-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstudent_utils_sp18.py
174 lines (137 loc) · 6.27 KB
/
student_utils_sp18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import networkx as nx
from networkx.algorithms import approximation
import random
import numpy as np
import matplotlib.pyplot as plt
import utils
# from input_graph_utils import *
random.seed(3)
def decimal_digits_check(number):
number = str(number)
parts = number.split('.')
if len(parts) == 1:
return True
else:
return len(parts[1]) <= 5
def data_parser(input_data):
number_of_kingdoms = int(input_data[0][0])
list_of_kingdom_names = input_data[1]
starting_kingdom = input_data[2][0]
adjacency_matrix = [[entry if entry == 'x' else float(entry) for entry in row] for row in input_data[3:]]
return number_of_kingdoms, list_of_kingdom_names, starting_kingdom, adjacency_matrix
def adjacency_matrix_to_graph(adjacency_matrix):
node_weights = [adjacency_matrix[i][i] for i in range(len(adjacency_matrix))]
adjacency_matrix_formatted = [[0 if entry == 'x' else entry for entry in row] for row in adjacency_matrix]
for i in range(len(adjacency_matrix_formatted)):
adjacency_matrix_formatted[i][i] = 0
G = nx.convert_matrix.from_numpy_matrix(np.matrix(adjacency_matrix_formatted))
for node, datadict in G.nodes.items():
assert node_weights[node] != 'x', 'The conquering cost of node number {} was specified to be x. Conquering costs cannot be x.'.format(node)
datadict['weight'] = node_weights[node]
return G
def is_metric(G):
shortest = dict(nx.floyd_warshall(G))
for u, v, datadict in G.edges(data=True):
assert shortest[u][v] == datadict['weight'], 'Direct path from {} to {} (weight {}) is not shortest path (weight {})'.format(u, v, datadict['weight'], shortest[u][v])
return True
def adjacency_matrix_to_edge_list(adjacency_matrix):
edge_list = []
for i in range(len(adjacency_matrix)):
for j in range(len(adjacency_matrix[0])):
if adjacency_matrix[i][j] != 'x':
edge_list.append((i, j))
return edge_list
def adjacency_matrix_to_adjacency_lists(adjacency_matrix):
adjacency_lists = []
for i in range(len(adjacency_matrix)):
adjacency_lists.append([])
for j in range(len(adjacency_matrix[0])):
if adjacency_matrix[i][j] != 'x':
adjacency_lists[i].append(j)
return adjacency_lists
def tour_to_list_of_edges(tour):
list_of_edges = []
for vertex_index in range(len(tour) - 1):
list_of_edges.append((tour[vertex_index], tour[vertex_index + 1]))
return list_of_edges
# A* helper function
def kingdoms_state_after_conquer(neighbors_list, original_state):
"""Return kingdoms where all neighbors have surrendered, in binary
>>> kingdoms_state_after_conquer([0,1], 0b000)
3
>>> kingdoms_state_after_conquer([0,1,2], 0b001)
7
"""
new = original_state
for i in neighbors_list:
new = new | (1 << i)
return new
# Greedy Algorithm Functions
def isSurrendered(G, kingdom_name):
""" Returns whether a kingdom has surrendered """
return kingdom_name not in G
def areAllSurrendered(matrix):
""" Returns whether all kingdoms have surrendered """
return all(matrix[i][i] == 'x' for i in range(len(matrix)))
def conquer(matrix, kingdom_name, conquered_kingdoms):
""" Conquers by adding kingdom to conquered_kingdoms list, surrenders kingdoms by removing self edge"""
conquered_kingdoms.append(kingdom_name)
return conquered_kingdoms, surrenderKingdoms(matrix, kingdom_name)
def surrenderKingdoms(matrix, kingdom_index):
""" Neighbors around a kingdom and that kingdom that is conquered surrender """
kingdoms_surrendered_indices = []
for i in range(len(matrix[kingdom_index])):
if matrix[kingdom_index][i] != 'x':
kingdoms_surrendered_indices.append(i)
for i in kingdoms_surrendered_indices:
matrix[i][i] = 'x'
matrix[kingdom_index][kingdom_index] = 'x'
return matrix
def getKingdomCost(G, kingdom_name):
""" Returns cost of conquering a kingdom """
return G[kingdom_name][kingdom_name]["weight"]
def mapKingdomtoCost(G, list_of_kingdom_names):
""" Creates a dictionary that maps kingdoms to cost to conquer """
cost_to_conquer_dict = {}
for kingdom in list_of_kingdom_names:
cost_to_conquer_dict[kingdom] = getKingdomCost(G, kingdom)
return cost_to_conquer_dict
# Lawrence's implementation
# adjacency_array = np.array(adjacency_matrix)
# conquered_kingdoms_indices = ["dummy"]
# while not areAllSurrendered(adjacency_array):
# conquered_kingdoms, adjacency_array = conquer(adjacency_array, dict_kingdom_name_to_index[sorted_kingdom_names.pop(0)], conquered_kingdoms_indices)
# conquered_kingdoms_indices.pop(0)
if __name__ == '__main__':
import doctest
doctest.testmod()
def is_valid_walk(G, closed_walk):
return all([(closed_walk[i], closed_walk[i+1]) in G.edges for i in range(len(closed_walk) - 1)])
def get_edges_from_path(path):
return [(path[i], path[i+1]) for i in range(len(path) - 1)]
def cost_of_solution(G, closed_walk, conquered_set):
cost = 0
message = ''
if not is_valid_walk(G, closed_walk):
message += 'This is not a valid walk for the given graph\n'
cost = 'infinite'
if not closed_walk[0] == closed_walk[-1]:
message += 'The start and end vertices are not the same\n'
cost = 'infinite'
if not nx.is_dominating_set(G, conquered_set):
message += 'It is not true that every kingdom is either conquered, or adjacent to a conquered kingdom\n'
cost = 'infinite'
if cost != 'infinite':
if len(closed_walk) == 1:
closed_walk_edges = []
else:
closed_walk_edges = get_edges_from_path(closed_walk[:-1]) + [(closed_walk[-2], closed_walk[-1])]
conquering_cost = sum([G.nodes[v]['weight'] for v in conquered_set])
travelling_cost = sum([G.edges[e]['weight'] for e in closed_walk_edges])
cost = conquering_cost + travelling_cost
message += f'The conquering cost of your solution is {conquering_cost}\n'
message += f'The travelling cost of your solution is {travelling_cost}\n'
message += f'The total cost of your solution is {cost}'
return cost, message
def convert_kingdom_names_to_indices(list_to_convert, list_of_kingdom_names):
return [list_of_kingdom_names.index(name) for name in list_to_convert]