-
Notifications
You must be signed in to change notification settings - Fork 1
/
plotdata.py
752 lines (608 loc) · 31.7 KB
/
plotdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 17 13:27:18 2017
@author: Kevin Gomez (Masel Lab)
Script to process data generated by simulations in Mathematica code.
"""
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 1) Times series data for classes, abundances of 2d wave (mathematica)
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed to process data from mathematica simulations
import pickle
import scipy as sp
import numpy as np
import copy as cpy
# set parameters of simulation and create required variables
[N,s1,s2,U1,U2] = [1e9,1e-2,1e-2,1e-5,1e-5]
# calculate desai and fisher (2007) theoretical "v" and "tau_est"
vU_thry = s1*s1*(2*np.log(N*s1)-np.log(s1/(1*U1)))/((np.log(s1/(1*U1)))**2)
v2U_thry = 0.5*s1*s1*(2*np.log(N*s1)-np.log(s1/(2*U1)))/((np.log(s1/(2*U1)))**2)
tau_est = 0.5*s1/v2U_thry
# section of code for processing new data from Mathematica simulations
data_name = '_N-10p09_c1-0d01_c2-0d01_U1-1x10pn5_U2-1x10pn5_exp1'
#folder_location = 'Documents/kgrel2d/' # use this location in linux
folder_location = '' # use this location if windows
[times,genotypes,abundances] = [[],[],[]]
# get simulation data and store genotypes as lists since they vary in dimensions over time
data_file=open('./'+folder_location+'data/pythondata/times'+data_name+'.dat')
times = data_file.read().splitlines()
times = np.array(map(float,times))
data_file.close()
data_file=open('./'+folder_location+'data/pythondata/genotypes'+data_name+'.dat')
genotypes = data_file.read().splitlines()
data_file.close()
data_file=open('./'+folder_location+'data/pythondata/abundances'+data_name+'.dat')
abundances = data_file.read().splitlines()
data_file.close()
del data_file
num_pts = len(times)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
genotypes[i]='genotypes[i]=np.array(['+genotypes[i].replace('\t',',')+'])'
genotypes[i]=genotypes[i].replace('{','[')
genotypes[i]=genotypes[i].replace('}',']')
exec(genotypes[i])
abundances[i]='abundances[i]=np.array([['+abundances[i].replace('\t',',')+']])'
exec(abundances[i])
# times is array, genotypes and abundances are lists of arrays
pickle_file_name = './'+folder_location+'data/pythondata/timesGenosAbund'+data_name+'.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,genotypes,abundances],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# compute data for use in plots
rel_fit = cpy.deepcopy(genotypes)
freq = cpy.deepcopy(abundances)
mean_fit = np.zeros((num_pts,2))
fit_var = np.zeros((num_pts,2))
fit_cov = cpy.deepcopy(times)
pop_load = cpy.deepcopy(times)
dcov_dt = cpy.deepcopy(times)
#del genotypes, abundances
for i in range(num_pts):
num_genos = len(freq[i][0])
freq[i] = (1/np.sum(freq[i]))*freq[i]
mean_fit[i] = freq[i].dot(rel_fit[i])[0]
rel_fit[i] = rel_fit[i]-np.array([mean_fit[i] for j in range(num_genos)])
rel_fit[i] = rel_fit[i]*np.array([[s1,s2] for j in range(num_genos)])
fit_var[i] = (freq[i].dot(((rel_fit[i])**2)))[0]
fit_cov[i] = freq[i].dot(rel_fit[i][:,0]*rel_fit[i][:,1])
dcov_dt[i] = freq[i].dot(rel_fit[i][:,0]**2*rel_fit[i][:,1]+rel_fit[i][:,1]**2*rel_fit[i][:,0])
L1 = np.amax((rel_fit[i]+np.array([[s1,0] for j in range(num_genos)])).dot(np.array([[1],[1]])))
L2 = np.amax((rel_fit[i]+np.array([[0,s2] for j in range(num_genos)])).dot(np.array([[1],[1]])))
pop_load[i] = max([L1,L2])
# dump data into a pickle files
pickle_file_name = './'+folder_location+'data/pythondata/distrStats'+data_name+'.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
del N, s1, s2, U1, U2, L1, L2, rel_fit, freq
del vU_thry, v2U_thry, tau_est
del times, mean_fit, fit_var, fit_cov, pop_load, dcov_dt
del pickle_file_name, folder_location, data_name
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 2) Data for time-averaged statistics of 2d wave with varying parameters (mathematica)
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
# section of code for processing new data from Mathematica simulations
num_exp = 33 # number of experiments/files
#folder_location = 'Documents/kgrel2d/' # use this location in linux
folder_location = '' # use this location if windows
[times,genotypes,abundances,parameters] = [[],[],[],[]]
var = np.ones([num_exp,1])
cov = np.ones([num_exp,1])
vUthry = np.ones([num_exp,1])
v2Uthry = np.ones([num_exp,1])
varp = np.ones([num_exp,1])
covp = np.ones([num_exp,1])
vUthryp = np.ones([num_exp,1])
v2Uthryp = np.ones([num_exp,1])
NsUparam = [[] for l in range(num_exp)]
def get_sample_window(times,start_time,end_time):
# returns: indeces of times that correspond to start_time and end_time
[num_pts,start_indx,end_indx] = [len(times),0,0]
for i in range(num_pts):
if times[start_indx] <= start_time:
start_indx = start_indx + 1
if times[end_indx] <= end_time:
end_indx = end_indx + 1
return [start_indx,end_indx]
for k in range(num_exp):
print(k+1)
# get simulation data and store genotypes as lists since they vary in dimensions over time
data_file=open('./'+folder_location+'data/pythondata/times_exp'+str(k+1)+'.dat')
times = data_file.read().splitlines()
times = np.array(map(float,times))
data_file.close()
data_file=open('./'+folder_location+'data/pythondata/genotypes_exp'+str(k+1)+'.dat')
genotypes = data_file.read().splitlines()
data_file.close()
data_file=open('./'+folder_location+'data/pythondata/abundances_exp'+str(k+1)+'.dat')
abundances = data_file.read().splitlines()
data_file.close()
data_file=open('./'+folder_location+'data/pythondata/parameters_exp'+str(k+1)+'.dat')
parameters = data_file.read().splitlines()
data_file.close()
del data_file
num_pts = len(times)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
genotypes[i]='genotypes[i]=np.array(['+genotypes[i].replace('\t',',')+'])'
genotypes[i]=genotypes[i].replace('{','[')
genotypes[i]=genotypes[i].replace('}',']')
exec(genotypes[i])
abundances[i]='abundances[i]=np.array([['+abundances[i].replace('\t',',')+']])'
exec(abundances[i])
# clean up for parameters variable
for i in range(len(parameters)):
parameters[i]='parameters[i]=1.0*'+parameters[i]
exec(parameters[i])
# times is array, genotypes and abundances are lists of arrays
pickle_file_name = './'+folder_location+'data/pythondata/data_exp'+str(k+1)+'.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,genotypes,abundances,parameters],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# compute data for use in plots
[N,s,U] = parameters
vU_thry = s*s*(2*np.log(N*s)-np.log(s/(1*U)))/((np.log(s/(1*U)))**2)
v2U_thry = 0.5*s*s*(2*np.log(N*s)-np.log(s/(2*U)))/((np.log(s/(2*U)))**2)
tau_est = 0.5*s/v2U_thry
rel_fit = cpy.deepcopy(genotypes)
freq = cpy.deepcopy(abundances)
mean_fit = np.zeros((num_pts,2))
fit_var = np.zeros((num_pts,2))
fit_cov = cpy.deepcopy(times)
pop_load = cpy.deepcopy(times)
dcov_dt = cpy.deepcopy(times)
#del genotypes, abundances
for i in range(num_pts):
num_genos = len(freq[i][0])
freq[i] = (1/np.sum(freq[i]))*freq[i]
mean_fit[i] = freq[i].dot(rel_fit[i])[0]
rel_fit[i] = rel_fit[i]-np.array([mean_fit[i] for j in range(num_genos)])
rel_fit[i] = rel_fit[i]*np.array([[s,s] for j in range(num_genos)])
fit_var[i] = (freq[i].dot(((rel_fit[i])**2)))[0]
fit_cov[i] = freq[i].dot(rel_fit[i][:,0]*rel_fit[i][:,1])
dcov_dt[i] = freq[i].dot(rel_fit[i][:,0]**2*rel_fit[i][:,1]+rel_fit[i][:,1]**2*rel_fit[i][:,0])
L1 = np.amax((rel_fit[i]+np.array([[s,0] for j in range(num_genos)])).dot(np.array([[1],[1]])))
L2 = np.amax((rel_fit[i]+np.array([[0,s] for j in range(num_genos)])).dot(np.array([[1],[1]])))
pop_load[i] = max([L1,L2])
# dump data into a pickle files
pickle_file_name = './'+folder_location+'data/pythondata/stats_exp'+str(k+1)+'.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
[start_indx,end_indx] = get_sample_window(times,10000,1000000)
fit_var = fit_var[start_indx:end_indx]
fit_cov = fit_cov[start_indx:end_indx]
var[k] = np.mean(fit_var[:,0])
cov[k] = np.mean(fit_cov)
vUthry[k] = vU_thry
v2Uthry[k] = v2U_thry
varp[k] = var[k]/vU_thry
covp[k] = cov[k]/vU_thry
vUthryp[k] = vU_thry/vU_thry
v2Uthryp[k] = v2U_thry/vU_thry
NsUparam[k] = [N,s,U]
pickle_file_name = './'+folder_location+'data/pythondata/sumdata_exp5.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([var, cov, vUthry, v2Uthry, varp, covp, vUthryp, v2Uthryp,NsUparam],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 3) Estimates of timescales for variances and covariances
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
# section of code for processing new data from Mathematica simulations
num_exp = 33 # number of experiments/files
#folder_location = 'Documents/kgrel2d/' # use this location in linux
folder_location = '' # use this location if windows
for k in range(num_exp):
print(k+1)
pickle_file_name = './'+folder_location+'data/pythondata/data_exp'+str(k+1)+'.pickle'
pickle_file = open(pickle_file_name,'rb')
[times,genotypes,abundances,parameters] = pickle.load(pickle_file)
pickle_file.close()
# load time series data of distrStats from plotdata.py output
pickle_file_name = './'+folder_location+'data/pythondata/stats_exp'+str(k+1)+'.pickle'
pickle_file = open(pickle_file_name,'rb')
[times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry] = pickle.load(pickle_file)
pickle_file.close()
# compute both medians and time scale of tau_q's
cov_times = cpy.deepcopy(times)
mean_cov = np.mean(fit_cov)
for i in range(len(times)):
cov_times[i] = abs((0.1*mean_cov)/dcov_dt[i])
median_cov_time = median(cov_times)
tau_q = (1/vU_thry)*parameters[1]
pickle_file_name = './'+folder_location+'data/pythondata/timescales_exp'+str(k+1)+'.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([tau_q,median_cov_time,mean_cov,dcov_dt,cov_times,parameters],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 4) Data on correlation between front and bulk covariance (WIP)
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
import matplotlib.pyplot as plt
import plotfunctions as pltfun
[N,U,s] = [10**9, 2*10**(-5),1*10**(-2)] #here U is double the single trait mutation rate
tau_q = ((np.log(s/U))**2)/(s*(2*np.log(N*s)-np.log(s/U)))
q = (2*np.log(N*s))/(np.log(s/U))
# get 2d fitness distribution data
#pickle_file_name = './data/pythondata/timesGenosAbund_N-10p09_c1-0d01_c2-0d01_U1-1x10pn5_U2-1x10pn5_exp1.pickle' #old mathematica data
pickle_file_name = './data/2dwave_data_time_series_distr_ml-01.pickle' #new matlab data
pickle_file = open(pickle_file_name,'rb')
[times,genotypes,abundances] = pickle.load(pickle_file)
pickle_file.close()
# get bulk covariance data
#pickle_file_name = './data/pythondata/distrStats_N-10p09_c1-0d01_c2-0d01_U1-1x10pn5_U2-1x10pn5_exp1.pickle' #old mathematica data
pickle_file_name = './data/2dwave_data_time_series_stats_ml-01.pickle' #new matlab data
pickle_file = open(pickle_file_name,'rb')
[times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry] = pickle.load(pickle_file)
pickle_file.close()
# compute data for use in plots
num_pts = len(times)
lead_cov = []
# compute covariances for each line of const fitness
for i in range(num_pts):
lead_cov = lead_cov+[pltfun.get_cov_by_fitness_line(genotypes[i],abundances[i],10**(-2))]
nose_cov = [lead_cov[i][-1][2] for i in range(len(lead_cov))]
tau_fix_avg = (mean(pop_load[10000:-1])/s)*tau_q
times2 = [times[i]+np.floor(tau_fix_avg) for i in range(len(times))]
# get cross-covariances from bulk and nose as function of offset
[t_off,t_cov,new_times,new_covs,new_ncovs]= pltfun.get_cov_cov(times,nose_cov,fit_cov,N,s,U)
# dump data into a pickle files
#pickle_file_name = './data/2dwave_data_time_series_corr_mm-01.pickle' #old output using mathematica data
pickle_file_name = './data/2dwave_data_time_series_corr_ml-01.pickle' #new output using matlab data
pickle_file = open(pickle_file_name,'wb')
pickle.dump([tau_fix_avg,t_off,t_cov],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 5) Process new data on timeseries for 2d wave
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
import matplotlib.pyplot as plt
import plotfunctions.py as pltfun
# open mathematica file containing simulation data for var-cov, etc
data_file = open('./data/pythondata/sumdata_exp6.dat')
data = data_file.read().splitlines()
data_file.close()
del data_file
num_pts = len(data)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
data[i]='data[i]=np.array(['+data[i].replace('\t',',')+'])'
data[i]=data[i].replace('{','[')
data[i]=data[i].replace('}',']')
exec(data[i])
data = np.asarray(data)
data = data[:,1:]
data_file = open('./data/pythondata/sumparam_exp6.dat')
NsUparam = data_file.read().splitlines()
data_file.close()
num_pts = len(NsUparam)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
NsUparam[i]='NsUparam[i]=np.asarray(['+NsUparam[i].replace('\t',',')+'])'
NsUparam[i]=NsUparam[i].replace('{','[')
NsUparam[i]=NsUparam[i].replace('}',']')
NsUparam[i]=NsUparam[i].replace('/','*1.0/')
exec(NsUparam[i])
NsUparam = np.asarray(NsUparam)
vU_thry = np.asarray([get_vNsU(NsUparam[i,0],NsUparam[i,1],NsUparam[i,2]) for i in range(num_pts)])
v2U_thry = np.asarray([0.5*get_vNsU(NsUparam[i,0],NsUparam[i,1],2*NsUparam[i,2]) for i in range(num_pts)])
var = data[:,2]
cov = data[:,4]
varp = np.asarray([var[i]/vU_thry[i] for i in range(num_pts)])
covp = np.asarray([cov[i]/vU_thry[i] for i in range(num_pts)])
vU_thryp = np.asarray([vU_thry[i]/vU_thry[i] for i in range(num_pts)])
v2U_thryp = np.asarray([v2U_thry[i]/vU_thry[i] for i in range(num_pts)])
pickle_file_name = './data/pythondata/sumdata_exp6.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([var, cov, vU_thry, v2U_thry, varp, covp, vU_thryp, v2U_thryp, NsUparam],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
del var, cov, vU_thry, v2U_thry, varp, covp, vU_thryp, v2U_thryp, NsUparam
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 6) Process new data for time-averaged statistics of 2d wave
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
import matplotlib.pyplot as plt
import plotfunctions as pltfun
# load existing data of variances and covariances.py output
pickle_file_name = './data/pythondata/sumdata_exp6.pickle'
pickle_file = open(pickle_file_name,'rb')
[var, cov, vUthry, v2Uthry, varp, covp, vUthryp, v2Uthryp, NsUparam] = pickle.load(pickle_file)
pickle_file.close()
# import new data from additional simulations "parameters" and add to existing datafile
data_file = open('./data/pythondata/NsUparam.dat')
data_par = data_file.read().splitlines()
data_file.close()
num_pts = len(data_par)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
data_par[i]='data_par[i]=np.array(['+data_par[i].replace('\t',',')+'])'
data_par[i]=data_par[i].replace('{','[')
data_par[i]=data_par[i].replace('}',']')
exec(data_par[i])
data_par = np.asarray(data_par)
# compute new theory and 2U theory arrays
new_vUthry = np.asarray([pltfun.get_vNsU(data_par[i][0],data_par[i][1],data_par[i][2]) for i in range(num_pts)])
new_v2Uthry = np.asarray([0.5*pltfun.get_vNsU(data_par[i][0],data_par[i][1],2*data_par[i][2]) for i in range(num_pts)])
new_vUthryp = np.asarray([new_vUthry[i]/new_vUthry[i] for i in range(num_pts)])
new_v2Uthryp = np.asarray([new_v2Uthry[i]/new_vUthry[i] for i in range(num_pts)])
# import new data from additional simulations "cov data" and add to existing datafile
data_file = open('./data/pythondata/results.dat')
data = data_file.read().splitlines()
data_file.close()
num_pts = len(data)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
data[i]='data[i]=np.array(['+data[i].replace('\t',',')+'])'
data[i]=data[i].replace('*^','e')
data[i]=data[i].replace('`16.','')
data[i]=data[i].replace('{','[')
data[i]=data[i].replace('}',']')
exec(data[i])
data_file.close()
new_var = np.asarray([data[i][0][3] for i in range(num_pts)])
new_cov = np.asarray([data[i][0][5] for i in range(num_pts)])
new_varp = np.asarray([data[i][0][3]/new_vUthry[i] for i in range(num_pts)])
new_covp = np.asarray([data[i][0][5]/new_vUthry[i] for i in range(num_pts)])
# straighten data
num_exp = len(NsUparam)
num_exp2 = len(data_par)
[start1,start2,start3] = [0,num_exp/3,2*num_exp/3]
[end1,end2,end3] = [num_exp/3,2*num_exp/3,num_exp]
[start21,start22,start23] = [0,10,20]
[end21,end22,end23] = [10,20,40]
new_NsUparam = np.concatenate((NsUparam[start1:end1],data_par[start21:end21],NsUparam[start2:end2],data_par[start22:end22],NsUparam[start3:end3],data_par[start23:end23]), axis=0)
new_vUthry = np.concatenate((vUthry[start1:end1],new_vUthry[start21:end21],vUthry[start2:end2],new_vUthry[start22:end22],vUthry[start3:end3],new_vUthry[start23:end23]), axis=0)
new_v2Uthry = np.concatenate((v2Uthry[start1:end1],new_v2Uthry[start21:end21],v2Uthry[start2:end2],new_v2Uthry[start22:end22],v2Uthry[start3:end3],new_v2Uthry[start23:end23]), axis=0)
new_vUthryp = np.concatenate((vUthryp[start1:end1],new_vUthryp[start21:end21],vUthryp[start2:end2],new_vUthryp[start22:end22],vUthryp[start3:end3],new_vUthryp[start23:end23]), axis=0)
new_v2Uthryp = np.concatenate((v2Uthryp[start1:end1],new_v2Uthryp[start21:end21],v2Uthryp[start2:end2],new_v2Uthryp[start22:end22],v2Uthryp[start3:end3],new_v2Uthryp[start23:end23]), axis=0)
new_var = np.concatenate((var[start1:end1],new_var[start21:end21],var[start2:end2],new_var[start22:end22],var[start3:end3],new_var[start23:end23]), axis=0)
new_cov = np.concatenate((cov[start1:end1],new_cov[start21:end21],cov[start2:end2],new_cov[start22:end22],cov[start3:end3],new_cov[start23:end23]), axis=0)
new_varp = np.concatenate((varp[start1:end1],new_varp[start21:end21],varp[start2:end2],new_varp[start22:end22],varp[start3:end3],new_varp[start23:end23]), axis=0)
new_covp = np.concatenate((covp[start1:end1],new_covp[start21:end21],covp[start2:end2],new_covp[start22:end22],covp[start3:end3],new_covp[start23:end23]), axis=0)
# load existing data of variances and covariances.py output
pickle_file_name = './data/pythondata/2dwave_data_time_avg_stats_mm-01.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([new_var, new_cov, new_vUthry, new_v2Uthry, new_varp, new_covp, new_vUthryp, new_v2Uthryp, new_NsUparam],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 7) Data on time-series for G stability
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
import matplotlib.pyplot as plt
import plotfunctions as pltfun
# figure 3: plot of rate of adaptation, variances, covariance and their means
parameters = [1e9,1e-2,1e-5]
[N,s,U] = parameters
[sim_start,sim_end,snapshot] = [5e3,4e4,1.313e4]
# load time series data of distrStats from plotdata.py output
pickle_file_name = './data/pythondata/distrStats_N-10p09_c1-0d01_c2-0d01_U1-1x10pn5_U2-1x10pn5_exp1.pickle'
pickle_file = open(pickle_file_name,'rb')
[times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry] = pickle.load(pickle_file)
pickle_file.close()
# select interval of simulation data that will be used for plot
# reduce loaded data to subset corresponding to selected interval
[start_indx,end_indx] = pltfun.get_sample_window(times,sim_start,sim_end)
times = times[start_indx:end_indx]
fit_var = fit_var[start_indx:end_indx]
fit_cov = fit_cov[start_indx:end_indx]
pop_load = pop_load[start_indx:end_indx]
dcov_dt = dcov_dt[start_indx:end_indx]
var_diff = (fit_var[:,0]-fit_var[:,1])
n1 = len(fit_cov)
trG = fit_var[:,0]+fit_var[:,1]
detG = np.asarray([fit_var[i,0]*fit_var[i,1]-fit_cov[i]**2 for i in range(n1)])
Gmatr = [np.asarray([[fit_var[i,0],fit_cov[i]],[fit_cov[i],fit_var[i,1]]]) for i in range(n1)]
Xmatr = np.asarray([[1/np.sqrt(2),1/np.sqrt(2)],[1/np.sqrt(2),-1/np.sqrt(2)]])
lambda1 = np.asarray([0.5*(trG[i]-np.sqrt(trG[i]**2-4*detG[i])) for i in range(n1)])
lambda2 = np.asarray([0.5*(trG[i]+np.sqrt(trG[i]**2-4*detG[i])) for i in range(n1)])
[Gvec,Gval,Gang] = [[],[],[]]
# compute the eigenvalues of the G matrix
for i in range(n1):
A = np.linalg.eig(Gmatr[i])
if(abs(A[0][0]-lambda2[i])<abs(A[0][0]-lambda1[i])):
Gval = Gval+[np.asarray([A[0][1],A[0][0]])]
Gvec = Gvec+[np.fliplr(A[1])]
else:
Gval = Gval+[A[0]]
Gvec = Gvec+[A[1]]
for i in range(n1):
Ang1 = np.arccos((np.sign(Gvec[i][0,0])*Gvec[i][0,0]*Xmatr[0,0]+np.sign(Gvec[i][1,0])*Gvec[i][1,0]*Xmatr[1,0])/np.linalg.norm(Gvec[i][:,0]))
Ang1 = np.sign(np.sign(Gvec[i][1,0])*Gvec[i][1,0]-np.sign(Gvec[i][0,0])*Gvec[i][0,0])*Ang1
Gang = Gang + [Ang1*2/np.pi]
# convert list to array
Gval = np.asarray(Gval)
Gang = np.asarray(Gang)
# load existing data of variances and covariances.py output
pickle_file_name = './data/pythondata/2dwave_data_time_series_stab_mm-1.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,fit_var,fit_cov,vU_thry,v2U_thry,lambda1,lambda2,Gang,parameters],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 8) New data for time-averaged statistics of 2d wave with varying parameters (matlab)
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
import pickle
import numpy as np
import plotfunctions as pltfun
# Need to change this
#1. add more points
#2. decrease space between plots
#3. change dots to one dot in legend
#------------------------------------------------------------------------------------
# import new data from Pearce Fisher simulations
data_file = open('./data/2dwave_data_time_avg_stats_ml-01-1.dat')
mydata = data_file.read().splitlines()
data_file.close()
param_file = open('./data/2dwave_data_time_avg_stats_ml-01-0.dat')
NsUparam = param_file.read().splitlines()
data_file.close()
del data_file, param_file
num_pts = len(mydata)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
mydata[i]='mydata[i]=np.array(['+mydata[i]+'])'
exec(mydata[i])
NsUparam[i]='NsUparam[i]=np.array(['+NsUparam[i]+'])'
exec(NsUparam[i])
mydata = np.asarray(mydata)
NsUparam = np.asarray(NsUparam)
var = mydata[:,3]
cov = mydata[:,5]
vUthry = []
v2Uthry = []
vUthryp = []
v2Uthryp = []
varp = []
covp = []
for i in range(num_pts):
vUthry += [pltfun.get_vNsU(NsUparam[i][0],NsUparam[i][1],NsUparam[i][2])]
v2Uthry += [pltfun.get_vNsU(NsUparam[i][0],NsUparam[i][1],2*NsUparam[i][2])]
vUthryp += [(1/vUthry[i])*vUthry[i]]
v2Uthryp += [(1/vUthry[i])*v2Uthry[i]]
var[i] = NsUparam[i,1]**2*var[i]
cov[i] = NsUparam[i,1]**2*cov[i]
varp += [(1/vUthry[i])*var[i]]
covp += [(1/vUthry[i])*cov[i]]
vUthry = np.asarray(vUthry)
v2Uthry = np.asarray(v2Uthry)
vUthryp = np.asarray(vUthryp)
v2Uthryp = np.asarray(v2Uthryp)
varp = np.asarray(varp)
covp = np.asarray(covp)
# load existing data of variances and covariances.py output
pickle_file_name = './data/pythondata/2dwave_data_time_avg_stats_ml-01.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([var, cov, vUthry, v2Uthry, varp, covp, vUthryp, v2Uthryp,NsUparam],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
# 9) New data on time-series using matlab code ()
# ************************************************************************************
# ************************************************************************************
# ************************************************************************************
#The code below takes data generated from Pearce and Fisher's matlab code and changes it
#into the format used for graphs.
# fixing data from pearce fisher code to generate new plots
# import packages needed for script
import pickle
import scipy as sp
import numpy as np
import copy as cpy
import matplotlib.pyplot as plt
import plotfunctions as pltfun
# import new data from additional simulations "parameters" and add to existing datafile
data_file1 = open('./data/2dwave_data_time_series_stats_ml-01-0.txt')
data_file2 = open('./data/2dwave_data_time_series_stats_ml-01-1.txt')
data_file3 = open('./data/2dwave_data_time_series_stats_ml-01-2.txt')
data_file4 = open('./data/2dwave_data_time_series_stats_ml-01-3.txt')
data_parameters = data_file1.read().splitlines()
data_2dwave = data_file2.read().splitlines()
data_classes = data_file3.read().splitlines()
data_abundances = data_file4.read().splitlines()
data_file1.close()
data_file2.close()
data_file3.close()
data_file4.close()
exec('data_parameters=np.asarray(['+data_parameters[0]+'])')
parameters = data_parameters
num_pts = len(data_2dwave)
# clean up mathematica data's format and convert loaded data into lists of arrays
for i in range(num_pts):
data_2dwave[i]='data_2dwave[i]=np.array(['+data_2dwave[i]+'])'
data_classes[i]='data_classes[i]=np.array(['+data_classes[i][:-1]+'])'
data_abundances[i]='data_abundances[i]=np.array([['+data_abundances[i][:-1]+']])'
exec(data_2dwave[i])
exec(data_classes[i])
exec(data_abundances[i])
data_2dwave = np.asarray(data_2dwave)
# construct arrays for times genotypes and abundances
times = data_2dwave[:,0]
genotypes = data_classes
abundances = data_abundances
# Summary of data_2dwave columns:
# timestep,sigmax2,sigmay2,sigmaxy,front_cov,pop_load,L(2,2),L(1,1),Gang,meanfitness,meanfitx,meanfity
# construct arrays for times, mean_fit, fit_var, fit_cov, pop_load, dcov_dt, vU_thry, v2U_thry
fit_var = parameters[1]**2*data_2dwave[:,1:3]
fit_cov = parameters[1]**2*data_2dwave[:,3]
mean_fit = parameters[1]*data_2dwave[:,9]
pop_load = parameters[1]*data_2dwave[:,5]
dcov_dt = fit_var[:,0]+fit_cov[:]
vU_thry = pltfun.get_vNsU(parameters[0],parameters[1],parameters[2])
v2U_thry = 0.5*pltfun.get_vNsU(parameters[0],parameters[1],2*parameters[2])
lambda1 = data_2dwave[:,6]
lambda2 = data_2dwave[:,7]
Gang = (1/90.0)*data_2dwave[:,8]
# output new data for time series of times genotypes and abundances
pickle_file_name = './data/2dwave_data_time_series_distr_ml-01.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,genotypes,abundances],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# output new data for time series of 2d wave stats
pickle_file_name = './data/2dwave_data_time_series_stats_ml-01.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,mean_fit,fit_var,fit_cov,pop_load,dcov_dt,vU_thry,v2U_thry],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()
# output new data for time series of 2d wave stats
pickle_file_name = './data/2dwave_data_time_series_stab_ml-01.pickle'
pickle_file = open(pickle_file_name,'wb')
pickle.dump([times,fit_var,fit_cov,vU_thry,v2U_thry,lambda1,lambda2,Gang,parameters],pickle_file,pickle.HIGHEST_PROTOCOL)
pickle_file.close()