forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar-convnet.py
executable file
·150 lines (124 loc) · 5.26 KB
/
cifar-convnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
#!/usr/bin/env python
# File: cifar-convnet.py
# Author: Yuxin Wu
import argparse
import os
from tensorpack import tfv1 as tf
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils.summary import *
from tensorpack.utils.gpu import get_num_gpu
"""
A small convnet model for Cifar10 or Cifar100 dataset.
Cifar10 trained on 1 GPU:
91% accuracy after 50k iterations.
79 itr/s on P100
Not a good model for Cifar100, just for demonstration.
"""
class Model(ModelDesc):
def __init__(self, cifar_classnum):
super(Model, self).__init__()
self.cifar_classnum = cifar_classnum
def inputs(self):
return [tf.TensorSpec((None, 30, 30, 3), tf.float32, 'input'),
tf.TensorSpec((None,), tf.int32, 'label')]
def build_graph(self, image, label):
drop_rate = tf.constant(0.5 if self.training else 0.0)
if self.training:
tf.summary.image("train_image", image, 10)
if tf.test.is_gpu_available():
image = tf.transpose(image, [0, 3, 1, 2])
data_format = 'channels_first'
else:
data_format = 'channels_last'
image = image / 4.0 # just to make range smaller
with argscope(Conv2D, activation=BNReLU, use_bias=False, kernel_size=3), \
argscope([Conv2D, MaxPooling, BatchNorm], data_format=data_format):
logits = LinearWrap(image) \
.Conv2D('conv1.1', filters=64) \
.Conv2D('conv1.2', filters=64) \
.MaxPooling('pool1', 3, stride=2, padding='SAME') \
.Conv2D('conv2.1', filters=128) \
.Conv2D('conv2.2', filters=128) \
.MaxPooling('pool2', 3, stride=2, padding='SAME') \
.Conv2D('conv3.1', filters=128, padding='VALID') \
.Conv2D('conv3.2', filters=128, padding='VALID') \
.FullyConnected('fc0', 1024 + 512, activation=tf.nn.relu) \
.Dropout(rate=drop_rate) \
.FullyConnected('fc1', 512, activation=tf.nn.relu) \
.FullyConnected('linear', out_dim=self.cifar_classnum)()
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
correct = tf.cast(tf.nn.in_top_k(predictions=logits, targets=label, k=1), tf.float32, name='correct')
# monitor training error
add_moving_summary(tf.reduce_mean(correct, name='accuracy'))
# weight decay on all W of fc layers
wd_cost = regularize_cost('fc.*/W', l2_regularizer(4e-4), name='regularize_loss')
add_moving_summary(cost, wd_cost)
add_param_summary(('.*/W', ['histogram'])) # monitor W
return tf.add_n([cost, wd_cost], name='cost')
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=1e-2, trainable=False)
tf.summary.scalar('lr', lr)
return tf.train.AdamOptimizer(lr, epsilon=1e-3)
def get_data(train_or_test, cifar_classnum):
isTrain = train_or_test == 'train'
if cifar_classnum == 10:
ds = dataset.Cifar10(train_or_test)
else:
ds = dataset.Cifar100(train_or_test)
if isTrain:
augmentors = [
imgaug.RandomCrop((30, 30)),
imgaug.Flip(horiz=True),
imgaug.Brightness(63),
imgaug.Contrast((0.2, 1.8)),
imgaug.MeanVarianceNormalize(all_channel=True)
]
else:
augmentors = [
imgaug.CenterCrop((30, 30)),
imgaug.MeanVarianceNormalize(all_channel=True)
]
ds = AugmentImageComponent(ds, augmentors)
ds = BatchData(ds, 128, remainder=not isTrain)
if isTrain:
ds = MultiProcessRunnerZMQ(ds, 5)
return ds
def get_config(cifar_classnum):
# prepare dataset
dataset_train = get_data('train', cifar_classnum)
dataset_test = get_data('test', cifar_classnum)
def lr_func(lr):
if lr < 3e-5:
raise StopTraining()
return lr * 0.31
return TrainConfig(
model=Model(cifar_classnum),
data=QueueInput(dataset_train),
callbacks=[
ModelSaver(),
InferenceRunner(dataset_test,
ScalarStats(['accuracy', 'cost'])),
StatMonitorParamSetter('learning_rate', 'validation_accuracy', lr_func,
threshold=0.001, last_k=10, reverse=True),
],
max_epoch=150,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--classnum', help='10 for cifar10 or 100 for cifar100',
type=int, default=10)
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with tf.Graph().as_default():
logger.set_logger_dir(os.path.join('train_log', 'cifar' + str(args.classnum)))
config = get_config(args.classnum)
config.session_init = SmartInit(args.load)
num_gpu = get_num_gpu()
trainer = SimpleTrainer() if num_gpu <= 1 \
else SyncMultiGPUTrainerParameterServer(num_gpu)
launch_train_with_config(config, trainer)