-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVAR.m
259 lines (226 loc) · 11.5 KB
/
SVAR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
clearvars
clear figures
close all
data = csvread('SVAR_Data.csv'); %note: I've removed the first column (dates) and row (labels) from this file for easier processing
[trend , data] = hpfilter(data,1600);
GDP87 = data(:,1);
USAPGDP = data(:,2);
PCOM = data(:,3);
FF = data(:,4);
NBR = data(:,5);
TOTR = data(:,6);
M1 = data(:,7);
M2 = data(:,8);
M3 = data(:,9);
beta1 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], GDP87(3:146));
lagtest2 = mvregress([ones(143,1), GDP87(3:145), USAPGDP(3:145), PCOM(3:145), FF(3:145), NBR(3:145), TOTR(3:145), M1(3:145), ...
GDP87(2:144), USAPGDP(2:144), PCOM(2:144), FF(2:144), NBR(2:144), TOTR(2:144), M1(2:144), ...
GDP87(1:143), USAPGDP(1:143), PCOM(1:143), FF(1:143), NBR(1:143), TOTR(1:143), M1(1:143)], GDP87(4:146));
error = mean((GDP87(3:146) - [ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)] * beta1 ).^2 );
error2 = mean((GDP87(4:146) - [ones(143,1), GDP87(3:145), USAPGDP(3:145), PCOM(3:145), FF(3:145), NBR(3:145), TOTR(3:145), M1(3:145), ...
GDP87(2:144), USAPGDP(2:144), PCOM(2:144), FF(2:144), NBR(2:144), TOTR(2:144), M1(2:144), ...
GDP87(1:143), USAPGDP(1:143), PCOM(1:143), FF(1:143), NBR(1:143), TOTR(1:143), M1(1:143)] * lagtest2 ) .^2 );
disp('Error in fit with 2 lags - with 3 lags:')
error - error2
beta2 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], USAPGDP(3:146));
beta3 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], PCOM(3:146));
beta4 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], FF(3:146));
beta5 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], NBR(3:146));
beta6 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], TOTR(3:146));
beta7 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], M1(3:146));
beta = [beta1 beta2 beta3 beta4 beta5 beta6 beta7];
datamat = [data(2:145,1:7) data(1:144,1:7)];
residual = data(3:146,1:7) - ( beta(2:15,:)' * [data(2:145,1:7) data(1:144,1:7)]' )';
sigmahat = zeros(7,7);
for i = 1:144
sigmahat = sigmahat + residual(i,:)' * residual(i,:);
end
sigmahat = sigmahat / 144;
A = chol(sigmahat,'lower');
Ainvert = inv(A);
G = [beta(2:15,:)' ; eye(7), zeros(7)];
eta = [0 0 0 0 0 0 1]';
u = [Ainvert * eta; zeros(7,1)];
M = 50; %period over which to computing IRF
shock = zeros(14,M);
for i = 1:M
shock(:,i) = G^i * u;
end
figure(1)
title('IRFs')
hold on
for i = 1:7
plot(shock(i,1:M))
end
%bootstrap
oldshock = shock;
shockbootstrap = zeros(14,M,1000);
for i = 1:1000
newresidual = zeros(144,7);
for j = 1:144
newresidual(j,:) = residual(randi([1 144]),:);
end
newseries = zeros(144,7);
newseries(1:2,:) = data(1:2,1:7);
for j = 3:146
newseries(j,:) = [newseries(j - 1,:) newseries(j - 2,:)] * beta(2:15,:) + newresidual(j - 2,:);
end
GDP87 = newseries(:,1);
USAPGDP = newseries(:,2);
PCOM = newseries(:,3);
FF = newseries(:,4);
NBR = newseries(:,5);
TOTR = newseries(:,6);
M1 = newseries(:,7);
beta1 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], GDP87(3:146));
beta2 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], USAPGDP(3:146));
beta3 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], PCOM(3:146));
beta4 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], FF(3:146));
beta5 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], NBR(3:146));
beta6 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], TOTR(3:146));
beta7 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], M1(3:146));
newbeta = [beta1 beta2 beta3 beta4 beta5 beta6 beta7];
datamat = [newseries(2:145,:) newseries(1:144,:)];
newresidual = newseries(3:146,:) - ( newbeta(2:15,:)' * datamat' )';
newsigmahat = zeros(7,7);
for j = 1:144
newsigmahat = newsigmahat + newresidual(j,:)' * newresidual(j,:);
end
newsigmahat = newsigmahat / 144;
newA = chol(newsigmahat,'lower');
newAinvert = inv(newA);
newG = [newbeta(2:15,:)' ; eye(7), zeros(7)];
eta = [0 0 0 0 0 0 1]';
newu = [newAinvert * eta; zeros(7,1)];
M = 50; %period over which to computing IRF
shock = zeros(14,M);
for j = 1:M
shock(:,j) = newG^j * newu;
end
shockbootstrap(:,:,i) = shock;
end
quantileup = zeros(7,50);
quantiledown = zeros(7,50);
for i = 1:7
quantileup(i,:) = quantile(shockbootstrap(i,:,:),.9,3);
quantiledown(i,:) = quantile(shockbootstrap(i,:,:),.1,3);
end
figure(2)
hold on
title('GDP87 with bootstrap confidence interval')
plot(oldshock(1,1:M),'blue')
plot(quantileup(1,:),'red')
plot(quantiledown(1,:),'red')
figure(3)
hold on
title('USAPGDP with bootstrap confidence interval')
plot(oldshock(2,1:M),'blue')
plot(quantileup(2,:),'red')
plot(quantiledown(2,:),'red')
figure(4)
hold on
title('PCOM with bootstrap confidence interval')
plot(oldshock(3,1:M),'blue')
plot(quantileup(3,:),'red')
plot(quantiledown(3,:),'red')
figure(5)
hold on
title('FF with bootstrap confidence interval')
plot(oldshock(4,1:M),'blue')
plot(quantileup(4,:),'red')
plot(quantiledown(4,:),'red')
figure(6)
hold on
title('NBR with bootstrap confidence interval')
plot(oldshock(5,1:M),'blue')
plot(quantileup(5,:),'red')
plot(quantiledown(5,:),'red')
figure(7)
hold on
title('TOTR with bootstrap confidence interval')
plot(oldshock(6,1:M),'blue')
plot(quantileup(6,:),'red')
plot(quantiledown(6,:),'red')
disp('General comments: the shocks seems to persist around 20-30 periods, though the biggest effect is in the 1-10 range.')
disp('Most of the IRFs seem to exhibit a rebound around 15-25 (a response with the opposite sign of the earlier effect, for reasons unclear.')
disp('Perhaps this is a mathematical artifact.')
%test a big shock
G = [beta(2:15,:)' ; eye(7), zeros(7)];
bigeta = [0 0 0 0 0 0 5]';
bigu = [Ainvert * bigeta; zeros(7,1)];
M = 50; %period over which to computing IRF
bigshock = zeros(14,M);
for i = 1:M
bigshock(:,i) = G^i * bigu;
end
figure(8)
title('GDP87, small shock in blue, big in red')
hold on
plot(oldshock(1,1:M),'blue')
plot(bigshock(1,1:M),'red')
disp('Big shock: as noted, the effect of a 5 times larger shock is more than 5 times larger.')
disp('The rebound mentioned above exhibits this behavior as well.')
%experiment with a different order
GDP87 = data(:,1);
USAPGDP = data(:,2);
PCOM = data(:,3);
FF = data(:,4);
NBR = data(:,5);
TOTR = data(:,6);
M1 = data(:,7);
M2 = data(:,8);
M3 = data(:,9);
beta1 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], GDP87(3:146));
beta2 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], FF(3:146));
beta3 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], PCOM(3:146));
beta4 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], USAPGDP(3:146));
beta5 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], NBR(3:146));
beta6 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], TOTR(3:146));
beta7 = mvregress([ones(144,1), GDP87(2:145), USAPGDP(2:145), PCOM(2:145), FF(2:145), NBR(2:145), TOTR(2:145), M1(2:145), ...
GDP87(1:144), USAPGDP(1:144), PCOM(1:144), FF(1:144), NBR(1:144), TOTR(1:144), M1(1:144)], M1(3:146));
orderbeta = [beta1 beta2 beta3 beta4 beta5 beta6 beta7];
orderdatamat = [data(2:145,1) data(2:145,4) data(2:145,3) data(2:145,2) data(2:145,5:7) ...
data(1:144,1) data(1:144,4) data(1:144,3) data(1:144,2) data(1:144,5:7)];
orderresidual = [data(3:146,1) data(3:146,4) data(3:146,3) data(3:146,2) data(3:146,5:7)] - ( orderbeta(2:15,:)' * orderdatamat' )';
ordersigmahat = zeros(7,7);
for i = 1:144
ordersigmahat = ordersigmahat + residual(i,:)' * residual(i,:);
end
ordersigmahat = ordersigmahat / 144;
orderA = chol(ordersigmahat,'lower');
orderAinvert = inv(orderA);
orderG = [beta(2:15,:)' ; eye(7), zeros(7)];
eta = [0 0 0 0 0 0 1]';
orderu = [orderAinvert * eta; zeros(7,1)];
M = 50; %period over which to computing IRF
ordershock = zeros(14,M);
for i = 1:M
ordershock(:,i) = G^i * orderu;
end
figure(9)
title('switching order of USAPGDP and FF (two lines, old in blue, new order in red)')
hold on
plot(oldshock(1,1:M),'blue')
plot(ordershock(1,1:M),'red')
disp('Switching order: as expected, changing the order here makes no difference.')