-
Notifications
You must be signed in to change notification settings - Fork 31
/
models.py
217 lines (175 loc) · 7.66 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2018 Dong-Hyun Lee, Kakao Brain.
""" Transformer Model Classes & Config Class """
import math
from typing import NamedTuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import split_last, merge_last
class Config(NamedTuple):
""" Configuration for BERT model """
vocab_size: int = None # Size of Vocabulary
dim: int = 768 # Dimension of Hidden Layer in Transformer Encoder
n_layers: int = 12 # Numher of Hidden Layers
n_heads: int = 12 # Numher of Heads in Multi-Headed Attention Layers
dim_ff: int = 768*4 # Dimension of Intermediate Layers in Positionwise Feedforward Net
#activ_fn: str = "gelu" # Non-linear Activation Function Type in Hidden Layers
p_drop_hidden: float = 0.1 # Probability of Dropout of various Hidden Layers
p_drop_attn: float = 0.1 # Probability of Dropout of Attention Layers
max_len: int = 512 # Maximum Length for Positional Embeddings
n_segments: int = 2 # Number of Sentence Segments
comments: list = [] # for comments in json file
def gelu(x):
""" Implementation of the gelu activation function by Hugging Face """
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class LayerNorm(nn.Module):
""" A layernorm module in the TF style (epsilon inside the square root). """
def __init__(self, cfg, variance_epsilon=1e-12):
super().__init__()
self.gamma = nn.Parameter(torch.ones(cfg.dim))
self.beta = nn.Parameter(torch.zeros(cfg.dim))
self.variance_epsilon = variance_epsilon
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.gamma * x + self.beta
class Embeddings(nn.Module):
""" The embedding module from word, position and token_type embeddings. """
def __init__(self, cfg):
super().__init__()
self.tok_embed = nn.Embedding(cfg.vocab_size, cfg.dim) # token embedding
self.pos_embed = nn.Embedding(cfg.max_len, cfg.dim) # position embedding
self.seg_embed = nn.Embedding(cfg.n_segments, cfg.dim) # segment(token type) embedding
self.norm = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x, seg):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
pos = pos.unsqueeze(0).expand_as(x) # (S,) -> (B, S)
e = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
return self.drop(self.norm(e))
class MultiHeadedSelfAttention(nn.Module):
""" Multi-Headed Dot Product Attention """
def __init__(self, cfg):
super().__init__()
self.proj_q = nn.Linear(cfg.dim, cfg.dim)
self.proj_k = nn.Linear(cfg.dim, cfg.dim)
self.proj_v = nn.Linear(cfg.dim, cfg.dim)
self.drop = nn.Dropout(cfg.p_drop_attn)
self.scores = None # for visualization
self.n_heads = cfg.n_heads
def forward(self, x, mask):
"""
x, q(query), k(key), v(value) : (B(batch_size), S(seq_len), D(dim))
mask : (B(batch_size) x S(seq_len))
* split D(dim) into (H(n_heads), W(width of head)) ; D = H * W
"""
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q, k, v = self.proj_q(x), self.proj_k(x), self.proj_v(x)
q, k, v = (split_last(x, (self.n_heads, -1)).transpose(1, 2)
for x in [q, k, v])
# (B, H, S, W) @ (B, H, W, S) -> (B, H, S, S) -softmax-> (B, H, S, S)
scores = q @ k.transpose(-2, -1) / np.sqrt(k.size(-1))
if mask is not None:
mask = mask[:, None, None, :].float()
scores -= 10000.0 * (1.0 - mask)
scores = self.drop(F.softmax(scores, dim=-1))
# (B, H, S, S) @ (B, H, S, W) -> (B, H, S, W) -trans-> (B, S, H, W)
h = (scores @ v).transpose(1, 2).contiguous()
# -merge-> (B, S, D)
h = merge_last(h, 2)
self.scores = scores
return h
class PositionWiseFeedForward(nn.Module):
""" FeedForward Neural Networks for each position """
def __init__(self, cfg):
super().__init__()
self.fc1 = nn.Linear(cfg.dim, cfg.dim_ff)
self.fc2 = nn.Linear(cfg.dim_ff, cfg.dim)
#self.activ = lambda x: activ_fn(cfg.activ_fn, x)
def forward(self, x):
# (B, S, D) -> (B, S, D_ff) -> (B, S, D)
return self.fc2(gelu(self.fc1(x)))
class Block(nn.Module):
""" Transformer Block """
def __init__(self, cfg):
super().__init__()
self.attn = MultiHeadedSelfAttention(cfg)
self.proj = nn.Linear(cfg.dim, cfg.dim)
self.norm1 = LayerNorm(cfg)
self.pwff = PositionWiseFeedForward(cfg)
self.norm2 = LayerNorm(cfg)
self.drop = nn.Dropout(cfg.p_drop_hidden)
def forward(self, x, mask):
h = self.attn(x, mask)
h = self.norm1(x + self.drop(self.proj(h)))
h = self.norm2(h + self.drop(self.pwff(h)))
return h
class Transformer(nn.Module):
""" Transformer with Self-Attentive Blocks"""
def __init__(self, cfg):
super().__init__()
self.embed = Embeddings(cfg)
self.blocks = nn.ModuleList([
Block(cfg) for _ in range(cfg.n_layers)])
def forward(self, x, seg, mask):
h = self.embed(x, seg)
for block in self.blocks:
h = block(h, mask)
return h
### Models for classification ###
class Classifier4Transformer(nn.Module):
""" Classifier with Transformer """
def __init__(self, cfg, n_labels):
super().__init__()
self.transformer = Transformer(cfg)
self.fc = nn.Linear(cfg.dim, cfg.dim)
self.activ = nn.Tanh()
self.drop = nn.Dropout(cfg.p_drop_hidden)
self.classifier = nn.Linear(cfg.dim, n_labels)
def forward(self, input_ids, segment_ids, input_mask):
h = self.transformer(input_ids, segment_ids, input_mask)
# only use the first h in the sequence
pooled_h = self.activ(self.fc(h[:, 0]))
logits = self.classifier(self.drop(pooled_h))
return logits
"""
class kimCNN(nn.Module):
def __init__(self, cfg, n_labels, channels=[768,1000,1000], kernel_sizes=[3,3]):
super().__init__()
self.embed = Embeddings(cfg)
self.convs = nn.ModuleList([
nn.Conv1d(n_in, n_out, k, padding=k)
for n_in, n_out, k in zip(channels[:-1], channels[1:], kernel_sizes)])
def forward(self, input_ids, segment_ids, input_mask):
h = self.embed(input_ids, segment_ids)
for conv in self.convs:
h = conv(h)
"""
class BlendCNN(nn.Module):
"Blend CNN in https://openreview.net/pdf?id=HJxM3hftiX"
def __init__(self, cfg,
n_labels,
channels=[768, 100, 100, 100, 100, 100, 100, 100, 100],
kernel_sizes=[5, 5, 5, 5, 5, 5, 5, 5],
n_hidden_dense=100):
super().__init__()
self.embed = Embeddings(cfg)
self.convs = nn.ModuleList([
nn.Conv1d(n_in, n_out, k, padding=int(k/2))
for n_in, n_out, k in zip(channels[:-1], channels[1:], kernel_sizes)
])
self.dense = nn.Linear(channels[-1]*len(kernel_sizes), n_hidden_dense)
self.classifier = nn.Linear(n_hidden_dense, n_labels)
def forward(self, input_ids, segment_ids, input_mask):
h = self.embed(input_ids, segment_ids).transpose(1, 2)
output = []
for conv in self.convs:
h = F.relu(conv(h))
output.append(h.mean(2))
logits = self.classifier(F.relu(self.dense(torch.cat(output, 1))))
return logits
#class GatedCNN(nn.Module):
# def __init__(self, cfg,