-
Notifications
You must be signed in to change notification settings - Fork 118
/
1015. Smallest Integer Divisible by K.cpp
40 lines (34 loc) · 1.37 KB
/
1015. Smallest Integer Divisible by K.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
//Pigeonhole principle
//https://leetcode.com/problems/smallest-integer-divisible-by-k/discuss/260875/Python-O(K)-with-Detailed-Explanations
//Runtime: 104 ms, faster than 7.42% of C++ online submissions for Smallest Integer Divisible by K.
//Memory Usage: 14.4 MB, less than 5.63% of C++ online submissions for Smallest Integer Divisible by K.
//time: O(K), space: O(K)
class Solution {
public:
int smallestRepunitDivByK(int K) {
set<int> viableLastDigits= {1,3,7,9};
if(viableLastDigits.find(K%10) == viableLastDigits.end()){
return -1;
}
int res = 0;
set<int> resSet;
/*
the residuals of %K are [0,K-1],
so we try out 1, 11, 111, 11..111(K '1's)
to see if these numbers' residuals fill the holes
if there is a duplicate before we find a residual = 0,
it will produce a cycle so we will never
find a number n s.t. n%K is 0
the proof of cycle: n2_res = (10*n1_res + 1) % K,
that means the residual of current number is dependent
on the previous number
*/
for(int len = 1; len <= K; ++len){
res = (res * 10 + 1) % K;
if(res == 0) return len;
if(resSet.find(res) != resSet.end()) return -1;
resSet.insert(res);
}
return -1;
}
};