-
Notifications
You must be signed in to change notification settings - Fork 6
/
probe_sim.py
executable file
·199 lines (157 loc) · 6.99 KB
/
probe_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/usr/bin/env python
# Copyright 2019 Kent A. Vander Velden <[email protected]>
#
# If you use this software, please consider contacting me. I'd like to hear
# about your work.
#
# This file is part of Haimer-Probe.
#
# Haimer-Probe is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Haimer-Probe is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Haimer-Probe. If not, see <https://www.gnu.org/licenses/>.
# TODO: A nicer interface would be to specify the center and radius of the circle being probed and the initial probe position.
# Current interface is the initial probe position and the limits of the probing in each direction.
# This was done to expedite the needed example but make a less useful simulation.
from __future__ import print_function
import math
import cv2
import numpy as np
def euc_dist(a, b):
return math.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
inc = 0
record = True
def update_screen(img, delay=0):
global inc, record
if record:
# Can convert to PNGs later with
# find . -iname '*.ppm' -print0 | xargs -0 -n 1 -P 16 optipng -o9
fn = 'mov_{0:06d}.ppm'.format(inc)
inc += 1
cv2.imwrite(fn, img)
print('Wrote', fn)
cv2.imshow('simulation', img)
key = cv2.waitKey(delay) & 0xff
if key == ord('q'):
exit(0)
def main():
frame_dim = (1080, 1920, 3)
frame_center = (1920 // 2, 1080 // 2)
scale = 2
r0 = 10 * scale # Radius of the probe tip
pts = [(frame_center[0], frame_center[1])] * 6 # this the point where the probe lowers
c_unknown_color = (0, 0, 128)
c_safe_color = (0, 160, 0)
c_pt_color = (0, 255, 0)
c_unassigned_color = (0, 0, 96)
# Anti-aliased lines leave unexpected bits when used with painter's algorithm
# line_type = cv2.LINE_AA
line_type = 0
scan_range = [-3000, 3000]
step_size = 10
img = None
def draw_points():
# for i in range(4, -1, -1):
for i in range(len(pts)):
cv2.circle(img, pts[i], r0, c_pt_color, -1, lineType=line_type)
c_label_font = cv2.FONT_HERSHEY_SIMPLEX
c_label_color = (0, 0, 0)
c_label_s = .4 * scale
thickness = 2
s = str(i)
text_size, baseline = cv2.getTextSize(s, c_label_font, c_label_s, thickness)
cv2.putText(img, s, (pts[i][0] - text_size[0] // 2, pts[i][1] + text_size[1] // 2), c_label_font, c_label_s, c_label_color, thickness)
img = np.zeros(frame_dim, dtype=np.uint8)
img[:] = c_unknown_color
draw_points()
update_screen(img, 5)
for move in ['right', 'left', 'down', 'up']:
u = 0
if move == 'right':
u = 200 * scale
elif move == 'left':
u = 100 * scale
elif move == 'down':
u = 90 * scale
elif move == 'up':
u = 600 * scale
for ii in range(0, u, step_size):
img = np.zeros(frame_dim, dtype=np.uint8)
img[:] = c_safe_color
if move == 'right':
pts[1] = (pts[1][0] + step_size, pts[1][1])
elif move == 'left':
pts[2] = (pts[2][0] - step_size, pts[1][1])
elif move == 'down':
pts[3] = (pts[3][0], pts[3][1] + step_size)
elif move == 'up':
pts[4] = (pts[4][0], pts[4][1] - step_size)
md_pt = (pts[2][0] + (pts[1][0] - pts[2][0]) / 2, pts[2][1])
if move in ['right', 'left']:
pts[3] = pts[4] = pts[5] = md_pt
# There's some error that causes some of the drawn outer points to be drawn over, especially points 1 and 2
# while searching left and right. This is likely because the later circles use integer dimensions. Adding a
# small fudge factor the later circle radii (r0/4 be enough) helps cosmetically, but should not be needed.
fudge = r0 / 4 - 1
draw_points()
mi, mr = -1, float('inf')
for i in range(*scan_range):
tpt = (md_pt[0], md_pt[1] + i)
r1 = euc_dist(pts[1], tpt)
# assert(r1 == (r2 = euc_dist(pts[2], tpt)))
r3 = euc_dist(pts[3], tpt)
# r4 = euc_dist(pts[4], tpt)
# The following is not necessary if for every loop of ii, the point being moved is moved by step_size.
# The second check is probably not right in all cases. It's purpose is to catch when the
# downward moving point is within the region suggested by pts[1, 2].
# if move in ['right', 'left'] or (abs(pts[1][1] - pts[3][1]) <= r0):
if move in ['right', 'left']:
# Use painters algorithm to fill in unsafe areas on a canvas that's initially all safe.
# A thickness valud > 1 is likely needed to fill in gaps between circles.
cv2.circle(img, tpt, int(round(r1 + r0 + fudge)), c_unknown_color, 2, lineType=line_type)
elif move in ['down', 'up']:
dr = abs(r1 - r3)
if mr > dr:
mr = dr
mi = i
top_pt_found = False
if move in ['down', 'up']:
tpt = (md_pt[0], md_pt[1] + mi)
if move == 'down':
pts[5] = tpt
r1 = euc_dist(pts[1], tpt)
r1b = euc_dist(pts[1], md_pt)
r4 = euc_dist(pts[4], tpt)
# top_pt_found = r1 - (r4 + r0) < 0.
top_pt_found = r1 - r4 <= 0.
if top_pt_found:
err = r1 - r4
if abs(err) > 0.:
print('Final overshoot:', err)
if move == 'down' and r1b > mr:
cv2.circle(img, md_pt, int(round(r1b + r0)), c_unknown_color, 2, lineType=line_type)
else:
cv2.circle(img, tpt, int(round(r1 + r0)), c_unknown_color, 2, lineType=line_type)
c = c_unassigned_color if move in ['right', 'left'] else c_unknown_color
cv2.floodFill(img, None, (0, pts[0][1]), c)
cv2.floodFill(img, None, (img.shape[1] - 1, pts[0][1]), c)
update_screen(img, 5)
# if move in ['right', 'left']:
# update_screen(5)
# else:
# update_screen(0)
if move == 'up':
# print(ii, mi, mr)
if top_pt_found:
break
update_screen(img, 0)
if __name__ == "__main__":
main()