forked from HHHedo/IBMIL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tcga.py
419 lines (366 loc) · 20.2 KB
/
train_tcga.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import enum
import re
from symbol import testlist_star_expr
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms.functional as VF
from torchvision import transforms
import sys, argparse, os, copy, itertools, glob, datetime
import pandas as pd
import numpy as np
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_fscore_support,classification_report
from sklearn.datasets import load_svmlight_file
from collections import OrderedDict
from torch.utils.data import Dataset
import redis
import pickle
import time
from sklearn.metrics import confusion_matrix,classification_report,accuracy_score,precision_score, recall_score, roc_auc_score, roc_curve
import random
import torch.backends.cudnn as cudnn
import json
# torch.multiprocessing.set_sharing_strategy('file_system')
import os
class BagDataset(Dataset):
def __init__(self,train_path, args) -> None:
super(BagDataset).__init__()
self.train_path = train_path
self.args = args
# self.database = redis.Redis(host='localhost', port=6379)
def get_bag_feats(self,csv_file_df, args):
# if args.dataset == 'TCGA-lung-default':
# feats_csv_path = 'datasets/tcga-dataset/tcga_lung_data_feats/' + csv_file_df.iloc[0].split('/')[1] + '.csv'
if args.dataset.startswith('tcga'):
feats_csv_path = os.path.join('datasets',args.dataset,'data_tcga_lung_tree' ,csv_file_df.iloc[0].split('/')[-1] + '.csv')
else:
feats_csv_path = csv_file_df.iloc[0]
# key = csv_file_df.iloc[0]
# feats = pickle.loads(self.database.get(key+'feats'))
# label = pickle.loads(self.database.get(key+'label'))
# return label, feats
df = pd.read_csv(feats_csv_path)
feats = shuffle(df).reset_index(drop=True)
feats = feats.to_numpy()
label = np.zeros(args.num_classes)
if args.num_classes==1:
label[0] = csv_file_df.iloc[1]
else:
if int(csv_file_df.iloc[1])<=(len(label)-1):
label[int(csv_file_df.iloc[1])] = 1
label = torch.tensor(np.array(label))
feats = torch.tensor(np.array(feats)).float()
return label, feats
def dropout_patches(self,feats, p):
idx = np.random.choice(np.arange(feats.shape[0]), int(feats.shape[0]*(1-p)), replace=False)
sampled_feats = np.take(feats, idx, axis=0)
pad_idx = np.random.choice(np.arange(sampled_feats.shape[0]), int(feats.shape[0]*p), replace=False)
pad_feats = np.take(sampled_feats, pad_idx, axis=0)
sampled_feats = np.concatenate((sampled_feats, pad_feats), axis=0)
return sampled_feats
def __getitem__(self, idx):
label, feats = self.get_bag_feats(self.train_path.iloc[idx], self.args)
return label, feats
def __len__(self):
return len(self.train_path)
def train(train_df, milnet, criterion, optimizer, args, log_path, epoch=0):
milnet.train()
total_loss = 0
atten_max = 0
atten_min = 0
atten_mean = 0
for i,(bag_label,bag_feats) in enumerate(train_df):
bag_label = bag_label.cuda()
bag_feats = bag_feats.cuda()
bag_feats = bag_feats.view(-1, args.feats_size) # n x feat_dim
optimizer.zero_grad()
if args.model == 'dsmil':
ins_prediction, bag_prediction, attention, atten_B= milnet(bag_feats)
max_prediction, _ = torch.max(ins_prediction, 0)
# print(bag_prediction, max_prediction,bag_label.long())
bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
max_loss = criterion(max_prediction.view(1, -1), bag_label.view(1, -1))
# bag_loss = criterion(bag_prediction, bag_label.long())
# max_loss = criterion(max_prediction.view(1, -1), bag_label.long())
loss = 0.5*bag_loss + 0.5*max_loss
elif args.model =='abmil':
bag_prediction, _, attention = milnet(bag_feats)
loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
loss.backward()
optimizer.step()
total_loss = total_loss + loss.item()
atten_max = atten_max + attention.max().item()
atten_min = atten_min + attention.min().item()
atten_mean = atten_mean + attention.mean().item()
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f, attention max:%.4f, min:%.4f, mean:%.4f' % (i, len(train_df), loss.item(),
attention.max().item(), attention.min().item(), attention.mean().item()))
atten_max = atten_max / len(train_df)
atten_min = atten_min / len(train_df)
atten_mean = atten_mean / len(train_df)
with open(log_path,'a+') as log_txt:
log_txt.write('\n atten_max'+str(atten_max))
log_txt.write('\n atten_min'+str(atten_min))
log_txt.write('\n atten_mean'+str(atten_mean))
return total_loss / len(train_df)
def test(test_df, milnet, criterion, optimizer, args, log_path, epoch):
milnet.eval()
total_loss = 0
test_labels = []
test_predictions = []
Tensor = torch.cuda.FloatTensor
with torch.no_grad():
for i,(bag_label,bag_feats) in enumerate(test_df):
label = bag_label.numpy()
bag_label = bag_label.cuda()
bag_feats = bag_feats.cuda()
bag_feats = bag_feats.view(-1, args.feats_size)
if args.model == 'dsmil':
ins_prediction, bag_prediction, _, _ = milnet(bag_feats)
max_prediction, _ = torch.max(ins_prediction, 0)
bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
max_loss = criterion(max_prediction.view(1, -1), bag_label.view(1, -1))
# bag_loss = criterion(bag_prediction, bag_label.long())
# max_loss = criterion(max_prediction.view(1, -1), bag_label.long())
loss = 0.5*bag_loss + 0.5*max_loss
elif args.model in ['abmil', 'max', 'mean']:
bag_prediction, _, _ = milnet(bag_feats)
max_prediction = bag_prediction
loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
total_loss = total_loss + loss.item()
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (i, len(test_df), loss.item()))
test_labels.extend(label)
if args.average: # notice args.average here
test_predictions.extend([(0.5*torch.sigmoid(max_prediction)+0.5*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
else: test_predictions.extend([(0.0*torch.sigmoid(max_prediction)+1.0*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
test_labels = np.array(test_labels)
test_predictions = np.array(test_predictions)
auc_value, _, thresholds_optimal = multi_label_roc(test_labels, test_predictions, args.num_classes, pos_label=1)
with open(log_path,'a+') as log_txt:
log_txt.write('\n *****************Threshold by optimal*****************')
if args.num_classes==1:
class_prediction_bag = copy.deepcopy(test_predictions)
class_prediction_bag[test_predictions>=thresholds_optimal[0]] = 1
class_prediction_bag[test_predictions<thresholds_optimal[0]] = 0
test_predictions = class_prediction_bag
test_labels = np.squeeze(test_labels)
print('\n')
print(confusion_matrix(test_labels,test_predictions))
info = confusion_matrix(test_labels,test_predictions)
with open(log_path,'a+') as log_txt:
log_txt.write('\n'+str(info))
else:
for i in range(args.num_classes):
class_prediction_bag = copy.deepcopy(test_predictions[:, i])
class_prediction_bag[test_predictions[:, i]>=thresholds_optimal[i]] = 1
class_prediction_bag[test_predictions[:, i]<thresholds_optimal[i]] = 0
test_predictions[:, i] = class_prediction_bag
print(confusion_matrix(test_labels[:,i],test_predictions[:,i]))
info = confusion_matrix(test_labels[:,i],test_predictions[:,i])
with open(log_path,'a+') as log_txt:
log_txt.write('\n'+str(info))
bag_score = 0
# average acc of all labels
for i in range(0, len(test_df)):
bag_score = np.array_equal(test_labels[i], test_predictions[i]) + bag_score
avg_score = bag_score / len(test_df) #ACC
cls_report = classification_report(test_labels, test_predictions, digits=4)
print('\n multi-label Accuracy:{:.2f}, AUC:{:.2f}'.format(avg_score*100, sum(auc_value)/len(auc_value)*100))
print('\n', cls_report)
with open(log_path,'a+') as log_txt:
log_txt.write('\n multi-label Accuracy:{:.2f}, AUC:{:.2f}'.format(avg_score*100, sum(auc_value)/len(auc_value)*100))
log_txt.write('\n' + cls_report)
return total_loss / len(test_df), avg_score, auc_value, thresholds_optimal
def multi_label_roc(labels, predictions, num_classes, pos_label=1):
fprs = []
tprs = []
thresholds = []
thresholds_optimal = []
aucs = []
if len(predictions.shape)==1:
predictions = predictions[:, None]
for c in range(0, num_classes):
label = labels[:, c]
if sum(label)==0:
continue
prediction = predictions[:, c]
fpr, tpr, threshold = roc_curve(label, prediction, pos_label=1)
fpr_optimal, tpr_optimal, threshold_optimal = optimal_thresh(fpr, tpr, threshold)
c_auc = roc_auc_score(label, prediction)
aucs.append(c_auc)
thresholds.append(threshold)
thresholds_optimal.append(threshold_optimal)
return aucs, thresholds, thresholds_optimal
def optimal_thresh(fpr, tpr, thresholds, p=0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def main():
parser = argparse.ArgumentParser(description='Train IBMIL for abmil and dsmil')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512]')
parser.add_argument('--lr', default=0.0001, type=float, help='Initial learning rate [0.0002]')
parser.add_argument('--num_epochs', default=50, type=int, help='Number of total training epochs [40|200]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--gpu', type=str, default= '0')
parser.add_argument('--weight_decay', default=1e-4, type=float, help='Weight decay [5e-3]')
parser.add_argument('--weight_decay_conf', default=1e-4, type=float, help='Weight decay [5e-3]')
parser.add_argument('--dataset', default='TCGA-lung-default', type=str, help='Dataset folder name')
parser.add_argument('--split', default=0.2, type=float, help='Training/Validation split [0.2]')
parser.add_argument('--model', default='dsmil', type=str, help='MIL model [admil, dsmil]')
parser.add_argument('--dropout_patch', default=0, type=float, help='Patch dropout rate [0]')
parser.add_argument('--dropout_node', default=0, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--non_linearity', default=0, type=float, help='Additional nonlinear operation [0]')
parser.add_argument('--average', type=bool, default=True, help='Average the score of max-pooling and bag aggregating')
parser.add_argument('--test', action='store_true', help='Test only')
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ')
parser.add_argument('--agg', type=str,help='which agg')
parser.add_argument('--c_path', nargs='+', default=None, type=str,help='directory to confounders')
# for ablations only
parser.add_argument('--c_learn', action='store_true', help='learn confounder or not')
parser.add_argument('--c_dim', default=128, type=int, help='Dimension of the projected confounders')
parser.add_argument('--freeze_epoch', default=999, type=int, help='freeze confounders during this many epoch from the start')
parser.add_argument('--c_merge', type=str, default='cat', help='cat or add or sub')
args = parser.parse_args()
# logger
arg_dict = vars(args)
dict_json = json.dumps(arg_dict)
if args.c_path:
save_path = os.path.join('deconf', datetime.date.today().strftime("%m%d%Y"), str(args.dataset)+'_'+str(args.model)+'_'+str(args.agg )+'_c_path')
else:
save_path = os.path.join('baseline', datetime.date.today().strftime("%m%d%Y"), str(args.dataset)+'_'+str(args.model)+'_'+str(args.agg )+'_fulltune')
run = len(glob.glob(os.path.join(save_path, '*')))
save_path = os.path.join(save_path, str(run))
os.makedirs(save_path, exist_ok=True)
save_file = save_path + '/config.json'
with open(save_file,'w+') as f:
f.write(dict_json)
log_path = save_path + '/log.txt'
# seed
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
'''
model
1. set require_grad
2. choose model and set the trainable params
3. load init
'''
if args.model == 'dsmil':
import dsmil as mil
i_classifier = mil.FCLayer(in_size=args.feats_size, out_size=args.num_classes).cuda()
b_classifier = mil.BClassifier(input_size=args.feats_size, output_class=args.num_classes, dropout_v=args.dropout_node, nonlinear=args.non_linearity,confounder_path=args.c_path).cuda()
milnet = mil.MILNet(i_classifier, b_classifier).cuda()
elif args.model == 'abmil':
import abmil as mil
milnet = mil.Attention(in_size=args.feats_size, out_size=args.num_classes,confounder_path=args.c_path, \
confounder_learn=args.c_learn, confounder_dim=args.c_dim, confounder_merge=args.c_merge).cuda()
for name, _ in milnet.named_parameters():
print('Training {}'.format(name))
with open(log_path,'a+') as log_txt:
log_txt.write('\n Training {}'.format(name))
if args.dataset.startswith("tcga"):
bags_csv = os.path.join('datasets', args.dataset, args.dataset+'.csv')
bags_path = pd.read_csv(bags_csv)
train_path = bags_path.iloc[0:int(len(bags_path)*0.8), :]
test_path = bags_path.iloc[int(len(bags_path)*0.8):, :]
elif args.dataset.startswith('Camelyon16'):
# bags_csv = os.path.join('datasets', args.dataset, args.dataset+'_off.csv') #offical train test
bags_csv = os.path.join('datasets', args.dataset, args.dataset+'.csv')
bags_path = pd.read_csv(bags_csv)
train_path = bags_path.iloc[0:270, :]
test_path = bags_path.iloc[270:, :]
trainset = BagDataset(train_path, args)
train_loader = DataLoader(trainset,1, shuffle=True, num_workers=16)
testset = BagDataset(test_path, args)
test_loader = DataLoader(testset,1, shuffle=False, num_workers=16)
# sanity check begins here
print('*******sanity check *********')
for k,v in milnet.named_parameters():
if v.requires_grad == True:
print(k)
# loss, optim, schduler
criterion = nn.BCEWithLogitsLoss()
original_params = []
confounder_parms = []
for pname, p in milnet.named_parameters():
if ('confounder' in pname):
confounder_parms += [p]
print('confounders:',pname )
else:
original_params += [p]
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, milnet.parameters()),
lr=args.lr, betas=(0.5, 0.9),
weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs, 0.000005)
best_score = 0
# ### inference only
# if args.test:
# epoch = args.num_epochs-1
# test_loss_bag, avg_score, aucs, thresholds_optimal = test(test_loader, milnet, criterion, optimizer, args, log_path, epoch)
# train_loss_bag = 0
# if args.dataset=='TCGA-lung':
# print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, auc_LUAD: %.4f, auc_LUSC: %.4f' %
# (epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score, aucs[0], aucs[1]))
# else:
# print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, AUC: ' %
# (epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
# if args.model == 'dsmil':
# if args.agg == 'tcga':
# load_path = 'test/weights/aggregator.pth'
# elif args.agg == 'c16':
# load_path = 'test-c16/weights/aggregator.pth'
# else:
# raise NotImplementedError
# elif args.model == 'abmil':
# if args.agg == 'tcga':
# load_path = 'pretrained_weights/abmil_tcgapretrained.pth' # load c-16 pretrain for adaption
# elif args.agg == 'c16':
# load_path = 'pretrained_weights/abmil_c16pretrained.pth' # load tcga pretrain for adaption
# else:
# raise NotImplementedError
# state_dict_weights = torch.load(load_path)
# print('Loading model:{} with {}'.format(args.model, load_path))
# with open(log_path,'a+') as log_txt:
# log_txt.write('\n loading init from:'+str(load_path))
# msg = milnet.load_state_dict(state_dict_weights, strict=False)
# print('Missing these:', msg.missing_keys)
# test_loss_bag, avg_score, aucs, thresholds_optimal = test(test_loader, milnet, criterion, optimizer, args, log_path, epoch)
# if args.dataset=='TCGA-lung':
# print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, auc_LUAD: %.4f, auc_LUSC: %.4f' %
# (epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score, aucs[0], aucs[1]))
# else:
# print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, AUC: ' %
# (epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
# sys.exit()
for epoch in range(1, args.num_epochs):
start_time = time.time()
train_loss_bag = train(train_loader, milnet, criterion, optimizer, args, log_path, epoch=epoch-1) # iterate all bags
print('epoch time:{}'.format(time.time()- start_time))
test_loss_bag, avg_score, aucs, thresholds_optimal = test(test_loader, milnet, criterion, optimizer, args, log_path, epoch)
info = 'Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, AUC: '%(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs))+'\n'
with open(log_path,'a+') as log_txt:
log_txt.write(info)
print('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, AUC: ' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
scheduler.step()
current_score = (sum(aucs) + avg_score)/2
if current_score >= best_score:
best_score = current_score
save_name = os.path.join(save_path, str(run+1)+'.pth')
torch.save(milnet.state_dict(), save_name)
with open(log_path,'a+') as log_txt:
info = 'Best model saved at: ' + save_name +'\n'
log_txt.write(info)
info = 'Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal))+'\n'
log_txt.write(info)
print('Best model saved at: ' + save_name)
print('Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal)))
if epoch == args.num_epochs-1:
save_name = os.path.join(save_path, 'last.pth')
torch.save(milnet.state_dict(), save_name)
log_txt.close()
if __name__ == '__main__':
main()