-
Notifications
You must be signed in to change notification settings - Fork 6
/
hydrorain.c
448 lines (404 loc) · 18.6 KB
/
hydrorain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*-------------------------------------------------------------------------------------------
* hydrorain.c
*
* Author: Albert Kettner, March 2006
*
* Calculates the daily rain fall and rain derived runoff for each altitude bin. Also
* calculates the rain derived groundwater flow, evaporation and time lag.
*
* Physically based precipitation/groundwater/evaporation routine based on:
* M. Sivapalan, J.K. Ruprecht, N.R. Viney, 1996. Water and Salt Balance modelling to
* predict the effects of Land-Use changes in forested catchments.
* 1. Small Catchment water balance model. Hydrological Processes, V.10, P.393-411.
*
* Variable Def.Location Type Units Usage
* -------- ------------ ---- ----- -----
* Mannualin HydroRain.c double m^3/a annual mass input to rain routine
* Mannualout HydroRain.c double m^3/a annual mass output from rain routine
* Minput HydroRain.c double m^3 daily mass input to rain routine
* Mout HydroRain.c double m^3 daily mass input to rain routine
* Mwrap HydroRain.c double m^3 mass input to rain routine from previous year
* Pground HydroRain.c double m/day ground precipitation
* Qi1, Qi2 HydroRain.c double m^3/s temporary variables for Qinfiltration
* Qinfiltexcess HydroRain.c double m^3/s river discharge from infiltration excess
* Qinfiltration HydroRain.c double m^3/s = Pground-Qrain[ii]
* Qrainlag HydroRain.c double m^3/s temporary array for routing
* Qsaturationexcess HydroRain.c double m^3/s river discharge from saturation excess
* Qsslag HydroRain.c double m^3/s temporary array for routing
* Qtogw HydroRain.c double m^3/s Rain derived discharge to the GW pool
* err various int - error flag, halts program
* ii various int - temporary loop counter
* infiltrate HydroRain.c double m/day infiltration capacity
* jj various int - temporary loop counter
* kk various int - temporary loop counter
* ratio1 HydroRain.c double - ratio of the fullness of the GW pool
* ratio2 HydroRain.c double - linear interpolation for infiltration
* shldday[] HydroRain.c double m^3/s shoulder discharge array
*
*-------------------------------------------------------------------------------------------*/
#include "hydroclimate.h"
#include "hydroparams.h"
#include "hydrotimeser.h"
#include <stdlib.h>
int FLAindex[daysiy];
long *daysievent;
/*-------------------------------
* Daily suspended and bedload
*-------------------------------*/
double Cs[daysiy], **Csoutlet, Qb[daysiy], **Qboutlet, Qs[daysiy],
Qspsi[daysiy], Qsglacier[daysiy], **Qsoutlet;
/*---------------------------------------------------------
* Daily Temperature, Precipitation and Snow time series
*---------------------------------------------------------*/
double rainarea[daysiy], Ecanopy[daysiy];
double Pdaily[daysiy], Tdaily[daysiy], **Snowelevday;
/*--------------------------------------------------------------------
* Arrays for each type of daily discharge (rain,snow,ice,total,GW)
*--------------------------------------------------------------------*/
double Qrain[maxday], Qice[maxday], Qnival[maxday], Qsumtot[maxday], **Qsum,
Qss[maxday];
/*--------------------------------------------------
* Arrays for carryover from one year to the next
*--------------------------------------------------*/
double Qrainwrap[wrapday], Qicewrap[wrapday], Qnivalwrap[wrapday];
double Qsswrap[wrapday], *Snowcarry;
/*-------------------------------------------
* Arrays for the groundwater storage pool
*-------------------------------------------*/
double gwstore[daysiy], Qicetogw[daysiy], Qnivaltogw[daysiy];
double Egw[daysiy], Qexceedgw[daysiy];
/*----------------------
* Start of HydroRain
*----------------------*/
int
hydrorain ()
{
/*-------------------
* Local Variables
*-------------------*/
double infiltrate, Pground[daysiy];
double Qsaturationexcess[daysiy], Qinfiltexcess[daysiy];
double Qinfiltration[daysiy], Qi1, Qi2, Qtogw, shldday[maxday];
double Mout, Mannualin, Mannualout;
double Qrainlag[maxday], Qsslag[maxday];
double ratio1, ratio2;
double test;
int ii, jj, kk, err;
/*------------------------
* Initialize Variables
*------------------------*/
err = 0;
MPrain = 0.0;
Mannualin = 0.0;
Mannualout = 0.0;
for (ii = 0; ii < maxday; ii++)
{
Qrainlag[ii] = 0.0;
Qsslag[ii] = 0.0;
shldday[ii] = 0.0;
}
/*-------------------------
* Loop through the year
*-------------------------*/
for (ii = 0; ii < daysiy; ii++)
{
/*----------------------------------------------------------------------
* Find the area being rained on
* Temperature must be above freezing
* All rain (P with T>=0.0) is handled here.
* All snow/ice (P with T<0.0) is handled in HydroSnow/HydroGlacier
*----------------------------------------------------------------------*/
rainarea[ii] = 0.0;
for (kk = 0; kk < nelevbins && kk < FLAindex[ii]; kk++)
rainarea[ii] += areabins[kk];
/*--------------------------------------------------------------
* Get the remaining GW pool from the previous day
* the first day of the year is taken care of in HydroTrend.c
*--------------------------------------------------------------*/
if (ii > 0)
gwstore[ii] = gwstore[ii - 1];
/*---------------------------------------------------------------------------
* Calculate groundwater discharge (subsurface storm flow) and evaporation
* Qss (m^3/s), Egw (m/day), gwstore (m^3)
* Only drain down to gwmin
*
* Having this first builds in a one delay lag to the GW discharge
* This also helps prevent the Glacier and Snow from totally filling
* the pool, and leaves some room for Rain.
*
* The lines E=max(E,0.0) and Qss=max(Qss,0.0) prevent rare errors due
* to very small numbers when gwstore is close to gwmin.
*---------------------------------------------------------------------------*/
Egw[ii] =
mn (alphagwe[ep] *
pow ((gwstore[ii] - gwmin[ep]) / (gwmax[ep] - gwmin[ep]),
betagwe[ep]), (gwstore[ii] - gwmin[ep]) / totalarea[ep]);
Egw[ii] = mx (Egw[ii], 0.0);
gwstore[ii] -= Egw[ii] * totalarea[ep];
Qss[ii] =
mn (alphass[ep] *
pow ((gwstore[ii] - gwmin[ep]) / (gwmax[ep] - gwmin[ep]),
betass[ep]), (gwstore[ii] - gwmin[ep]) / dTOs);
Qss[ii] = mx (Qss[ii], 0.0);
gwstore[ii] -= Qss[ii] * dTOs;
/*-------------------------------------------------------------------------------
* Add the other sources to the Groundwater pool
* allocate overflow to Qexceedgw and add to river discharge in HydroSumFlow.c
*-------------------------------------------------------------------------------*/
if (gwstore[ii] < gwmax[ep])
Qtogw =
mn (Qicetogw[ii] + Qnivaltogw[ii], (gwmax[ep] - gwstore[ii]) / dTOs);
else
Qtogw = 0.0;
gwstore[ii] += Qtogw * dTOs;
Qexceedgw[ii] = Qicetogw[ii] + Qnivaltogw[ii] - Qtogw;
/*--------------------------------------
* Calculate commonly used quantities
*--------------------------------------*/
ratio1 = (gwstore[ii] - gwmin[ep]) / (gwmax[ep] - gwmin[ep]);
ratio2 = (Ko[ep] - pcr) / (pmax - pcr);
/*------------------------------------------------------------
* Calculate the Ground Precipitation (m/day)
* the remainder is evaporated from canopy interception
* keep track of evaporation (m/day) for mass balance check
*------------------------------------------------------------*/
/*--------------------------------------------------------
* Check if there is a input file with evaporation data
*--------------------------------------------------------*/
if (evaporationdatafile == 0)
{
Pground[ii] = mx (alphag[ep] + betag[ep] * Pdaily[ii], 0.0);
// printf("%f, %f\n",Pground[ii], Pdaily[ii]);
}
Ecanopy[ii] = Pdaily[ii] - Pground[ii];
// printf("%f, %f, %f\n",Ecanopy[ii], Pground[ii], betag[ep]);
/*----------------------------------------------------
* Calculate Surface Runoff (m^3/s)
* Sum of saturation excess and infiltration excess
* remainder goes to groundwater pool
*----------------------------------------------------*/
/*-----------------------------------------------------
* Calculate the Saturation Excess
* this is all the rain that falls on saturated soil
* and cannot go into the groundwater pool
*-----------------------------------------------------*/
if (gwstore[ii] > gwmin[ep])
Qsaturationexcess[ii] =
(Pground[ii] * rainarea[ii] / dTOs) * alphac * pow (ratio1, betac);
else
Qsaturationexcess[ii] = 0.0;
/*--------------------------------------------------------------------
* Calculate Theoretical Infiltration Rate based on Precip (m/day)
* a) below pcr, 100% infiltration
* b) above pmax, max hydr. cond.
* c) linear fit in between
*--------------------------------------------------------------------*/
if (Pground[ii] < pcr)
infiltrate = Pground[ii];
else if (Pground[ii] > pmax)
infiltrate = Ko[ep];
else
infiltrate = Pground[ii] * ratio2 + pcr * (1 - ratio2);
/*-------------------------------------------------------------------------
* Calculate infiltration "discharge" to the groundwater pool (m^3/s)
* 1st) calculate the theoretical infiltration discharge
* 2nd) calculate the discharge that fills the groundwater pool in a day
* take the minimum so as not to overfill the pool
*-------------------------------------------------------------------------*/
if (gwstore[ii] > gwmin[ep])
Qi1 = infiltrate * (1.0 - ratio1) * rainarea[ii] / dTOs;
else
Qi1 = infiltrate * rainarea[ii] / dTOs;
Qi2 = (gwmax[ep] - gwstore[ii]) / dTOs;
Qinfiltration[ii] = mn (Qi1, Qi2);
gwstore[ii] += Qinfiltration[ii] * dTOs;
/*--------------------------------------------------
* Calculate the infiltration excess (m^3/s)
* this is the runoff that:
* a) is not due to saturation excess
* b) and can not get into the groundwater pool
*--------------------------------------------------*/
Qinfiltexcess[ii] = mx (0.0,
Pground[ii] * rainarea[ii] / dTOs -
Qsaturationexcess[ii] - Qinfiltration[ii]);
/*-------------------------------------------------------
* Calculate Surface Runoff (m^3/s)
* Sum of saturation excess and infiltration excess
* remainder went to groundwater pool or evaporation
*-------------------------------------------------------*/
Qrain[ii] = Qsaturationexcess[ii] + Qinfiltexcess[ii];
// printf("%f\n",Qrain[ii]);
/*---------------------------------------------------------------------------
* Add the carryover from the previous year
*
* NOTE: adding at this stage assumes the wrapped rain is due to the wave
* propagating down the river and that this water does not have additional
* contributions to the Evap or gw pools
*---------------------------------------------------------------------------*/
if (ii < wrapday)
Qrain[ii] += Qrainwrap[ii];
/*------------------------------------------------
* Add to the daily rain mass balance (m^3/day)
*------------------------------------------------*/
Minput = Pdaily[ii] * rainarea[ii];
if (ii < maxday - daysiy)
Minput += Qrainwrap[ii] * dTOs;
Mout =
Ecanopy[ii] * rainarea[ii] + (Qrain[ii] + Qinfiltration[ii]) * dTOs;
/*-----------------------------------------------
* Add to the annual rain mass balance (m^3/a)
*-----------------------------------------------*/
MPrain += Pdaily[ii] * rainarea[ii];
Mannualin += Minput;
Mannualout += Mout;
/*---------------------------------------------
* Check the daily rain mass balance (m^3/d)
*---------------------------------------------*/
if (Minput > 0. && fabs (Mout - Minput) / Minput > masscheck)
{
fprintf (stderr, "ERROR: in HydroRain.c: \n");
fprintf (stderr, " Daily Mass Balance Error: Mout != Minput \n\n");
fprintf (stderr, " fabs(Mout-Minput)/Minput > masscheck \n");
fprintf (stderr, " note: masscheck set in HydroParams.h \n");
fprintf (stderr, " masscheck = %e (m^3) \n", masscheck);
fprintf (stderr, " fabs(Mout-Minput)/Minput = %e (m^3) \n\n",
fabs (Mout - Minput) / Minput);
fprintf (stderr, " \t Minput = Pdaily + Qrainwrap \n");
fprintf (stderr, " \t Minput \t\t = %e (m^3) \n", Minput);
fprintf (stderr, " \t Pdaily[ii]*rainarea[ii] \t = %e (m^3) \n",
Pdaily[ii] * rainarea[ii]);
if (ii < maxday - daysiy)
fprintf (stderr, " \t Qrainwrap[ii] \t\t = %e (m^3) \n\n",
Qrainwrap[ii] * dTOs);
else
fprintf (stderr, " \t Qrainwrap[ii] \t\t = 0.0 (m^3) \n\n");
fprintf (stderr, " \t Mout = Ecanopy + Qrain + Qinfiltration \n");
fprintf (stderr, " \t Mout \t\t = %e (m^3) \n", Mout);
fprintf (stderr, " \t Ecanopy[ii]*rainarea[ii] \t\t = %e (m^3) \n",
Ecanopy[ii] * rainarea[ii]);
fprintf (stderr, " \t Qrain[ii]*dTOs \t\t = %e (m^3) \n",
Qrain[ii] * dTOs);
fprintf (stderr, " \t Qinfiltration[ii]*dTOs \t = %e (m^3) \n\n",
Qinfiltration[ii] * dTOs);
fprintf (stderr, " \t Day \t d \t %d \n", ii + 1);
fprintf (stderr, " \t Year \t d \t %d \n", yr + 1);
fprintf (stderr, " \t Epoch \t - \t %d \n", ep + 1);
exit (-1);
}
/*------------------------------------------------
* Check for over/under-filled groundwater pool
* return error
*------------------------------------------------*/
if (gwstore[ii] < gwmin[ep] / 1.001 || gwstore[ii] > gwmax[ep] * 1.001)
{
fprintf (stderr, "WARNING in HydroRain.c \n");
fprintf (stderr, " gwstore out of range. \n");
fprintf (stderr, " criteria: gwmin < gwstore < gwmax \n");
fprintf (stderr, " gwmax (m^3) = %e \n", gwmax[ep]);
fprintf (stderr, " gwstore (m^3) = %e \n", gwstore[ii]);
fprintf (stderr, " gwmin (m^3) = %e \n", gwmin[ep]);
fprintf (stderr, " Qss[ii] (m^3) = %e \n", Qss[ii] * dTOs);
fprintf (stderr, " Egw[ii] (m^3) = %e \n",
Egw[ii] * totalarea[ep]);
err = 1;
}
} /* end day loop */
/*------------------------------------------------------------
* Use shoulder on Rain events if the basin is large enough
*------------------------------------------------------------*/
if ((int) (basinlength[ep] / (avgvel[ep] * dTOs)) >= 3 || Rvol[ep] > 0.0)
{
/*------------------------------------------------------------
* Create the shoulder events (Murray's version of routing)
* there is one left (preceeding) day scaled as:
* shoulderleft*event
* the main event is scaled down to:
* shouldermain*event
* there are 1 or more right (following days) scaled to:
* shoulderright[]*event
*
* 1.0 = Sum(shoulderleft+shouldermain+shoulderright[])
*------------------------------------------------------------*/
ii = 0;
if (Qrain[ii] > 0.0)
{
shldday[ii] += shoulderleft * Qrain[ii];
for (jj = 0; jj < shouldern - 2; jj++)
shldday[ii + jj + 1] += shoulderright[jj] * Qrain[ii];
Qrain[ii] = shouldermain * Qrain[ii];
}
for (ii = 1; ii < daysiy; ii++)
{
if (Qrain[ii] > 0.0)
{
shldday[ii - 1] += shoulderleft * Qrain[ii];
for (jj = 0; jj < shouldern - 2; jj++)
shldday[ii + jj + 1] += shoulderright[jj] * Qrain[ii];
Qrain[ii] = shouldermain * Qrain[ii];
}
}
/*----------------------------------------------------------------
* Add the shoulder events and the main events to get the total
* rain derived discharge
*----------------------------------------------------------------*/
for (ii = 0; ii < maxday; ii++)
Qrain[ii] += shldday[ii];
} /* endif shoulder */
/*---------------------------------------------------------------------
* (Mark's version of routing)
* Remove any lagged discharge from the initial rain discharge event
*---------------------------------------------------------------------*/
for (ii = 0; ii < daysiy; ii++)
{
for (kk = 0; kk < nelevbins && kk < FLAindex[ii]; kk++)
{
if (rainarea[ii] > 0.0)
{
Qrainlag[ii + distbins[kk]] +=
Qrain[ii] * areabins[kk] / rainarea[ii];
Qsslag[ii + distbins[kk]] +=
Qss[ii] * areabins[kk] / rainarea[ii];
Qrain[ii] -= Qrain[ii] * areabins[kk] / rainarea[ii];
Qss[ii] -= Qss[ii] * areabins[kk] / rainarea[ii];
}
}
}
/*------------------------------------
* Add the lagged discharge back in
*------------------------------------*/
for (ii = 0; ii < maxday; ii++)
{
Qrain[ii] += Qrainlag[ii];
Qss[ii] += Qsslag[ii];
}
/*--------------------------------
* Add the GW wrapped discharge
*--------------------------------*/
for (ii = 0; ii < wrapday; ii++)
Qss[ii] += Qsswrap[ii];
/*---------------------------------------
* Check the annual mass balance (m^3)
*---------------------------------------*/
if (fabs (Mannualout - Mannualin) / Mannualin > masscheck)
{
fprintf (stderr, "ERROR: in HydroRain.c: \n");
fprintf (stderr, " Annual Mass Balance Error: Mout != Minput \n\n");
fprintf (stderr,
" fabs(Mannualout-Mannualin)/Mannualin > masscheck \n");
fprintf (stderr, " note: masscheck set in HydroParams.h \n");
fprintf (stderr, " masscheck = %e (m^3) \n", masscheck);
fprintf (stderr,
" fabs(Mannualout-Mannualin)/Mannualin = %e (m^3) \n\n",
fabs (Mannualout - Mannualin) / Mannualin);
fprintf (stderr,
" \t Mannualin = Sum(Pdaily+Qrainwrap) \t\t = %e (m^3) \n",
Mannualin);
fprintf (stderr,
" \t Mannualout = Sum(Ecanopy+Qrain+Qinfiltration) \t = %e (m^3) \n\n",
Mannualout);
fprintf (stderr, " \t Year \t d \t %d \n", yr + 1);
fprintf (stderr, " \t Epoch \t - \t %d \n\n", ep + 1);
exit (-1);
}
return (err);
} /* end of HydroRain.c */