forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist-visualizations.py
executable file
·139 lines (109 loc) · 4.74 KB
/
mnist-visualizations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: mnist-visualizations.py
"""
The same MNIST ConvNet example, but with weights/activations visualization.
"""
from tensorpack import tfv1 as tf
from tensorpack import *
from tensorpack.dataflow import dataset
IMAGE_SIZE = 28
def visualize_conv_weights(filters, name):
"""Visualize use weights in convolution filters.
Args:
filters: tensor containing the weights [H,W,Cin,Cout]
name: label for tensorboard
Returns:
image of all weight
"""
with tf.name_scope('visualize_w_' + name):
filters = tf.transpose(filters, (3, 2, 0, 1)) # [h, w, cin, cout] -> [cout, cin, h, w]
filters = tf.unstack(filters) # --> cout * [cin, h, w]
filters = tf.concat(filters, 1) # --> [cin, cout * h, w]
filters = tf.unstack(filters) # --> cin * [cout * h, w]
filters = tf.concat(filters, 1) # --> [cout * h, cin * w]
filters = tf.expand_dims(filters, 0)
filters = tf.expand_dims(filters, -1)
tf.summary.image('visualize_w_' + name, filters)
def visualize_conv_activations(activation, name):
"""Visualize activations for convolution layers.
Remarks:
This tries to place all activations into a square.
Args:
activation: tensor with the activation [B,H,W,C]
name: label for tensorboard
Returns:
image of almost all activations
"""
import math
with tf.name_scope('visualize_act_' + name):
_, h, w, c = activation.get_shape().as_list()
rows = []
c_per_row = int(math.sqrt(c))
for y in range(0, c - c_per_row, c_per_row):
row = activation[:, :, :, y:y + c_per_row] # [?, H, W, 32] --> [?, H, W, 5]
cols = tf.unstack(row, axis=3) # [?, H, W, 5] --> 5 * [?, H, W]
row = tf.concat(cols, 1)
rows.append(row)
viz = tf.concat(rows, 2)
tf.summary.image('visualize_act_' + name, tf.expand_dims(viz, -1))
class Model(ModelDesc):
def inputs(self):
return [tf.TensorSpec((None, IMAGE_SIZE, IMAGE_SIZE), tf.float32, 'input'),
tf.TensorSpec((None,), tf.int32, 'label')]
def build_graph(self, image, label):
image = tf.expand_dims(image * 2 - 1, 3)
with argscope(Conv2D, kernel_shape=3, nl=tf.nn.relu, out_channel=32):
c0 = Conv2D('conv0', image)
p0 = MaxPooling('pool0', c0, 2)
c1 = Conv2D('conv1', p0)
c2 = Conv2D('conv2', c1)
p1 = MaxPooling('pool1', c2, 2)
c3 = Conv2D('conv3', p1)
fc1 = FullyConnected('fc0', c3, 512, nl=tf.nn.relu)
fc1 = Dropout('dropout', fc1, 0.5)
logits = FullyConnected('fc1', fc1, out_dim=10, nl=tf.identity)
with tf.name_scope('visualizations'):
visualize_conv_weights(c0.variables.W, 'conv0')
visualize_conv_activations(c0, 'conv0')
visualize_conv_weights(c1.variables.W, 'conv1')
visualize_conv_activations(c1, 'conv1')
visualize_conv_weights(c2.variables.W, 'conv2')
visualize_conv_activations(c2, 'conv2')
visualize_conv_weights(c3.variables.W, 'conv3')
visualize_conv_activations(c3, 'conv3')
tf.summary.image('input', (image + 1.0) * 128., 3)
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, label, 1), tf.float32), name='accuracy')
wd_cost = tf.multiply(1e-5,
regularize_cost('fc.*/W', tf.nn.l2_loss),
name='regularize_loss')
return tf.add_n([wd_cost, cost], name='total_cost')
def optimizer(self):
lr = tf.train.exponential_decay(
learning_rate=1e-3,
global_step=get_global_step_var(),
decay_steps=468 * 10,
decay_rate=0.3, staircase=True, name='learning_rate')
tf.summary.scalar('lr', lr)
return tf.train.AdamOptimizer(lr)
def get_data():
train = BatchData(dataset.Mnist('train'), 128)
test = BatchData(dataset.Mnist('test'), 256, remainder=True)
return train, test
if __name__ == '__main__':
logger.auto_set_dir()
dataset_train, dataset_test = get_data()
config = TrainConfig(
model=Model(),
dataflow=dataset_train,
callbacks=[
ModelSaver(),
InferenceRunner(
dataset_test, ScalarStats(['cross_entropy_loss', 'accuracy'])),
],
steps_per_epoch=len(dataset_train),
max_epoch=100,
)
launch_train_with_config(config, SimpleTrainer())