forked from linux-nvme/nvme-cli
-
Notifications
You must be signed in to change notification settings - Fork 0
/
toshiba-nvme.c
639 lines (600 loc) · 19.3 KB
/
toshiba-nvme.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
#include <fcntl.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/fs.h>
#include <stddef.h>
#include <inttypes.h>
#include <stdbool.h>
#include "linux/nvme_ioctl.h"
#include "nvme.h"
#include "nvme-print.h"
#include "nvme-ioctl.h"
#include "plugin.h"
#include "argconfig.h"
#include "suffix.h"
#define CREATE_CMD
#include "toshiba-nvme.h"
static const __u32 OP_SCT_STATUS = 0xE0;
static const __u32 OP_SCT_COMMAND_TRANSFER = 0xE0;
static const __u32 OP_SCT_DATA_TRANSFER = 0xE1;
static const __u32 DW10_SCT_STATUS_COMMAND = 0x0;
static const __u32 DW10_SCT_COMMAND_TRANSFER = 0x1;
static const __u32 DW11_SCT_STATUS_COMMAND = 0x0;
static const __u32 DW11_SCT_COMMAND_TRANSFER = 0x0;
static const __u16 INTERNAL_LOG_ACTION_CODE = 0xFFFB;
static const __u16 CURRENT_LOG_FUNCTION_CODE = 0x0001;
static const __u16 SAVED_LOG_FUNCTION_CODE = 0x0002;
// A bitmask field for supported devices
typedef enum {
MASK_0 = 1 << 0,
MASK_1 = 1 << 1,
// Future devices can use the remaining 31 bits from this field
// and should use 1 << 2, 1 << 3, etc.
MASK_IGNORE = 0
} DeviceMask;
// Internal device codes
typedef enum {
CODE_0 = 0x0D,
CODE_1 = 0x10
} DeviceCode;
static int nvme_sct_op(int fd, __u32 opcode, __u32 cdw10, __u32 cdw11, void* data, __u32 data_len )
{
void *metadata = NULL;
const __u32 cdw2 = 0;
const __u32 cdw3 = 0;
const __u32 cdw12 = 0;
const __u32 cdw13 = 0;
const __u32 cdw14 = 0;
const __u32 cdw15 = 0;
const __u32 timeout = 0;
const __u32 metadata_len = 0;
const __u32 namespace_id = 0x0;
const __u32 flags = 0;
const __u32 rsvd = 0;
int err = 0;
__u32 result;
err = nvme_passthru(fd, NVME_IOCTL_ADMIN_CMD, opcode, flags, rsvd,
namespace_id, cdw2, cdw3, cdw10,
cdw11, cdw12, cdw13, cdw14, cdw15,
data_len, data, metadata_len, metadata,
timeout, &result);
return err;
}
static int nvme_get_sct_status(int fd, __u32 device_mask)
{
int err;
void* data = NULL;
size_t data_len = 512;
if (posix_memalign(&data, getpagesize(), data_len)) {
err = ENOMEM;
goto end;
}
memset(data, 0, data_len);
err = nvme_sct_op(fd, OP_SCT_STATUS, DW10_SCT_STATUS_COMMAND, DW11_SCT_STATUS_COMMAND, data, data_len);
if (err) {
fprintf(stderr, "%s: SCT status failed :%d\n", __func__, err);
goto end;
}
const unsigned char* status = data;
if (status[0] != 1U) {
// Eek, wrong version in status header
fprintf(stderr, "%s: unexpected value in SCT status[0]:(%x)\n", __func__, status[0]);
err = -1;
errno = EINVAL;
goto end;
}
// Check if device is supported
if (device_mask != MASK_IGNORE) {
__u32 supported = 0;
switch (status[1]) {
case CODE_0:
supported = (device_mask & MASK_0);
break;
case CODE_1:
supported = (device_mask & MASK_1);
break;
default:
break;
};
if (0 == supported) {
fprintf(stderr, "%s: command unsupported on this device: (0x%x)\n",__func__, status[1]);
err = -1;
errno = EINVAL;
goto end;
}
}
end:
if (data) {
free(data);
}
return err;
}
static int nvme_sct_command_transfer_log(int fd, bool current)
{
__u16 action_code = INTERNAL_LOG_ACTION_CODE;
__u16 function_code;
if (current) {
function_code = CURRENT_LOG_FUNCTION_CODE;
} else {
function_code = SAVED_LOG_FUNCTION_CODE;
}
int err;
void* data = NULL;
size_t data_len = 512;
if (posix_memalign(&data, getpagesize(), data_len)) {
err = ENOMEM;
goto end;
}
memset(data, 0, data_len);
memcpy(data, &action_code, sizeof(action_code));
memcpy(data + 2, &function_code, sizeof(function_code));
err = nvme_sct_op(fd, OP_SCT_COMMAND_TRANSFER, DW10_SCT_COMMAND_TRANSFER, DW11_SCT_COMMAND_TRANSFER, data, data_len);
return err;
end:
if (data) {
free(data);
}
return err;
}
static int nvme_sct_data_transfer(int fd, void* data, size_t data_len, size_t offset)
{
__u32 lba_count = (data_len) / 512;
if (lba_count) {
// the count is a 0-based value, which seems to mean
// that it's actually last lba
--lba_count;
}
__u32 dw10 = (offset << 16) | lba_count;
__u32 dw11 = (offset >> 16);
return nvme_sct_op(fd, OP_SCT_DATA_TRANSFER, dw10, dw11, data, data_len);
}
static int d_raw_to_fd(const unsigned char *buf, unsigned len, int fd)
{
int written = 0;
int remaining = len;
while (remaining) {
written = write(fd, buf, remaining);
if (written < 0) {
remaining = written;
break;
} else if (written <= remaining) {
remaining -= written;
} else {
// Unexpected overwrite
break;
}
}
// return 0 on success or remaining/error
return remaining;
}
// Display progress (incoming 0->1.0)
static void progress_runner(float progress)
{
const size_t barWidth = 70;
fprintf(stdout, "[");
size_t pos = barWidth * progress;
for (size_t i = 0; i < barWidth; ++i) {
if (i <= pos) {
fprintf(stdout, "=");
} else {
fprintf(stdout, " ");
}
}
fprintf(stdout, "] %d %%\r",(int)(progress * 100.0));
fflush(stdout);
}
static int nvme_get_internal_log(int fd, const char* const filename, bool current)
{
int err;
int o_fd = -1;
void* page_data = NULL;
const size_t page_sector_len = 32;
const size_t page_data_len = page_sector_len * 512;// 32 sectors per page
// By trial and error it seems that the largest transfer chunk size
// is 128 * 32 = 4k sectors = 2MB
const __u32 max_pages = 128;
err = nvme_sct_command_transfer_log(fd, current);
if (err) {
fprintf(stderr, "%s: SCT command transfer failed\n", __func__);
goto end;
}
if (posix_memalign(&page_data, getpagesize(), max_pages * page_data_len)) {
err = ENOMEM;
goto end;
}
memset(page_data, 0, max_pages * page_data_len);
// Read the header to get the last log page - offsets 8->11, 12->15, 16->19
err = nvme_sct_data_transfer(fd, page_data, page_data_len, 0);
if (err) {
fprintf(stderr, "%s: SCT data transfer failed, page 0\n",__func__);
goto end;
}
const uint32_t* area1_last_page = (const uint32_t*) (page_data + 8);
const uint32_t* area2_last_page = (const uint32_t*) (page_data + 12);
const uint32_t* area3_last_page = (const uint32_t*) (page_data + 16);
uint32_t log_sectors = 0;
// The number of total log sectors is the maximum + 1;
if (*area1_last_page > log_sectors) {
log_sectors = *area1_last_page;
}
if (*area2_last_page > log_sectors) {
log_sectors = *area2_last_page;
}
if (*area3_last_page > log_sectors) {
log_sectors = *area3_last_page;
}
++log_sectors;
const size_t pages = log_sectors / page_sector_len;
float progress = 0.0;
if (filename == NULL) {
fprintf(stdout, "Page: %u of %zu\n", 0u, pages);
d(page_data, page_data_len, 16, 1);
} else {
progress_runner(progress);
o_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (o_fd < 0) {
fprintf(stderr, "%s: couldn't output file %s\n", __func__, filename);
err = EINVAL;
goto end;
}
err = d_raw_to_fd(page_data, page_data_len, o_fd);
if (err) {
fprintf(stderr, "%s: couldn't write all data to output file\n", __func__);
goto end;
}
}
// Now read the rest
for (size_t i = 1; i < pages;) {
__u32 pages_chunk = max_pages;
if (pages_chunk + i >= pages) {
pages_chunk = pages - i;
}
err = nvme_sct_data_transfer(fd, page_data, pages_chunk * page_data_len, i * page_sector_len);
if (err) {
fprintf(stderr, "%s: SCT data transfer command failed\n", __func__);
goto end;
}
progress = (float) (i) / (float) (pages);
progress_runner(progress);
if (filename == NULL) {
for (unsigned j = 0; j < pages_chunk; ++j) {
fprintf(stdout, "Page: %zu of %zu\n", i + j, pages);
d(page_data + (j * page_data_len), page_data_len, 16, 1);
}
} else {
progress_runner(progress);
err = d_raw_to_fd(page_data, pages_chunk * page_data_len, o_fd);
if (err) {
fprintf(stderr, "%s: couldn't write all data to output file\n", __func__);
goto end;
}
}
i += pages_chunk;
}
progress = 1.0f;
progress_runner(progress);
fprintf(stdout,"\n");
err = nvme_get_sct_status(fd, MASK_IGNORE);
if (err) {
fprintf(stderr, "%s: bad SCT status\n", __func__);
goto end;
}
end:
if (o_fd >= 0) {
close(o_fd);
}
if (page_data) {
free(page_data);
}
return err;
}
static int nvme_get_internal_log_file(int fd, const char* const filename, bool current)
{
int err;
// Check device supported
err = nvme_get_sct_status(fd, MASK_0 | MASK_1);
if (!err) {
err = nvme_get_internal_log(fd, filename, current);
}
return err;
}
enum LOG_PAGE_C0 {
ERROR_LOG_C0 = 0,
SMART_HEALTH_LOG_C0,
FIRMWARE_SLOT_INFO_C0,
COMMAND_EFFECTS_C0,
DEVICE_SELF_TEST_C0,
LOG_PAGE_DIRECTORY_C0,
SMART_ATTRIBUTES_C0,
NR_SMART_ITEMS_C0,
};
struct nvme_xdn_smart_log_c0 {
__u8 items[NR_SMART_ITEMS_C0];
__u8 resv[512 - NR_SMART_ITEMS_C0];
};
enum LOG_PAGE_CA {
PHYSICAL_NAND_BYTES_WRITTEN_CA = 0,
PHYSICAL_NAND_BYTES_READ_CA = 16,
BAD_NAND_BLOCK_COUNT_CA = 32,
UNCORRECTABLE_READ_ERROR_COUNT_CA = 40,
SOFT_ECC_ERROR_COUNT_CA = 48,
SDD_END_TO_END_CORRECTION_COUNTS_CA = 56,
SYSTEM_DATA_USED_CA = 64,
USER_DATA_ERASE_COUNTS_CA = 65,
REFRESH_COUNT_CA = 73,
PROGRAM_FAIL_COUNT_CA = 81,
USER_ERASE_FAIL_COUNT_CA = 89,
SYSTEM_AREA_ERASE_FAIL_COUNT_CA = 97,
THERMAL_THROTTLING_STATUS_CA = 105,
THERMAL_THROTTLING_COUNT_CA = 106,
PCIE_CORRECTABLE_ERROR_COUNT_CA = 107,
INCOMPLETE_SHUTDOWNS_CA = 115,
FREE_BLOCKS_NORMALISED_CA = 119,
NR_SMART_ITEMS_CA = 120,
};
struct nvme_xdn_smart_log_ca {
__u8 items[NR_SMART_ITEMS_CA];
__u8 resv[512 - NR_SMART_ITEMS_CA];
};
static unsigned long uint_n_to_ulong(__u8 *data, size_t length)
{
unsigned long result = 0;
for (size_t i = 0; i < length; i++) {
result *= 256;
result += data[(length -1) - i];
}
return result;
}
static float uint_n_to_float(__u8 *data, size_t length)
{
float result = 0;
for (size_t i = 0; i < length; i++) {
result *= 256.0;
result += data[(length -1) - i];
}
return result;
}
static const char* UNITS_B = "B";
static const char* UNITS_KB = "KiB";
static const char* UNITS_MB = "MiB";
static const char* UNITS_GB = "GiB";
static float to_readable_units(float raw_bytes, const char** units)
{
*units = UNITS_B;
float scaled_units = raw_bytes;
if (scaled_units > 102400.0) { // Switch to KiB above 100 KiB
scaled_units /= 1024.0; // Now in KiB.
*units = UNITS_KB;
}
if (scaled_units > 102400.0) { // Switch to MiB above 100 MiB
scaled_units /= 1024.0; // Now in MiB.
*units = UNITS_MB;
}
if (scaled_units > 102400.0) { //Switch to GiB above 100 GiB
scaled_units /= 1024.0; // Now in GiB.
*units = UNITS_GB;
}
return scaled_units;
}
static void default_show_vendor_log_c0(int fd, __u32 nsid, const char *devname,
struct nvme_xdn_smart_log_c0 *smart)
{
printf("Vendor Log Page Directory 0xC0 for NVME device:%s namespace-id:%x\n", devname, nsid);
printf("Error Log : %u \n", smart->items[ERROR_LOG_C0]);
printf("SMART Health Log : %u \n", smart->items[SMART_HEALTH_LOG_C0]);
printf("Firmware Slot Info : %u \n", smart->items[FIRMWARE_SLOT_INFO_C0]);
printf("Command Effects : %u \n", smart->items[COMMAND_EFFECTS_C0]);
printf("Device Self Test : %u \n", smart->items[DEVICE_SELF_TEST_C0]);
printf("Log Page Directory : %u \n", smart->items[LOG_PAGE_DIRECTORY_C0]);
printf("SMART Attributes : %u \n", smart->items[SMART_ATTRIBUTES_C0]);
}
static void default_show_vendor_log_ca(int fd, __u32 nsid, const char *devname,
struct nvme_xdn_smart_log_ca *smart)
{
printf("Vendor Log Page 0xCA for NVME device:%s namespace-id:%x\n", devname, nsid);
const char* units;
float media_units;
media_units = uint_n_to_float(&smart->items[PHYSICAL_NAND_BYTES_WRITTEN_CA], 16); // units are bytes
media_units = to_readable_units(media_units, &units);
printf("Total data written to NAND : %.1f %s\n", media_units, units);
media_units = uint_n_to_float(&smart->items[PHYSICAL_NAND_BYTES_READ_CA], 16); // units are bytes
media_units = to_readable_units(media_units, &units);
printf("Total data read from NAND : %.1f %s\n", media_units, units);
printf("Bad NAND Block Count (Normalised) : %lu\n", uint_n_to_ulong(&smart->items[BAD_NAND_BLOCK_COUNT_CA], 2));
printf("Bad NAND Block Count (Raw) : %lu\n", uint_n_to_ulong(&smart->items[BAD_NAND_BLOCK_COUNT_CA+2], 6));
printf("Uncorrectable Read Error Count : %lu\n", uint_n_to_ulong(&smart->items[UNCORRECTABLE_READ_ERROR_COUNT_CA], 8));
printf("Soft ECC Error Count : %lu\n", uint_n_to_ulong(&smart->items[SOFT_ECC_ERROR_COUNT_CA], 8));
printf("End-to-end Error Count (Detected) : %lu\n", uint_n_to_ulong(&smart->items[SDD_END_TO_END_CORRECTION_COUNTS_CA], 4));
printf("End-to-end Error Count (Corrected) : %lu\n", uint_n_to_ulong(&smart->items[SDD_END_TO_END_CORRECTION_COUNTS_CA + 4], 4));
printf("System Data Used : %u %%\n", smart->items[SYSTEM_DATA_USED_CA]);
printf("User Data Erase Count (Max) : %lu\n", uint_n_to_ulong(&smart->items[USER_DATA_ERASE_COUNTS_CA], 4));
printf("User Data Erase Count (Min) : %lu\n", uint_n_to_ulong(&smart->items[USER_DATA_ERASE_COUNTS_CA + 4], 4));
printf("Refresh Count : %lu\n", uint_n_to_ulong(&smart->items[REFRESH_COUNT_CA], 8));
printf("Program Fail Count (Normalised) : %lu\n", uint_n_to_ulong(&smart->items[PROGRAM_FAIL_COUNT_CA], 2));
printf("Program Fail Count (Raw) : %lu\n", uint_n_to_ulong(&smart->items[PROGRAM_FAIL_COUNT_CA + 2], 6));
printf("User Data Erase Fail Count (Normalised) : %lu\n", uint_n_to_ulong(&smart->items[USER_ERASE_FAIL_COUNT_CA], 2));
printf("User Data Erase Fail Count (Raw) : %lu\n", uint_n_to_ulong(&smart->items[USER_ERASE_FAIL_COUNT_CA + 2], 6));
printf("System Area Erase Fail Count (Normalised): %lu\n", uint_n_to_ulong(&smart->items[SYSTEM_AREA_ERASE_FAIL_COUNT_CA], 2));
printf("System Area Erase Fail Count (Raw) : %lu\n", uint_n_to_ulong(&smart->items[SYSTEM_AREA_ERASE_FAIL_COUNT_CA + 2], 6));
printf("Thermal Throttling Status : %u \n", smart->items[THERMAL_THROTTLING_STATUS_CA]);
printf("Thermal Throttling Count : %u \n", smart->items[THERMAL_THROTTLING_COUNT_CA]);
printf("PCIe Correctable Error Count : %lu\n", uint_n_to_ulong(&smart->items[PCIE_CORRECTABLE_ERROR_COUNT_CA], 8));
printf("Incomplete Shutdowns : %lu\n", uint_n_to_ulong(&smart->items[INCOMPLETE_SHUTDOWNS_CA], 4));
printf("Free blocks : %u %%\n", smart->items[FREE_BLOCKS_NORMALISED_CA]);
}
static int nvme_get_vendor_log(int fd, __u32 namespace_id, int log_page, const char* const filename)
{
int err;
void* log = NULL;
size_t log_len = 512;
if (posix_memalign(&log, getpagesize(), log_len)) {
err = ENOMEM;
goto end;
}
// Check device supported
err = nvme_get_sct_status(fd, MASK_0 | MASK_1);
if (err) {
goto end;
}
err = nvme_get_log(fd, namespace_id, log_page,
log_len, log);
if (err) {
fprintf(stderr, "%s: couldn't get log 0x%x\n", __func__, log_page);
goto end;
}
if (filename) {
int o_fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
if (o_fd < 0) {
fprintf(stderr, "%s: couldn't output file %s\n", __func__, filename);
err = EINVAL;
goto end;
}
err = d_raw_to_fd(log, log_len, o_fd);
if (err) {
fprintf(stderr, "%s: couldn't write all data to output file %s\n", __func__, filename);
// Attempt following close
}
if (close(o_fd)) {
err = errno;
goto end;
}
} else {
if (log_page == 0xc0) {
default_show_vendor_log_c0(fd, namespace_id, devicename, (struct nvme_xdn_smart_log_c0 *)log);
} else if (log_page == 0xca) {
default_show_vendor_log_ca(fd, namespace_id, devicename, (struct nvme_xdn_smart_log_ca *)log);
} else {
d(log, sizeof(log),16,1);
}
}
end:
if (log) {
free(log);
}
return err;
}
static int vendor_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
int err;
int fd;
char *desc = "Get extended SMART information and show it.";
const char *namespace = "(optional) desired namespace";
const char *output_file = "(optional) binary output filename";
const char *log = "(optional) log ID (0xC0, or 0xCA), default 0xCA";
struct config {
__u32 namespace_id;
const char* output_file;
int log;
};
struct config cfg = {
.namespace_id = 0xffffffff,
.output_file = NULL,
.log = 0xca
};
const struct argconfig_commandline_options command_line_options[] = {
{"namespace-id", 'n', "NUM", CFG_POSITIVE, &cfg.namespace_id, required_argument, namespace},
{"output-file", 'o', "FILE", CFG_STRING, &cfg.output_file, required_argument, output_file},
{"log", 'l', "NUM", CFG_POSITIVE, &cfg.log, required_argument, log},
{NULL}
};
fd = parse_and_open(argc, argv, desc, command_line_options, &cfg, sizeof(cfg));
if (fd < 0) {
fprintf(stderr,"%s: failed to parse arguments\n", __func__);
err = EINVAL;
goto end;
}
if ((cfg.log != 0xC0) && (cfg.log != 0xCA)) {
fprintf(stderr, "%s: invalid log page 0x%x - should be 0xC0 or 0xCA\n", __func__, cfg.log);
err = EINVAL;
goto end;
}
err = nvme_get_vendor_log(fd, cfg.namespace_id, cfg.log, cfg.output_file);
if (err) {
fprintf(stderr, "%s: couldn't get vendor log 0x%x\n", __func__, cfg.log);
goto end;
}
end:
if (err > 0) {
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(err), err);
}
return err;
}
static int internal_log(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
int err;
int fd;
char *desc = "Get internal status log and show it.";
const char *output_file = "(optional) binary output filename";
const char *prev_log = "(optional) use previous log. Otherwise uses current log.";
struct config {
const char* output_file;
bool prev_log;
};
struct config cfg = {
.output_file = NULL,
.prev_log = false
};
const struct argconfig_commandline_options command_line_options[] = {
{"output-file", 'o', "FILE", CFG_STRING, &cfg.output_file, required_argument, output_file},
{"prev-log", 'p', "", CFG_NONE, &cfg.prev_log, no_argument, prev_log},
{NULL}
};
fd = parse_and_open(argc, argv, desc, command_line_options, &cfg, sizeof(cfg));
if (fd < 0) {
fprintf(stderr,"%s: failed to parse arguments\n", __func__);
err = EINVAL;
goto end;
}
if (cfg.prev_log) {
printf("Getting previous log\n");
} else {
printf("Getting current log\n");
}
err = nvme_get_internal_log_file(fd, cfg.output_file, !cfg.prev_log);
if (err) {
fprintf(stderr, "%s: couldn't get fw log \n", __func__);
}
end:
if (err > 0) {
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(err), err);
}
return err;
}
static int clear_correctable_errors(int argc, char **argv, struct command *cmd, struct plugin *plugin)
{
int err;
int fd;
char *desc = "Clear PCIe correctable error count.";
const struct argconfig_commandline_options command_line_options[] = {
{NULL}
};
fd = parse_and_open(argc, argv, desc, command_line_options, NULL, 0);
if (fd < 0) {
fprintf(stderr,"%s: failed to parse arguments\n", __func__);
err = EINVAL;
goto end;
}
// Check device supported
err = nvme_get_sct_status(fd, MASK_0 | MASK_1);
if (err) {
goto end;
}
const __u32 namespace_id = 0xFFFFFFFF;
const __u32 feature_id = 0xCA;
const __u32 value = 1; // Bit0 - reset clear PCIe correctable count
const __u32 cdw12 = 0;
const bool save = false;
__u32 result;
err = nvme_set_feature(fd, namespace_id, feature_id, value, cdw12, save,
0, NULL, &result);
if (err) {
fprintf(stderr, "%s: couldn't clear PCIe correctable errors \n", __func__);
}
end:
if (err > 0) {
fprintf(stderr, "%s: NVMe Status:%s(%x)\n", __func__, nvme_status_to_string(err), err);
}
return err;
}