-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplotfunctions.py
292 lines (226 loc) · 11.7 KB
/
plotfunctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 08 18:08:03 2017
@author: Kevin Gomez (Masel Lab)
Library of functions used in plots.py and plotdata.py
"""
#--------FUNCTIONS REQUIRE PACKAGES LISTED:------------------------------------
from scipy.stats import multivariate_normal
import pickle
import matplotlib.pyplot as plt
import scipy as sp
import numpy as np
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
def get_sample_window(times,start_time,end_time):
# returns: indeces of times that correspond to start_time and end_time
[num_pts,start_indx,end_indx] = [len(times),0,0]
for i in range(num_pts):
if times[start_indx] <= start_time:
start_indx = start_indx + 1
if times[end_indx] <= end_time:
end_indx = end_indx + 1
return [start_indx,end_indx]
# -----------------------------------------------------------------------------
def get_trait_mean_var(genotypes,abundances,traitno):
if ((traitno == 1) | (traitno == 2)):
mean = (genotypes[:,traitno-1].dot(abundances[0]))/sum(abundances[0])
var = (((genotypes[:,traitno-1]-mean*np.ones(np.shape(genotypes[:,traitno-1])))**2).dot(abundances[0]))/sum(abundances[0])
if (traitno == 0):
mean1 = (genotypes[:,0].dot(abundances[0]))/sum(abundances[0])
mean2 = (genotypes[:,1].dot(abundances[0]))/sum(abundances[0])
means_arry = np.asarray([[mean1,mean2] for i in range(len(genotypes[:,0]))])
mean = mean1 + mean2
var = (abundances.dot((((genotypes - means_arry)**2).dot(np.ones([2,1]))))[0][0])/sum(abundances[0])
return [mean, var]
# -----------------------------------------------------------------------------
def get_1D_proj(genotypes,abundances,traitno):
if ((traitno == 1) | (traitno == 2)):
trait_min = np.min(genotypes[:,traitno-1])
trait_max = np.max(genotypes[:,traitno-1])
trait_classes = [trait_min+i-3 for i in range(trait_max-trait_min+1+6)]
trait_totals = [0 for i in range(trait_max-trait_min+1+6)]
for i in range(len(genotypes[:,traitno-1])):
indx = genotypes[i,traitno-1]-trait_min+3
trait_totals[indx] = trait_totals[indx]+abundances[0][i]
if (traitno == 0):
genotype_fitnesses = genotypes[:,0]+genotypes[:,1]
trait_min = np.min(genotype_fitnesses)
trait_max = np.max(genotype_fitnesses)
trait_classes = [trait_min+i-3 for i in range(trait_max-trait_min+1+6)]
trait_totals = [0 for i in range(trait_max-trait_min+1+6)]
for i in range(len(genotype_fitnesses)):
indx = genotype_fitnesses[i]-trait_min+3
trait_totals[indx] = trait_totals[indx]+abundances[0][i]
return [trait_classes, trait_totals]
# -----------------------------------------------------------------------------
def get_2D_distr(genotypes,abundances,box_dim):
# box_dim = gives array data to bound distr correponding to genotypes & abund.
# [[width1,margin1],[width2,margin2]]
# returns: an array whose elements are the abundances of the fit classes
hhfgenotypes = np.asarray(get_hifit_front_genos(genotypes))
hhf_points = []
tot_pop_size = sum(abundances[0]) # be careful with your sums of arrays!!!
dim1_data = [np.min(genotypes[:,0]),np.max(genotypes[:,0])]
dim2_data = [np.min(genotypes[:,1]),np.max(genotypes[:,1])]
if((box_dim[0][0] < dim1_data[1]-dim1_data[0]) | (box_dim[1][0] < dim2_data[1]-dim2_data[0])):
print "Error with box dimensions"
end()
my_distr = np.zeros([box_dim[0][0],box_dim[1][0]])
for i in range(len(genotypes)):
indx1 = genotypes[i][0] - dim1_data[0] + box_dim[0][1]
indx2 = genotypes[i][1] - dim2_data[0] + box_dim[1][1]
my_distr[indx1,indx2] = max([abundances[0][i]/tot_pop_size,1/tot_pop_size])
xlabels = [(dim1_data[0] - box_dim[0][1]-1 + i) for i in range(box_dim[0][0]+1)]
ylabels = [(dim2_data[0] - box_dim[1][1]-1 + i) for i in range(box_dim[1][0]+1)]
for i in range(len(hhfgenotypes)):
indx1 = hhfgenotypes[i][0] - dim1_data[0] + box_dim[0][1]
indx2 = hhfgenotypes[i][1] - dim2_data[0] + box_dim[1][1]
hhf_points.append([indx1+.5,indx2+0.5])
hhf_points = np.asarray(hhf_points)
return [my_distr,xlabels,ylabels,hhf_points]
# -----------------------------------------------------------------------------
def get_cov_by_fitness_line(genotypes,abundances,s):
mean_fit = get_trait_mean_var(genotypes,abundances,0)[0]
num_genotypes = len(abundances[0])
fit1D = [genotypes[i,0]+genotypes[i,1] for i in range(num_genotypes)]
fit1Dshrt = list(set(fit1D))
fit1Dshrt.sort()
fit1Dcovs = []
tempcov = 0
tempfreq = 0
tempmean1 = 0
tempmean2 = 0
popsize = sum(abundances[0])
for i in range(len(fit1Dshrt)):
tempcov = 0
tempfreq = 0
tempmean1 = 0
tempmean2 = 0
for j in range(num_genotypes):
if(fit1D[j]==fit1Dshrt[i]):
tempmean1 += s*genotypes[j,0]*abundances[0][j]/popsize
tempmean2 += s*genotypes[j,1]*abundances[0][j]/popsize
tempfreq += abundances[0][j]/popsize
tempcov += s**2*genotypes[j,0]*genotypes[j,1]*(abundances[0][j]/popsize)
tempcov = tempcov/tempfreq - (tempmean1/tempfreq)*(tempmean2/tempfreq)
fit1Dcovs = fit1Dcovs+[[fit1Dshrt[i]-mean_fit,tempfreq,tempcov]]
# should return [[fit_i,p_i,cov_i,] for i = min_fit,...,max_fit]
return fit1Dcovs
# -----------------------------------------------------------------------------
def get_vNsU_perChg(N,s,U,n):
vrate = ((2*np.log(N*s)-np.log(s/n/U))/np.log(s/n/U)**2/n) / ((2*np.log(N*s)-np.log(s/U))/np.log(s/U)**2)
return vrate
# -----------------------------------------------------------------------------
def get_vNsU(N,s,U):
vrate = s**2*(2*np.log(N*s)-np.log(s/U))/(np.log(s/U)**2)
return vrate
# -----------------------------------------------------------------------------
def get_cov_cov(times,nose_cov,fit_cov,N,s,U):
tau_q = (np.log(s/U))**2/(s*(2*np.log(N*s)-np.log(s/U)))
q = (2*np.log(N*s))/(np.log(s/U))
time_d = int(np.floor(q*tau_q))
new_times = []
new_covs = []
new_ncovs = []
for i in range(len(times)):
if(np.mod(times[i],1)<0.00000001):
new_times = new_times+[times[i]]
new_covs = new_covs + [fit_cov[i]]
new_ncovs = new_ncovs + [nose_cov[i]]
new_covs = np.asarray(new_covs)
new_ncovs = np.asarray(new_ncovs)
t_off = [i+1 for i in range(2*time_d)]
t_cov = [0 for i in range(2*time_d)]
for i in range(2*time_d):
t_cov[i] = (np.cov(np.vstack((new_covs[i+1:],new_ncovs[:-(1+i)])))[0,1])/np.std(new_covs[i+1:])/np.std(new_ncovs[:-(1+i)])
return [t_off,t_cov,new_times,new_covs,new_ncovs]
# -----------------------------------------------------------------------------
def get_subset_times(N,s,U,times,scaling):
tau_q = scaling*((np.log(s/U))**2)/(s*(2*np.log(N*s)-np.log(s/U)))
indx_list = [0]
indx = 0
while(times[indx]+tau_q < times[-1]):
indx = get_sample_window(times,times[indx],times[indx]+tau_q)[1]
indx_list = indx_list + [indx]
return indx_list
# -----------------------------------------------------------------------------
def get_hifit_front_line(genotypes,num_points,box_dim):
num_geno = len(genotypes)
min_x = min(genotypes[:,0])
min_y = min(genotypes[:,1])
hffrt = []
L1 = 1+max([genotypes[i][0]-min_x+genotypes[i][1]-min_y+2*box_dim[0][1] for i in range(num_geno)])
x_start = L1-box_dim[0][0]
x_end = box_dim[0][0]
xl = np.asarray([1.0*(x_end-x_start)*i/num_points + x_start for i in range(num_points+1)])
yl = np.asarray([L1-1.0*xl[i] for i in range(num_points+1)])
return [xl,yl]
# -----------------------------------------------------------------------------
def get_hifit_front_genos(genotypes):
num_geno = len(genotypes)
hhfgenotypes = []
L = 1+np.max([genotypes[i][0]+genotypes[i][1] for i in range(num_geno)])
for i in range(num_geno):
if(genotypes[i][0]+genotypes[i][1]+1 == L):
if [genotypes[i][0]+1,genotypes[i][1]] not in hhfgenotypes:
hhfgenotypes.append([genotypes[i][0]+1,genotypes[i][1]])
if [genotypes[i][0],genotypes[i][1]+1] not in hhfgenotypes:
hhfgenotypes.append([genotypes[i][0],genotypes[i][1]+1])
return hhfgenotypes
# -----------------------------------------------------------------------------
def get_stoch_genotypes(genotypes,abundances,cutoff):
# returns the set of classes that are smaller than the given cutoff
# and the those classes that are at the high fitness front.
nosefitness = np.max(np.matmul(genotypes,np.ones([2,1])))
hhf_points = []
stoch_points = []
for i in range(len(genotypes)):
if (abundances[0][i]<cutoff):
stoch_points = stoch_points+[genotypes[i]]
if(genotypes[i][0]+genotypes[i][1]==nosefitness):
hhf_points = hhf_points + [genotypes[i]]
hhf_points = np.asarray(hhf_points)
stoch_points = np.asarray(stoch_points)
return [hhf_points,stoch_points]
def get_2D_distr2(genotypes,abundances,box_dim,cutoff):
# box_dim = gives array data to bound distr correponding to genotypes & abund.
# [[width1,margin1],[width2,margin2]]
# returns: an array whose elements are the abundances of the fit classes
[hhfgenotypes,stochgenotypes] = get_stoch_genotypes(genotypes,abundances,cutoff)
hhf_points = []
stoch_points = []
tot_pop_size = sum(abundances[0]) # be careful with your sums of arrays!!!
dim1_data = [np.min(genotypes[:,0]),np.max(genotypes[:,0])]
dim2_data = [np.min(genotypes[:,1]),np.max(genotypes[:,1])]
if((box_dim[0][0] < dim1_data[1]-dim1_data[0]) | (box_dim[1][0] < dim2_data[1]-dim2_data[0])):
print "Error with box dimensions"
end()
my_distr = np.zeros([box_dim[0][0],box_dim[1][0]])
for i in range(len(genotypes)):
indx1 = genotypes[i][0] - dim1_data[0] + box_dim[0][1]
indx2 = genotypes[i][1] - dim2_data[0] + box_dim[1][1]
my_distr[indx1,indx2] = max([abundances[0][i]/tot_pop_size,1/tot_pop_size])
xlabels = [(dim1_data[0] - box_dim[0][1]-1 + i) for i in range(box_dim[0][0]+1)]
ylabels = [(dim2_data[0] - box_dim[1][1]-1 + i) for i in range(box_dim[1][0]+1)]
for i in range(len(hhfgenotypes)):
indx1 = hhfgenotypes[i][0] - dim1_data[0] + box_dim[0][1]
indx2 = hhfgenotypes[i][1] - dim2_data[0] + box_dim[1][1]
hhf_points.append([indx1+.5,indx2+0.5])
for i in range(len(stochgenotypes)):
indx1 = stochgenotypes[i][0] - dim1_data[0] + box_dim[0][1]
indx2 = stochgenotypes[i][1] - dim2_data[0] + box_dim[1][1]
stoch_points.append([indx1+0.5,indx2+0.5])
hhf_points = np.asarray(hhf_points)
stoch_points = np.asarray(stoch_points)
return [my_distr,xlabels,ylabels,hhf_points,stoch_points]
def get_normlzd_thry_indv_var(N,s,U):
sigma1sqrd = 0.25 * (get_vNsU(N,s,2*U)/get_vNsU(N,s,U)) * ( 1 + np.log(s/(2*U)) + (s / np.sqrt(np.pi*get_vNsU(N,s,2*U))))
return sigma1sqrd
def get_normlzd_thry_cov(N,s,U):
sigma12 = 0.25 * (get_vNsU(N,s,2*U)/get_vNsU(N,s,U)) * ( 1 - np.log(s/(2*U)) - (s / np.sqrt(np.pi*get_vNsU(N,s,2*U))))
return sigma12
def get_q(N,s,U):
q_est = 2*np.log(N*s)/np.log(s/U)
return q_est
# -----------------------------------------------------------------------------