] = gridsize_s*(vCont_OFMM1[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_OFMM1[:,1] = gridsize_u*(vCont_OFMM1[:,1]-hlumin)/(hlumax-hlumin)
vCont_OFMM2[:,0] = gridsize_s*(vCont_OFMM2[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_OFMM2[:,1] = gridsize_u*(vCont_OFMM2[:,1]-hlumin)/(hlumax-hlumin)
vCont_DM1[:,0] = gridsize_s*(vCont_DM1[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_DM1[:,1] = gridsize_u*(vCont_DM1[:,1]-hlumin)/(hlumax-hlumin)
vCont_DM2[:,0] = gridsize_s*(vCont_DM2[:,0]-hlsmin)/(hlsmax-hlsmin)
vCont_DM2[:,1] = gridsize_u*(vCont_DM2[:,1]-hlumin)/(hlumax-hlumin)
return [vCont_MM1, vCont_MM2,vCont_OF1, \
vCont_OF2,vCont_OFMM1,vCont_OFMM2,vCont_DM1,vCont_DM2]
# set file name of data and load it into script
# note sarry and Uarry (values of s and U) are the same in all cases
pickle_file_name = 'fig_compare_sU_data-01a-DF.pickle' # data for comparison with fixed v
[sarry,Uarry,rate_comp_MM,s1_coord_MM,U1_coord_MM]=get_heatmap_data(pickle_file_name)
pickle_file_name = 'fig_compare_sU_data-01a-OF.pickle' # data for comparison with fixed v
[sarry,Uarry,rate_comp_OF,s1_coord_OF,U1_coord_OF]=get_heatmap_data(pickle_file_name)
pickle_file_name = 'fig_compare_sU_data-01a-HR.pickle' # data for comparison with fixed v
[sarry,Uarry,rate_comp_DM,s1_coord_DM,U1_coord_DM]=get_heatmap_data(pickle_file_name)
# get rate_comp array dimensions
[m,n] = rate_comp_MM.shape
[m,n] = [int(m),int(n)]
arry_dim_s = len(sarry)
arry_dim_u = len(Uarry)
hlsmin = np.log10(np.amin(sarry))
hlsmax = np.log10(np.amax(sarry))
hlumin = np.log10(np.amin(Uarry))
hlumax = np.log10(np.amax(Uarry))
# set labels for axes
my_slabel = ['$10^{'+str(np.round(np.log10(sarry[i,0]),2))+'}$' for i in range(len(sarry))]
my_Ulabel = ['$10^{'+str(int(np.round(np.log10(Uarry[i,0]),1)))+'}$' for i in range(len(Uarry))]
# set some labels blank to have them fit on graph
for i in range(len(my_Ulabel)):
if (i%10!=0):
my_Ulabel[i]=''
for i in range(len(my_slabel)):
if ((i%6!=3)):
my_slabel[i]=''
x_border = [0.0+m*i/1000.0 for i in range(1001)]
y_border = [min(np.floor(1.0+m*i/1000.0),m) for i in range(1001)]
# -----------------------------------------------------------------------------
# create v-contours to add
[Nm,s,U] = [1e9,1e-2,1e-5]
gridsize_s = 31
gridsize_u = 61
vm = myfun.get_vDF(Nm,s,U)
[log_s_lbd1,log_s_lbd2,log_s_lbd3] = [-3.5,-2.3*0.9,-0.5]
[vCont_MM1, vCont_MM2,vCont_OF1,vCont_OF2, \
vCont_OFMM1,vCont_OFMM2,vCont_DM1,vCont_DM2] \
= get_vContourThry(Nm,s,vm,log_s_lbd1,log_s_lbd2,log_s_lbd3, \
hlsmin,hlsmax,hlumin,hlumax,gridsize_s,gridsize_u)
# -----------------------------------------------------------------------------
# create heatmaps of v reduction
fig = plt.figure(figsize=[7.5,17])
ax=plt.subplot(311) # first panel-trait 1 in origin-fixation regime OF
#fit_distr_2d = ax.pcolormesh(rate_comp_OF,cmap=plt.cm.bwr)
fit_distr_2d = ax.pcolormesh(rate_comp_OF)
#cbar = plt.colorbar(fit_distr_2d,pad = 0.03,
# ticks=[0+i/10.0 for i in range(12)],
# norm=mpl.colors.Normalize(vmin=0.0, vmax=1.0))
cbar = plt.colorbar(fit_distr_2d,pad = 0.03,ticks=[0.0-i for i in range(9)])
#cbar.set_clim(0.0, 1.0)
cbar.ax.set_yticklabels(['$1.00$','$0.10$','$0.01$'] + ['$10^{'+str(-3-i)+'}$' for i in range(6)])
cbar.ax.tick_params(labelsize=18)
ax.axis('tight')
ax.set_xticks(np.arange(arry_dim_s)+0.5)
ax.set_yticks(np.arange(arry_dim_u)+0.5)
ax.set_xticklabels([])
ax.set_yticklabels(my_Ulabel[::-1])
ax.set_ylabel('Beneficial mutation\nrate trait 2',multialignment='center',fontsize=18,labelpad=10)
ax.tick_params(axis='both',labelsize=20)
#cbar.ax.text(3.8,0.80,'Ratio $\log_{10}(v_1/v)$',rotation=270,fontsize=22) # use this label of comparing v
cbar.ax.text(4.5,0.52,'$v_1/v$',rotation=270,fontsize=22) # use this label of comparing v
#cbar.ax.text(3.5,0.75,'Ratio $v_1/(v_1+v_2)$',rotation=270,fontsize=22) # use this label of comparing v
plt.text(-8.0,60,'(a)',fontsize=20)
# plot isoquant calculated from theory on figures and location of s1,U1
ax.plot(vCont_OFMM1[:,0],vCont_OFMM1[:,1],color="black",linewidth=2,linestyle="-",label=r'$v=5.31\times 10^{-5}$')
ax.plot(vCont_OFMM2[:,0],vCont_OFMM2[:,1],color="black",linewidth=2,linestyle=":")
ax.plot(vCont_DM1[:,0],vCont_DM1[:,1],color="black",linewidth=2,linestyle="-")
ax.plot(vCont_DM2[:,0],vCont_DM2[:,1],color="black",linewidth=2,linestyle=":")
ax.scatter(s1_coord_OF,U1_coord_OF, facecolors='none',linewidth=2, edgecolors='w',s=80)
# *****************************************************************************
ax=plt.subplot(312) # second panel-trait 1 in multiple mutations (U<s) MM
#fit_distr_2d = ax.pcolormesh(rate_comp_MM,cmap=plt.cm.bwr)
fit_distr_2d = ax.pcolormesh(rate_comp_MM)
#cbar = plt.colorbar(fit_distr_2d,pad = 0.03,
# ticks=[0+i/10.0 for i in range(12)],
# norm=mpl.colors.Normalize(vmin=0.0, vmax=1.0))
cbar = plt.colorbar(fit_distr_2d,pad = 0.03,ticks=[0.0-i for i in range(9)])
#cbar.set_clim(0.0, 1.0)
cbar.ax.set_yticklabels(['$1.00$','$0.10$','$0.01$'] + ['$10^{'+str(-3-i)+'}$' for i in range(6)])
cbar.ax.tick_params(labelsize=18)
ax.axis('tight')
ax.set_xticks(np.arange(arry_dim_s)+0.5)
ax.set_yticks(np.arange(arry_dim_u)+0.5)
ax.set_xticklabels([])
ax.set_yticklabels(my_Ulabel[::-1])
ax.set_ylabel('Beneficial mutation\nrate trait 2',multialignment='center',fontsize=18,labelpad=10)
ax.tick_params(axis='both',labelsize=20)
#cbar.ax.text(3.8,0.80,'Ratio $\log_{10}(v_1/v)$',rotation=270,fontsize=22) # use this label of comparing v
cbar.ax.text(4.5,0.52,'$v_1/v$',rotation=270,fontsize=22) # use this label of comparing v
#cbar.ax.text(3.5,0.75,'Ratio $v_1/(v_1+v_2)$',rotation=270,fontsize=22) # use this label of comparing v
plt.text(-8.0,60,'(b)',fontsize=20)
# plot isoquant calculated from theory on figures and location of s1,U1
ax.plot(vCont_OFMM1[:,0],vCont_OFMM1[:,1],color="black",linewidth=2,linestyle="-",label=r'$v=5.31\times 10^{-5}$')
ax.plot(vCont_OFMM2[:,0],vCont_OFMM2[:,1],color="black",linewidth=2,linestyle=":")
ax.plot(vCont_DM1[:,0],vCont_DM1[:,1],color="black",linewidth=2,linestyle="-")
ax.plot(vCont_DM2[:,0],vCont_DM2[:,1],color="black",linewidth=2,linestyle=":")
ax.scatter(s1_coord_MM,U1_coord_MM, facecolors='none',linewidth=2, edgecolors='w',s=80)
# *****************************************************************************
ax=plt.subplot(313) # third panel-trait 1 in diffusive mutations regime (DM)
#fit_distr_2d = ax.pcolormesh(rate_comp_DM,cmap=plt.cm.bwr)
fit_distr_2d = ax.pcolormesh(rate_comp_DM)
#cbar = plt.colorbar(fit_distr_2d,pad = 0.03,
# ticks=[0+i/10.0 for i in range(12)],
# norm=mpl.colors.Normalize(vmin=0.0, vmax=1.0))
cbar = plt.colorbar(fit_distr_2d,pad = 0.03,ticks=[0.0-i for i in range(9)])
#cbar.set_clim(0.0, 1.0)
cbar.ax.set_yticklabels(['$1.00$','$0.10$','$0.01$'] + ['$10^{'+str(-3-i)+'}$' for i in range(6)])
cbar.ax.tick_params(labelsize=18)
ax.axis('tight')
ax.set_xticks(np.arange(arry_dim_s)+0.5)
ax.set_yticks(np.arange(arry_dim_u)+0.5)
ax.set_xticklabels(my_slabel)
ax.set_yticklabels(my_Ulabel[::-1])
ax.set_xlabel('Selection coefficient trait 2',multialignment='center',fontsize=18,labelpad=10)
ax.set_ylabel('Beneficial mutation\nrate trait 2',multialignment='center',fontsize=18,labelpad=10)
ax.tick_params(axis='both',labelsize=20)
#cbar.ax.text(3.8,0.80,'Ratio $\log_{10}(v_1/v)$',rotation=270,fontsize=22) # use this label of comparing v
cbar.ax.text(4.5,0.52,'$v_1/v$',rotation=270,fontsize=22) # use this label of comparing v
#cbar.ax.text(3.5,0.75,'Ratio $v_1/(v_1+v_2)$',rotation=270,fontsize=22) # use this label of comparing v
plt.text(-8.0,60,'(c)',fontsize=20)
# plot isoquant calculated from theory on figures and location of s1,U1
ax.plot(vCont_OFMM1[:,0],vCont_OFMM1[:,1],color="black",linewidth=2,linestyle="-",label=r'$v=5.31\times 10^{-5}$')
ax.plot(vCont_OFMM2[:,0],vCont_OFMM2[:,1],color="black",linewidth=2,linestyle=":")
ax.plot(vCont_DM1[:,0],vCont_DM1[:,1],color="black",linewidth=2,linestyle="-")
ax.plot(vCont_DM2[:,0],vCont_DM2[:,1],color="black",linewidth=2,linestyle=":")
ax.scatter(s1_coord_DM,U1_coord_DM, facecolors='none',linewidth=2, edgecolors='w',s=80)
plt.tight_layout()
fig.savefig('figures/fig_two_trait_compare_sU.pdf',bbox_inches='tight')
# -----------------------------------------------------------------------------
# OLD CODE THAT MIGHT BE USED
#plt.text(17.5,28.5,r'$N = 10^9$',fontsize=20)
#plt.text(17.5,26.5,r'$v = 5.3\times 10^{-5}$',fontsize=20) # use this label of comparing v
#plt.text(23,28.5,r'$s_1 = 10^{-2}$',fontsize=18)
#plt.text(22.7,26.5,r'$U_1 = 10^{-5}$',fontsize=18) # use this label of comparing v
#ax.plot(x_border,y_border,color="black")
#fig2.subplots_adjust(bottom=0.2,left=0.2)