diff --git a/documentation/apidoc/.DS_Store b/.DS_Store similarity index 74% rename from documentation/apidoc/.DS_Store rename to .DS_Store index cc12c3a..5008ddf 100644 Binary files a/documentation/apidoc/.DS_Store and b/.DS_Store differ diff --git a/dist/configurations/MIMLClassifier/DMIMLkNN.config b/dist/configurations/MIMLClassifier/DMIMLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/EnMIMLNNMetric.config b/dist/configurations/MIMLClassifier/EnMIMLNNMetric.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/KiSar.config b/dist/configurations/MIMLClassifier/KiSar.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLBRkNN.config b/dist/configurations/MIMLClassifier/MIMLBRkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLBagging.config b/dist/configurations/MIMLClassifier/MIMLBagging.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLDGC.config b/dist/configurations/MIMLClassifier/MIMLDGC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLFast.config b/dist/configurations/MIMLClassifier/MIMLFast.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLIBLR.config b/dist/configurations/MIMLClassifier/MIMLIBLR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLMAPkNN.config b/dist/configurations/MIMLClassifier/MIMLMAPkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLNN.config b/dist/configurations/MIMLClassifier/MIMLNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLRBF.config b/dist/configurations/MIMLClassifier/MIMLRBF.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLSVM.config b/dist/configurations/MIMLClassifier/MIMLSVM.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLWel.config b/dist/configurations/MIMLClassifier/MIMLWel.config old mode 100755 new mode 100644 diff --git a/dist/configurations/MIMLClassifier/MIMLkNN.config b/dist/configurations/MIMLClassifier/MIMLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_CitationKNN.config b/dist/configurations/toMI/MIMLtoMI_BR_CitationKNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MDD.config b/dist/configurations/toMI/MIMLtoMI_BR_MDD.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MIBoost.config b/dist/configurations/toMI/MIMLtoMI_BR_MIBoost.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MIDD.config b/dist/configurations/toMI/MIMLtoMI_BR_MIDD.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MILR.config b/dist/configurations/toMI/MIMLtoMI_BR_MILR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MINND.config b/dist/configurations/toMI/MIMLtoMI_BR_MINND.config new file mode 100644 index 0000000..d9a5958 --- /dev/null +++ b/dist/configurations/toMI/MIMLtoMI_BR_MINND.config @@ -0,0 +1,35 @@ + + + + + + + + + -K 10 -S 1 -E 1 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/BR_MINND.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MIOptimalBall.config b/dist/configurations/toMI/MIMLtoMI_BR_MIOptimalBall.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MIRI.config b/dist/configurations/toMI/MIMLtoMI_BR_MIRI.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MISMO.config b/dist/configurations/toMI/MIMLtoMI_BR_MISMO.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MISVM.config b/dist/configurations/toMI/MIMLtoMI_BR_MISVM.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MITI.config b/dist/configurations/toMI/MIMLtoMI_BR_MITI.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_MIWrapper.config b/dist/configurations/toMI/MIMLtoMI_BR_MIWrapper.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_SimpleMI.config b/dist/configurations/toMI/MIMLtoMI_BR_SimpleMI.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_BR_TLC.config b/dist/configurations/toMI/MIMLtoMI_BR_TLC.config new file mode 100644 index 0000000..5c8bd21 --- /dev/null +++ b/dist/configurations/toMI/MIMLtoMI_BR_TLC.config @@ -0,0 +1,35 @@ + + + + + + + + + -P weka.classifiers.trees.J48 -W weka.classifiers.meta.LogitBoost -- -S 1 -I 10 -W weka.classifiers.trees.DecisionStump + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/BR_TLC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toMI/MIMLtoMI_LP_CitationKNN.config b/dist/configurations/toMI/MIMLtoMI_LP_CitationKNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_LP_MINND.config b/dist/configurations/toMI/MIMLtoMI_LP_MINND.config new file mode 100644 index 0000000..7f3dceb --- /dev/null +++ b/dist/configurations/toMI/MIMLtoMI_LP_MINND.config @@ -0,0 +1,35 @@ + + + + + + + + + -K 10 -S 1 -E 1 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_MINND.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toMI/MIMLtoMI_LP_MISMO.config b/dist/configurations/toMI/MIMLtoMI_LP_MISMO.config new file mode 100644 index 0000000..09da6b0 --- /dev/null +++ b/dist/configurations/toMI/MIMLtoMI_LP_MISMO.config @@ -0,0 +1,35 @@ + + + + + + + + + -L 1.0e-3 -P 1.0e-12 -N 0 -V 5 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_MISMO.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toMI/MIMLtoMI_LP_MIWrapper.config b/dist/configurations/toMI/MIMLtoMI_LP_MIWrapper.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_LP_SimpleMI.config b/dist/configurations/toMI/MIMLtoMI_LP_SimpleMI.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toMI/MIMLtoMI_LP_TLC.config b/dist/configurations/toMI/MIMLtoMI_LP_TLC.config new file mode 100644 index 0000000..51d26cd --- /dev/null +++ b/dist/configurations/toMI/MIMLtoMI_LP_TLC.config @@ -0,0 +1,35 @@ + + + + + + + + + -P weka.classifiers.trees.J48 -W weka.classifiers.meta.LogitBoost -- -S 1 -I 10 -W weka.classifiers.trees.DecisionStump + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_TLC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_AT_BR.config b/dist/configurations/toML/MIMLtoML_AT_BR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_BRkNN.config b/dist/configurations/toML/MIMLtoML_AT_BRkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_CC.config b/dist/configurations/toML/MIMLtoML_AT_CC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_CLR.config b/dist/configurations/toML/MIMLtoML_AT_CLR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_DMLkNN.config b/dist/configurations/toML/MIMLtoML_AT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_ECC.config b/dist/configurations/toML/MIMLtoML_AT_ECC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_EPS.config b/dist/configurations/toML/MIMLtoML_AT_EPS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_HOMER.config b/dist/configurations/toML/MIMLtoML_AT_HOMER.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_IBLR_ML.config b/dist/configurations/toML/MIMLtoML_AT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_LP.config b/dist/configurations/toML/MIMLtoML_AT_LP.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_MLDGC.config b/dist/configurations/toML/MIMLtoML_AT_MLDGC.config new file mode 100644 index 0000000..673a5ce --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_AT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/AT_MLDGC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_AT_MLStacking.config b/dist/configurations/toML/MIMLtoML_AT_MLStacking.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_MLkNN.config b/dist/configurations/toML/MIMLtoML_AT_MLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_PS.config b/dist/configurations/toML/MIMLtoML_AT_PS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_RAkEL.config b/dist/configurations/toML/MIMLtoML_AT_RAkEL.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_AT_RFPCT.config b/dist/configurations/toML/MIMLtoML_AT_RFPCT.config new file mode 100644 index 0000000..bebf184 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_AT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/AT_RFPCT.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_AT_RPC.config b/dist/configurations/toML/MIMLtoML_AT_RPC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_BR.config b/dist/configurations/toML/MIMLtoML_GT_BR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_BRkNN.config b/dist/configurations/toML/MIMLtoML_GT_BRkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_CC.config b/dist/configurations/toML/MIMLtoML_GT_CC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_CLR.config b/dist/configurations/toML/MIMLtoML_GT_CLR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_DMLkNN.config b/dist/configurations/toML/MIMLtoML_GT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_ECC.config b/dist/configurations/toML/MIMLtoML_GT_ECC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_EPS.config b/dist/configurations/toML/MIMLtoML_GT_EPS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_HOMER.config b/dist/configurations/toML/MIMLtoML_GT_HOMER.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_IBLR_ML.config b/dist/configurations/toML/MIMLtoML_GT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_LP.config b/dist/configurations/toML/MIMLtoML_GT_LP.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_MLDGC.config b/dist/configurations/toML/MIMLtoML_GT_MLDGC.config new file mode 100644 index 0000000..4eddbb9 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_GT_MLDGC.config @@ -0,0 +1,29 @@ + + + + + + + + + + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/GT_MLDGC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_GT_MLStacking.config b/dist/configurations/toML/MIMLtoML_GT_MLStacking.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_MLkNN.config b/dist/configurations/toML/MIMLtoML_GT_MLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_PS.config b/dist/configurations/toML/MIMLtoML_GT_PS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_RAkEL.config b/dist/configurations/toML/MIMLtoML_GT_RAkEL.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_GT_RFPCT.config b/dist/configurations/toML/MIMLtoML_GT_RFPCT.config new file mode 100644 index 0000000..8d953c0 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_GT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/GT_RFPCT.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_GT_RPC.config b/dist/configurations/toML/MIMLtoML_GT_RPC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_KMT_BR.config b/dist/configurations/toML/MIMLtoML_KMT_BR.config new file mode 100644 index 0000000..43d820d --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_BR.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_BR.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_BRkNN.config b/dist/configurations/toML/MIMLtoML_KMT_BRkNN.config new file mode 100644 index 0000000..2b0fd12 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_BRkNN.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 65 + random + 712637 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_BRkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_CC.config b/dist/configurations/toML/MIMLtoML_KMT_CC.config new file mode 100644 index 0000000..4b3e0b1 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_CC.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_CC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_CLR.config b/dist/configurations/toML/MIMLtoML_KMT_CLR.config new file mode 100644 index 0000000..ebaba60 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_CLR.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_CLR.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_DMLkNN.config b/dist/configurations/toML/MIMLtoML_KMT_DMLkNN.config new file mode 100644 index 0000000..f058aa2 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_DMLkNN.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_DMLkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_ECC.config b/dist/configurations/toML/MIMLtoML_KMT_ECC.config new file mode 100644 index 0000000..d119e6e --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_ECC.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + 70 + powerset + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_ECC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_EPS.config b/dist/configurations/toML/MIMLtoML_KMT_EPS.config new file mode 100644 index 0000000..dec6f10 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_EPS.config @@ -0,0 +1,42 @@ + + + + + + + + + + + + + + + + + + + + 75 + iterative + 25 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_EPS.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_HOMER.config b/dist/configurations/toML/MIMLtoML_KMT_HOMER.config new file mode 100644 index 0000000..0d00d8e --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_HOMER.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_HOMER.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_IBLR_ML.config b/dist/configurations/toML/MIMLtoML_KMT_IBLR_ML.config new file mode 100644 index 0000000..1ed3b03 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_IBLR_ML.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_IBLR_ML.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_LP.config b/dist/configurations/toML/MIMLtoML_KMT_LP.config new file mode 100644 index 0000000..e930f05 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_LP.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + 70 + random + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + + results/toML/KMT_LP.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_MLDGC.config b/dist/configurations/toML/MIMLtoML_KMT_MLDGC.config new file mode 100644 index 0000000..26d3376 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/KMT_MLDGC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_MLStacking.config b/dist/configurations/toML/MIMLtoML_KMT_MLStacking.config new file mode 100644 index 0000000..c988c5f --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_MLStacking.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + 129 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_MLStacking.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_MLkNN.config b/dist/configurations/toML/MIMLtoML_KMT_MLkNN.config new file mode 100644 index 0000000..51964da --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_MLkNN.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_MLkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_PS.config b/dist/configurations/toML/MIMLtoML_KMT_PS.config new file mode 100644 index 0000000..b41fd1e --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_PS.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_PS.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_RAkEL.config b/dist/configurations/toML/MIMLtoML_KMT_RAkEL.config new file mode 100644 index 0000000..29df401 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_RAkEL.config @@ -0,0 +1,41 @@ + + + + + + + + + + + + + + + + + + + + 80 + iterative + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + results/toML/KMT_RAkEL.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_RFPCT.config b/dist/configurations/toML/MIMLtoML_KMT_RFPCT.config new file mode 100644 index 0000000..ef53263 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_RFPCT.config @@ -0,0 +1,38 @@ + + + + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + powerset + clusFolder + clusBirds + + + + + results/toML/KMT_RFPCT.csv + false +
true
+ + Hamming Loss + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_KMT_RPC.config b/dist/configurations/toML/MIMLtoML_KMT_RPC.config new file mode 100644 index 0000000..20e1662 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_KMT_RPC.config @@ -0,0 +1,32 @@ + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_KMT.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_BR.config b/dist/configurations/toML/MIMLtoML_MDT_BR.config new file mode 100644 index 0000000..067a5f8 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_BR.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_BR.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_BRkNN.config b/dist/configurations/toML/MIMLtoML_MDT_BRkNN.config new file mode 100644 index 0000000..ca877b1 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_BRkNN.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 65 + random + 712637 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_BRkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_CC.config b/dist/configurations/toML/MIMLtoML_MDT_CC.config new file mode 100644 index 0000000..ad06e46 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_CC.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_CC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_CLR.config b/dist/configurations/toML/MIMLtoML_MDT_CLR.config new file mode 100644 index 0000000..f855114 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_CLR.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_CLR.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_DMLkNN.config b/dist/configurations/toML/MIMLtoML_MDT_DMLkNN.config new file mode 100644 index 0000000..205510e --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_DMLkNN.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_DMLkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_ECC.config b/dist/configurations/toML/MIMLtoML_MDT_ECC.config new file mode 100644 index 0000000..9f1c637 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_ECC.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + 70 + powerset + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_ECC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_EPS.config b/dist/configurations/toML/MIMLtoML_MDT_EPS.config new file mode 100644 index 0000000..a4a8090 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_EPS.config @@ -0,0 +1,42 @@ + + + + + + + + + + + + + + + + + + + + 75 + iterative + 25 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_EPS.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_HOMER.config b/dist/configurations/toML/MIMLtoML_MDT_HOMER.config new file mode 100644 index 0000000..b91e640 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_HOMER.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_HOMER.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_IBLR_ML.config b/dist/configurations/toML/MIMLtoML_MDT_IBLR_ML.config new file mode 100644 index 0000000..6e42a8f --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_IBLR_ML.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_IBLR_ML.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_LP.config b/dist/configurations/toML/MIMLtoML_MDT_LP.config new file mode 100644 index 0000000..16eb188 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_LP.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + 70 + random + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + + results/toML/MDT_LP.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_MLDGC.config b/dist/configurations/toML/MIMLtoML_MDT_MLDGC.config new file mode 100644 index 0000000..c621438 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/MDT_MLDGC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_MLStacking.config b/dist/configurations/toML/MIMLtoML_MDT_MLStacking.config new file mode 100644 index 0000000..de8a325 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_MLStacking.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + 129 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_MLStacking.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_MLkNN.config b/dist/configurations/toML/MIMLtoML_MDT_MLkNN.config new file mode 100644 index 0000000..412109f --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_MLkNN.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_MLkNN.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_PS.config b/dist/configurations/toML/MIMLtoML_MDT_PS.config new file mode 100644 index 0000000..6dfa9f1 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_PS.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_PS.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_RAkEL.config b/dist/configurations/toML/MIMLtoML_MDT_RAkEL.config new file mode 100644 index 0000000..0fe166d --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_RAkEL.config @@ -0,0 +1,41 @@ + + + + + + + + + + + + + + + + + + + + 80 + iterative + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + results/toML/MDT_RAkEL.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_RFPCT.config b/dist/configurations/toML/MIMLtoML_MDT_RFPCT.config new file mode 100644 index 0000000..b575805 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_RFPCT.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + clusFolder + clusBirds + iterative + + + + + results/toML/MDT_RFPCT.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MDT_RPC.config b/dist/configurations/toML/MIMLtoML_MDT_RPC.config new file mode 100644 index 0000000..1e10c83 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MDT_RPC.config @@ -0,0 +1,32 @@ + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_RPC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MMT_BR.config b/dist/configurations/toML/MIMLtoML_MMT_BR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_BRkNN.config b/dist/configurations/toML/MIMLtoML_MMT_BRkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_CC.config b/dist/configurations/toML/MIMLtoML_MMT_CC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_CLR.config b/dist/configurations/toML/MIMLtoML_MMT_CLR.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_DMLkNN.config b/dist/configurations/toML/MIMLtoML_MMT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_ECC.config b/dist/configurations/toML/MIMLtoML_MMT_ECC.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_EPS.config b/dist/configurations/toML/MIMLtoML_MMT_EPS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_HOMER.config b/dist/configurations/toML/MIMLtoML_MMT_HOMER.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_IBLR_ML.config b/dist/configurations/toML/MIMLtoML_MMT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_LP.config b/dist/configurations/toML/MIMLtoML_MMT_LP.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_MLDGC.config b/dist/configurations/toML/MIMLtoML_MMT_MLDGC.config new file mode 100644 index 0000000..e408088 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MMT_MLDGC.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/MMT_MLDGC.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MMT_MLStacking.config b/dist/configurations/toML/MIMLtoML_MMT_MLStacking.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_MLkNN.config b/dist/configurations/toML/MIMLtoML_MMT_MLkNN.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_PS.config b/dist/configurations/toML/MIMLtoML_MMT_PS.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_RAkEL.config b/dist/configurations/toML/MIMLtoML_MMT_RAkEL.config old mode 100755 new mode 100644 diff --git a/dist/configurations/toML/MIMLtoML_MMT_RFPCT.config b/dist/configurations/toML/MIMLtoML_MMT_RFPCT.config new file mode 100644 index 0000000..f379759 --- /dev/null +++ b/dist/configurations/toML/MIMLtoML_MMT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/MMT_RFPCT.csv + false +
true
+ + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
+ +
\ No newline at end of file diff --git a/dist/configurations/toML/MIMLtoML_MMT_RPC.config b/dist/configurations/toML/MIMLtoML_MMT_RPC.config old mode 100755 new mode 100644 diff --git a/dist/data/miml_birds.xml b/dist/data/miml_birds.xml old mode 100755 new mode 100644 diff --git a/dist/data/toy.arff b/dist/data/toy.arff old mode 100755 new mode 100644 index 773ac97..f3f1d90 --- a/dist/data/toy.arff +++ b/dist/data/toy.arff @@ -13,4 +13,4 @@ @data bag1,"42,-198,-109\n41.9,-191,-142\n35,14.2,6.33",1,0,0,1 - bag2,"11.25,-98,10\n31,40.5,7.85",0,1,1,0 \ No newline at end of file + bag2,"11.25,-98,10\n31,40.5,7.85",0,1,1,0 \ No newline at end of file diff --git a/dist/data/toy.xml b/dist/data/toy.xml old mode 100755 new mode 100644 diff --git a/dist/license.txt b/dist/license.txt old mode 100755 new mode 100644 index 94a9ed0..3d90694 --- a/dist/license.txt +++ b/dist/license.txt @@ -1,674 +1,674 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - Copyright (C) - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -. + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. \ No newline at end of file diff --git a/dist/miml-1.0-sources.jar b/dist/miml-1.0-sources.jar deleted file mode 100755 index d5926b8..0000000 Binary files a/dist/miml-1.0-sources.jar and /dev/null differ diff --git a/dist/miml-1.0-jar-with-dependencies.jar b/dist/miml-1.4-jar-with-dependencies.jar old mode 100755 new mode 100644 similarity index 82% rename from dist/miml-1.0-jar-with-dependencies.jar rename to dist/miml-1.4-jar-with-dependencies.jar index bd6fa51..c5a8d7e Binary files a/dist/miml-1.0-jar-with-dependencies.jar and b/dist/miml-1.4-jar-with-dependencies.jar differ diff --git a/dist/miml-1.4-sources.jar b/dist/miml-1.4-sources.jar new file mode 100644 index 0000000..7c46ef7 Binary files /dev/null and b/dist/miml-1.4-sources.jar differ diff --git a/dist/readme.txt b/dist/readme.txt old mode 100755 new mode 100644 index af86f3f..694bd4b --- a/dist/readme.txt +++ b/dist/readme.txt @@ -1,7 +1,7 @@ -Miml's 1.0 release contains: - -A jar file with Miml classes (miml-1.0.jar) -A folder with a some example datasets (data/) -A folder with a some example configurations (configurations/) -A license file (license.txt) -This readme file (readme.txt) +Miml's 1.4 release contains: + +A jar file with Miml classes (miml-1.4.jar) +A folder with a some example datasets (data/) +A folder with a some example configurations (configurations/) +A license file (license.txt) +This readme file (readme.txt) \ No newline at end of file diff --git a/documentation/MIML-API.pdf b/documentation/MIML-API.pdf old mode 100755 new mode 100644 index 8724bfd..223ff44 Binary files a/documentation/MIML-API.pdf and b/documentation/MIML-API.pdf differ diff --git a/documentation/MIML-UserManual.pdf b/documentation/MIML-UserManual.pdf old mode 100755 new mode 100644 index 5225de1..d06117c Binary files a/documentation/MIML-UserManual.pdf and b/documentation/MIML-UserManual.pdf differ diff --git a/documentation/apidoc/allclasses-frame.html b/documentation/apidoc/allclasses-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/allclasses-index.html b/documentation/apidoc/allclasses-index.html new file mode 100644 index 0000000..08e36d6 --- /dev/null +++ b/documentation/apidoc/allclasses-index.html @@ -0,0 +1,743 @@ + + + + + +All Classes + + + + + + + + + + + + + + + +
+ +
+
+
+

All Classes

+
+
+
    +
  • + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    All Classes Interface Summary Class Summary 
    ClassDescription
    ArithmeticTransformation +
    Class that performs an arithmetic transformation to convert a MIMLInstances + class to MultiLabelInstances.
    +
    AverageHausdorff +
    Class that implements Average Hausdorff metric to measure the distance + between 2 bags of a data set.
    +
    BaseMIMLReport +
    Class used to generate reports with the format specified.
    +
    BRTransformation +
    Class that uses Binary Relevance transformation to convert MIMLInstances to + MIL Instances with relational attribute.
    +
    Clustering +
    Class to show an example of clustering of a MIML Dataset.
    +
    ConfigLoader +
    Class used to read a xml file and configure an experiment.
    +
    ConfigParameters +
    Class used to save configuration parameters to be used in reports.
    +
    CrossValidationBase +
    General scheme for cross validation partitioners of multi-output data.
    +
    CrossValidationExperiment +
    Class implementing an example of using cross-validation with different kinds + of classifier.
    +
    DMIMLkNN +
    DMIMLkNN is the adaptation to the MIML framework of the DMLkNN[1] multi-label + algorithm.
    +
    EnMIMLNNmetric +
    + Class to execute the EnMIMLNNmetric + algorithm for MIML data.
    +
    EvaluatorCV +
    Class that allow evaluate an algorithm applying a cross-validation method + with random partitioning.
    +
    EvaluatorHoldout +
    Class that allow evaluate an algorithm applying a holdout method.
    +
    EvaluatorHoldoutClus +
    Class that allow evaluate a classifier applying a holdout method with the + clus System.
    +
    GeneratePartitions +
    Class to split a multi-output dataset into partitions for cross-validation or + train-test.
    +
    GeometricTransformation +
    Class that performs a geometric transformation to convert a MIMLInstances + class to MultiLabelInstances.
    +
    HausdorffDistance 
    HoldoutExperiment +
    Class implementing an example of using holdout with train/test dataset and a + single dataset applying percentage split.
    +
    HoldoutToML_RFPCT +
    Class implementing an example of using holdout with train/test dataset and a + toML classifier with RFPCT as base classifier.
    +
    IConfiguration +
    Interface used to indicate that a class can be configured.
    +
    IDistance +
    Interface to implement the metrics used to measure the distance between + MIMLBag of a data sets.
    +
    IEvaluator<T> +
    Interface for run and evaluate a experiment.
    +
    IMIMLClassifier +
    Common interface for MIML classifiers.
    +
    InsertingAttributesToBags +
    Class implementing an example of inserting a new group of attributes to the + relational attribute of the dataset with {0,1} values.
    +
    InsertingAttributeToBag +
    Class implementing an example of inserting a new attribute to the relational + attribute of the dataset with {0,1} values.
    +
    IReport +
    Interface for generate reports with the format specified.
    +
    IterativeCrossValidation +
    Class to carry out an stratified cross validation partition of multi-label + dataset.
    +
    IterativeTrainTest +
    Class to carry out an stratified iterativeTrainTest partition of multi-label + dataset.
    +
    KiSar +
    Wrapper for Matlab + KiSar algorithm for + MIML data.
    + For more information see: Y.
    +
    KMeansTransformation +
    Class implementing the kmeans-based transformation described in [1] to + transform an MIML problem to ML
    +
    KMedoids +
    Class implementing the PAM (Partitioning Around Medoids) approximation [1] to + kMedoids for multi-instance data
    +
    LabelPowersetCrossValidation +
    Class to split a multi-label dataset into N multi-label for cross-validation + by applying a labelPowerset-based partition.
    +
    LabelPowersetTrainTest +
    Class to split a multi-label dataset into two multi-label datasets + corresponding to the train and test datasets respectively by applying a + labelPowerset-based partition.
    +
    LPTransformation +
    Class that uses LabelPowerset transformation to convert MIMLInstances to MIL + Instances with relational attribute.
    +
    ManagingMIMLInstances +
    Class implementing basic handling of MIML datasets.
    +
    MaximalHausdorff +
    Class that implements Maximal Hausdorff metric to measure the distance + between 2 bags of a data set.
    +
    MedoidTransformation +
    Class implementing the medoid-based transformation described in [1] to + transform an MIML problem to ML
    +
    MIMLBag +
    Class inheriting from DenseInstance to represent a MIML bag.
    +
    MIMLBagging +
    MIMLBagging is the adaptation of the traditional bagging strategy of the + machine learning [1] that does not need any previous transformation of the + problem.
    +
    MIMLBinaryRelevance +
    Wrapper for mulan BinaryRelevance to be used in MIML to MI algorithms.
    +
    MIMLBRkNN +
    MIMLBRkNN is the adaptation to the MIML framework of the BRkNN[1] multi-label + algorithm.
    +
    MIMLClassifier +
    This java class is based on the mulan.data.Statistics.java class provided in + the Mulan java framework for multi-label learning Tsoumakas, G., Katakis, + I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining and Knowledge + Discovery Handbook, O.
    +
    MIMLClassifierToMI +
    + Class implementing the transformation algorithm for MIML data to solve it + with MI learning.
    +
    MIMLClassifierToML +
    + Class implementing the transformation algorithm for MIML data to solve it + with ML learning.
    +
    MIMLDGC +
    MIMLDGC is the adaptation to the MIML framework of the MLDGC[1] multi-label + algorithm.
    +
    MIMLDistanceFunction +
    Wrapper for using IDistance metrics of MIML package with Mulan Lazy + algorithms.
    +
    MIMLFast +
    Wrapper for Matlab + MIMLFast + algorithm for MIML data.
    + See: S.
    +
    MIMLFuzzykNN 
    MIMLIBLR +
    MIMLIBLR is the adaptation to the MIML framework of the IBLR_ML[1] + multi-label algorithm.
    +
    MIMLInstances +
    Class inheriting from MultiLabelnstances to represent MIML data.
    +
    MIMLkNN +
    Class implementing the MIMLkNN algorithm for MIML data.
    +
    MIMLLabelPowerset +
    Wrapper for mulan LabelPowerset to be used in MIML to MI algorithms.
    +
    MIMLLabelPowersetTransformation +
    Class that uses LabelPowerset transformation to convert MIMLInstances to MIL + Instances with relational attribute.
    +
    MIMLMAPkNN +
    MIMLMAPkNN is the adaptation to the MIML framework of the MLkNN[1] + multi-label algorithm.
    +
    MIMLNN +
    + Class to execute the + MIMLNNalgorithm for + MIML data.
    +
    MIMLRBF +
    + Class to execute the + MIMLRBF algorithm + for MIML data.
    +
    MIMLReport +
    Abstract class for a MIMLReport.
    +
    MIMLStatistics +
    Class with methods to obtain information about a MIML dataset.
    +
    MIMLSVM +
    Wrapper for Matlab + MIMLSVM algorithm + for MIML data.
    + See: Z.
    +
    MIMLtoMITransformation +
    Class for basic handling of MIML to MIL LP and BR transformation.
    +
    MIMLtoML +
    Abstract class to transform MIMLInstances into MultiLabelInstances.
    +
    MIMLtoMLTransformation +
    Class for basic handling of the transformation MIML to ML transformations.
    +
    MIMLWel +
    Wrapper for Matlab + MIMLFast + algorithm for MIML data.
    + See: S.
    +
    MinimalHausdorff +
    Class that implements Minimal Hausdorff metric to measure the distance + between 2 bags of a data set.
    +
    MinMaxNormalization +
    Class implementing min-max normalization for MIML datasets.
    +
    MinMaxTransformation +
    Class that performs a miniMaxc transformation to convert a MIMLInstances + class to MultiLabelInstances.
    +
    MISMOWrapper +
    Wrapper for MISMO algorithm to work in MIML to MI classifiers.
    +
    MIStatistics +
    Class with methods to obtain information about a MI dataset such as the + number of attributes per bag, the average number of instances per bag, and + the distribution of number of instances per bag...
    +
    MLDGC +
    Implementation of MLDGC (Multi-Label Data Gravitation Model) algorithm.
    +
    MLSave +
    Class with methods to write to file a multi-label dataset.
    +
    MLStatistics +
    Class with methods to obtain information about a ML dataset.
    +
    MultiInstanceMultiLabelKNN +
    Wrapper for class MultiLabelKNN of Mulan to work with MIML data
    +
    MWClassifier +
    + Class to execute Matlab MIML classifiers.
    +
    MWTranslator +
    Class to serve as interface between MIMLInstances and Matlab data types.
    +
    NormalizingDataset +
    Class to show an example of normalization of a MIML Dataset.
    +
    Params +
    This class contains the list of classes and objects needed to create a new + instance of a Multi Label classifier through a specific constructor.
    +
    PartitionerBase +
    General scheme for partitioning multi-output data.
    +
    PropositionalTransformation +
    Class that performs a propositionalTransformation to convert a MIMLInstances + dataset to MultiLabelInstances.
    +
    RandomCrossValidation +
    Class to split a multi-label dataset into N multi-label random datasets for + cross-validation.
    +
    RandomTrainTest +
    Class to split a multi-label dataset into two multi-label random datasets + corresponding to the train and test datasets respectively.
    +
    Resampling +
    Class to show an example of sampling with replacement.
    +
    RFPCT +
    This class is a wrapper for RFPCT implemented in the clus library + CLUS library.
    +
    RunAlgorithm +
    Class that allow run any algorithm of the library configured by a file + configuration.
    +
    TrainTestBase +
    General scheme for train test partitioning of multi-output data.
    +
    Utils +
    This class has utilies that can be used anywhere in the library.
    +
    +
  • +
+
+
+
+ +
+ + diff --git a/documentation/apidoc/allclasses-noframe.html b/documentation/apidoc/allclasses-noframe.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/allclasses.html b/documentation/apidoc/allclasses.html new file mode 100644 index 0000000..efb0001 --- /dev/null +++ b/documentation/apidoc/allclasses.html @@ -0,0 +1,113 @@ + + + + + +All Classes + + + + + + + + + + + + + +

All Classes

+
+ +
+ + diff --git a/documentation/apidoc/allpackages-index.html b/documentation/apidoc/allpackages-index.html new file mode 100644 index 0000000..6db6cb0 --- /dev/null +++ b/documentation/apidoc/allpackages-index.html @@ -0,0 +1,263 @@ + + + + + +All Packages + + + + + + + + + + + + + + + +
+ +
+
+
+

All Packages

+
+ +
+
+ +
+ + diff --git a/documentation/apidoc/constant-values.html b/documentation/apidoc/constant-values.html old mode 100755 new mode 100644 index 5178bf3..03d2719 --- a/documentation/apidoc/constant-values.html +++ b/documentation/apidoc/constant-values.html @@ -1,12 +1,22 @@ - + - + Constant Field Values - + + + + + + + + + +var pathtoroot = "./"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
-
+
+

miml.classifiers.*

+
+ + + +
+

miml.clusterers.*

+
    +
  • + + + + + + + + + + + + + + +
    miml.clusterers.KMedoids 
    Modifier and TypeConstant FieldValue
    + +private static final longserialVersionUID-6814942755920034118L
    +
- +
+ +

miml.core.*

- +
+ +

miml.data.*

- +
+ +

miml.transformation.*

+
+
+ diff --git a/documentation/apidoc/deprecated-list.html b/documentation/apidoc/deprecated-list.html old mode 100755 new mode 100644 index bd8fc94..09209d6 --- a/documentation/apidoc/deprecated-list.html +++ b/documentation/apidoc/deprecated-list.html @@ -1,12 +1,22 @@ - + - + Deprecated List - + + + + + + + + + +var pathtoroot = "./"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+

Deprecated API

Contents

+
+ diff --git a/documentation/apidoc/element-list b/documentation/apidoc/element-list new file mode 100644 index 0000000..56ba11b --- /dev/null +++ b/documentation/apidoc/element-list @@ -0,0 +1,25 @@ +miml.classifiers.mi +miml.classifiers.miml +miml.classifiers.miml.lazy +miml.classifiers.miml.meta +miml.classifiers.miml.mimlTOmi +miml.classifiers.miml.mimlTOml +miml.classifiers.miml.neural +miml.classifiers.miml.optimization +miml.classifiers.ml +miml.clusterers +miml.core +miml.core.distance +miml.data +miml.data.normalization +miml.data.partitioning +miml.data.partitioning.iterative +miml.data.partitioning.powerset +miml.data.partitioning.random +miml.data.statistics +miml.evaluation +miml.report +miml.run +miml.transformation.mimlTOmi +miml.transformation.mimlTOml +miml.tutorial diff --git a/documentation/apidoc/help-doc.html b/documentation/apidoc/help-doc.html old mode 100755 new mode 100644 index b7e797d..5beb41e --- a/documentation/apidoc/help-doc.html +++ b/documentation/apidoc/help-doc.html @@ -1,12 +1,22 @@ - + - + API Help - + + + + + + + + + +var pathtoroot = "./"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+

How This API Document Is Organized

This API (Application Programming Interface) document has pages corresponding to the items in the navigation bar, described as follows.
@@ -76,118 +101,148 @@

How This API Document Is Organized

  • +

    Overview

    -

    The Overview page is the front page of this API document and provides a list of all packages with a summary for each. This page can also contain an overall description of the set of packages.

    +

    The Overview page is the front page of this API document and provides a list of all packages with a summary for each. This page can also contain an overall description of the set of packages.

    +
  • +

    Package

    -

    Each package has a page that contains a list of its classes and interfaces, with a summary for each. This page can contain six categories:

    +

    Each package has a page that contains a list of its classes and interfaces, with a summary for each. These pages may contain six categories:

      -
    • Interfaces (italic)
    • +
    • Interfaces
    • Classes
    • Enums
    • Exceptions
    • Errors
    • Annotation Types
    +
  • -

    Class/Interface

    +
    +

    Class or Interface

    Each class, interface, nested class and nested interface has its own separate page. Each of these pages has three sections consisting of a class/interface description, summary tables, and detailed member descriptions:

      -
    • Class inheritance diagram
    • +
    • Class Inheritance Diagram
    • Direct Subclasses
    • All Known Subinterfaces
    • All Known Implementing Classes
    • -
    • Class/interface declaration
    • -
    • Class/interface description
    • +
    • Class or Interface Declaration
    • +
    • Class or Interface Description
    +
    • Nested Class Summary
    • Field Summary
    • +
    • Property Summary
    • Constructor Summary
    • Method Summary
    +
    • Field Detail
    • +
    • Property Detail
    • Constructor Detail
    • Method Detail

    Each summary entry contains the first sentence from the detailed description for that item. The summary entries are alphabetical, while the detailed descriptions are in the order they appear in the source code. This preserves the logical groupings established by the programmer.

    +
  • +

    Annotation Type

    Each annotation type has its own separate page with the following sections:

      -
    • Annotation Type declaration
    • -
    • Annotation Type description
    • +
    • Annotation Type Declaration
    • +
    • Annotation Type Description
    • Required Element Summary
    • Optional Element Summary
    • Element Detail
    +
  • +

    Enum

    Each enum has its own separate page with the following sections:

      -
    • Enum declaration
    • -
    • Enum description
    • +
    • Enum Declaration
    • +
    • Enum Description
    • Enum Constant Summary
    • Enum Constant Detail
    +
  • +

    Use

    -

    Each documented package, class and interface has its own Use page. This page describes what packages, classes, methods, constructors and fields use any part of the given class or package. Given a class or interface A, its Use page includes subclasses of A, fields declared as A, methods that return A, and methods and constructors with parameters of type A. You can access this page by first going to the package, class or interface, then clicking on the "Use" link in the navigation bar.

    +

    Each documented package, class and interface has its own Use page. This page describes what packages, classes, methods, constructors and fields use any part of the given class or package. Given a class or interface A, its "Use" page includes subclasses of A, fields declared as A, methods that return A, and methods and constructors with parameters of type A. You can access this page by first going to the package, class or interface, then clicking on the "Use" link in the navigation bar.

    +
  • +

    Tree (Class Hierarchy)

    -

    There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy page contains a list of classes and a list of interfaces. The classes are organized by inheritance structure starting with java.lang.Object. The interfaces do not inherit from java.lang.Object.

    +

    There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy page contains a list of classes and a list of interfaces. Classes are organized by inheritance structure starting with java.lang.Object. Interfaces do not inherit from java.lang.Object.

    • When viewing the Overview page, clicking on "Tree" displays the hierarchy for all packages.
    • -
    • When viewing a particular package, class or interface page, clicking "Tree" displays the hierarchy for only that package.
    • +
    • When viewing a particular package, class or interface page, clicking on "Tree" displays the hierarchy for only that package.
    +
  • +

    Deprecated API

    The Deprecated API page lists all of the API that have been deprecated. A deprecated API is not recommended for use, generally due to improvements, and a replacement API is usually given. Deprecated APIs may be removed in future implementations.

    +
  • +

    Index

    -

    The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

    +

    The Index contains an alphabetic index of all classes, interfaces, constructors, methods, and fields, as well as lists of all packages and all classes.

    +
  • -

    Prev/Next

    -

    These links take you to the next or previous class, interface, package, or related page.

    -
  • -
  • -

    Frames/No Frames

    -

    These links show and hide the HTML frames. All pages are available with or without frames.

    -
  • -
  • -

    All Classes

    -

    The All Classes link shows all classes and interfaces except non-static nested types.

    +
    +

    All Classes

    +

    The All Classes link shows all classes and interfaces except non-static nested types.

    +
  • +

    Serialized Form

    Each serializable or externalizable class has a description of its serialization fields and methods. This information is of interest to re-implementors, not to developers using the API. While there is no link in the navigation bar, you can get to this information by going to any serialized class and clicking "Serialized Form" in the "See also" section of the class description.

    +
  • +

    Constant Field Values

    The Constant Field Values page lists the static final fields and their values.

    +
    +
  • +
  • +
    +

    Search

    +

    You can search for definitions of modules, packages, types, fields, methods and other terms defined in the API, using some or all of the name. "Camel-case" abbreviations are supported: for example, "InpStr" will find "InputStream" and "InputStreamReader".

    +
-This help file applies to API documentation generated using the standard doclet.
+
+This help file applies to API documentation generated by the standard doclet.
+
+ diff --git a/documentation/apidoc/index-all.html b/documentation/apidoc/index-all.html new file mode 100644 index 0000000..8772c3e --- /dev/null +++ b/documentation/apidoc/index-all.html @@ -0,0 +1,3709 @@ + + + + + +Index + + + + + + + + + + + + + + + +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages + + +

A

+
+
addBag(MIMLBag) - Method in class miml.data.MIMLInstances
+
+
Adds a Bag of Instances to the dataset.
+
+
addFeatures - Variable in class miml.classifiers.miml.lazy.MIMLIBLR
+
+
By default, IBLR-ML is used (addFeatures is false).
+
+
addInstance(MIMLBag, int) - Method in class miml.data.MIMLInstances
+
+
Adds a Bag of Instances to the dataset in a certain index.
+
+
algorithmName - Static variable in class miml.core.ConfigParameters
+
+
The algorithm used in the experimentation.
+
+
ArithmeticTransformation - Class in miml.transformation.mimlTOml
+
+
Class that performs an arithmetic transformation to convert a MIMLInstances + class to MultiLabelInstances.
+
+
ArithmeticTransformation() - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
ArithmeticTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
+
+
Constructor.
+
+
attributesPerBag - Variable in class miml.data.MWTranslator
+
+
Number of attributes per bag
+
+
attributesPerBag - Variable in class miml.data.statistics.MIStatistics
+
+
The number of attributes per bag.
+
+
AverageHausdorff - Class in miml.core.distance
+
+
Class that implements Average Hausdorff metric to measure the distance + between 2 bags of a data set.
+
+
AverageHausdorff() - Constructor for class miml.core.distance.AverageHausdorff
+
 
+
AverageHausdorff(MIMLInstances) - Constructor for class miml.core.distance.AverageHausdorff
+
 
+
averageIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the average of any IR vector.
+
+
averageIR(double[]) - Method in class miml.data.statistics.MLStatistics
+
+
Computes the average of any IR vector.
+
+
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the average labelSkew.
+
+
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
+
Computes the average labelSkew.
+
+
avgInstancesPerBag - Variable in class miml.data.statistics.MIStatistics
+
+
The average number of instances per bag.
+
+
+ + + +

B

+
+
base - Variable in class miml.data.statistics.MLStatistics
+
+
The lowest labelSet count.
+
+
baseClassifier - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
A Generic MultiLabel classifier.
+
+
baseLearner - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Base learner.
+
+
BaseMIMLReport - Class in miml.report
+
+
Class used to generate reports with the format specified.
+
+
BaseMIMLReport() - Constructor for class miml.report.BaseMIMLReport
+
+
No-argument constructor for xml configuration.
+
+
BaseMIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.BaseMIMLReport
+
+
Basic constructor to initialize the report.
+
+
BRT - Variable in class miml.transformation.mimlTOmi.BRTransformation
+
+
Binary Relevance Transformation.
+
+
BRTransformation - Class in miml.transformation.mimlTOmi
+
+
Class that uses Binary Relevance transformation to convert MIMLInstances to + MIL Instances with relational attribute.
+
+
BRTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOmi.BRTransformation
+
+
Constructor.
+
+
build(MIMLInstances) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
+
Builds the learner model from specified MIMLInstances data.
+
+
build(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
build(MultiLabelInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
+
Learner specific implementation of building the model from + MultiLabelInstances training data set.
+
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MWClassifier
+
 
+
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
+
 
+
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.ml.MLDGC
+
 
+
+ + + +

C

+
+
C - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
Parameter set for liblinear.
+
+
calculateBagReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate the references of a bag specified by its index.
+
+
calculateCoocurrence(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
+
+
This method calculates a matrix with the coocurrences of pairs of labels.
+
+
calculateCooncurrence(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
+
This method calculates a matrix with the coocurrences of pairs of labels.
+
+
calculateDatasetDistances() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate the distances matrix of current data set with the metric assigned.
+
+
calculatePhiChi2(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
+
Calculates Phi and Chi-square correlation matrix.
+
+
calculatePhiChi2(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
+
+
Calculates Phi and Chi-square correlation matrix.
+
+
calculateRecordLabel(Integer[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate the number of times each label appears in the bag's neighborhood.
+
+
calculateReferenceMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate the references matrix.
+
+
calculateStats() - Method in class miml.data.statistics.MIStatistics
+
+
Calculates various MIML statistics, such as instancesPerBag and + attributesPerBag.
+
+
calculateStats() - Method in class miml.data.statistics.MLStatistics
+
+
Calculates various ML statistics.
+
+
calculatingTheDesiredSplits(int[], double[], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns the desired number of examples per label in each fold and in the last + column the total desired number of examples in each fold.
+
+
calculatingTheFrequencies(Instances, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns the number of examples per label in each fold.
+
+
cardinality() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the Cardinality as the average number of labels per pattern.
+
+
cardinality() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the Cardinality as the average number of labels per pattern.
+
+
chi2 - Variable in class miml.data.statistics.MLStatistics
+
+
Chi square matrix values where 0 = complete independence.
+
+
classes - Variable in class miml.core.Params
+
+
List of classes needed by the Multi Label classifier's constructor.
+
+
classifier - Variable in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Mulan MultiLabelKNN classifier.
+
+
classifier - Variable in class miml.classifiers.miml.MWClassifier
+
+
It will store the trained classifier.
+
+
classifierName - Static variable in class miml.core.ConfigParameters
+
+
The classifier used in the experimentation.
+
+
computeWeightDensity(Instances, Instance, int) - Method in class miml.classifiers.ml.MLDGC
+
+
Given a neighborhood and an instance, computes neighborhood-weight and + neighborhood-density.
+
+
configFileName - Static variable in class miml.core.ConfigParameters
+
+
The configuration filename used in the experimentation.
+
+
ConfigLoader - Class in miml.core
+
+
Class used to read a xml file and configure an experiment.
+
+
ConfigLoader(String) - Constructor for class miml.core.ConfigLoader
+
+
Constructor that sets the configuration file
+
+
ConfigParameters - Class in miml.core
+
+
Class used to save configuration parameters to be used in reports.
+
+
ConfigParameters() - Constructor for class miml.core.ConfigParameters
+
 
+
configuration - Variable in class miml.core.ConfigLoader
+
+
Configuration object.
+
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLDGC
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLNN
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.KiSar
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
 
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
 
+
configure(Configuration) - Method in interface miml.core.IConfiguration
+
+
Method to configure the class with the given configuration.
+
+
configure(Configuration) - Method in class miml.evaluation.EvaluatorCV
+
 
+
configure(Configuration) - Method in class miml.evaluation.EvaluatorHoldout
+
 
+
configure(Configuration) - Method in class miml.report.BaseMIMLReport
+
 
+
coocurrenceMatrix - Variable in class miml.data.statistics.MLStatistics
+
+
Coocurrence matrix.
+
+
coocurrenceToCSV() - Method in class miml.data.statistics.MLStatistics
+
+
Returns coocurrenceMatrix in CSV representation.
+
+
coocurrenceToString() - Method in class miml.data.statistics.MLStatistics
+
+
Returns coocurrenceMatrix in textual representation.
+
+
cooncurrenceToCSV() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns cooCurrenceMatrix in CSV representation.
+
+
cooncurrenceToString() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns cooCurrenceMatrix in textual representation.
+
+
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns Phi correlations in CSV representation.
+
+
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MLStatistics
+
+
Returns Phi correlations in CSV representation.
+
+
correlationsToString(double[][]) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns Phi correlations in textual representation.
+
+
correlationsToString(double[][]) - Method in class miml.data.statistics.MLStatistics
+
+
Returns Phi correlations in textual representation.
+
+
cost - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
The cost parameter used for the base svm classifier.
+
+
CrossValidationBase - Class in miml.data.partitioning
+
+
General scheme for cross validation partitioners of multi-output data.
+
+
CrossValidationBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
+
+
Constructor.
+
+
CrossValidationBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
+
+
Default constructor.
+
+
CrossValidationExperiment - Class in miml.tutorial
+
+
Class implementing an example of using cross-validation with different kinds + of classifier.
+
+
CrossValidationExperiment() - Constructor for class miml.tutorial.CrossValidationExperiment
+
 
+
crossValidationToCSV(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
+
+
Read the cross-validation results and transform to CSV format.
+
+
crossValidationToString(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
+
+
Read the cross-validation results and transform to plain text.
+
+
+ + + +

D

+
+
D - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Dimension of the shared space.
+
+
d_size - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Dataset size (number of bags).
+
+
data - Variable in class miml.evaluation.EvaluatorCV
+
+
The data used in the experiment.
+
+
dataFileName - Static variable in class miml.core.ConfigParameters
+
+
The name of data file used in the experimentation.
+
+
dataset - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Instances.
+
+
dataset - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
MIML data.
+
+
dataset - Variable in class miml.transformation.mimlTOml.MIMLtoML
+
+
Original data set of MIMLInstances.
+
+
dataset - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Original data set of MIMLInstances.
+
+
dataSet - Variable in class miml.core.distance.HausdorffDistance
+
 
+
dataSet - Variable in class miml.data.statistics.MIMLStatistics
+
+
A MIML data set
+
+
dataSet - Variable in class miml.data.statistics.MIStatistics
+
+
Instances dataset
+
+
dataSet - Variable in class miml.transformation.mimlTOmi.BRTransformation
+
+
MIML dataSet.
+
+
debug(String) - Method in class miml.classifiers.miml.MIMLClassifier
+
+
Writes the debug message string to the console output if debug for the + learner is enabled.
+
+
densities - Variable in class miml.classifiers.ml.MLDGC
+
+
Densities
+
+
density() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the density as the cardinality/numLabels.
+
+
density() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the density as the cardinality/numLabels.
+
+
dfun - Variable in class miml.core.distance.HausdorffDistance
+
 
+
dispose() - Method in class miml.classifiers.miml.MWClassifier
+
+
Disposes native MW classifier.
+
+
dispose() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
 
+
dispose() - Method in class miml.classifiers.miml.neural.MIMLNN
+
 
+
dispose() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
 
+
dispose() - Method in class miml.classifiers.miml.optimization.KiSar
+
 
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
 
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
 
+
distance(MIMLBag, MIMLBag) - Method in class miml.core.distance.HausdorffDistance
+
 
+
distance(MIMLBag, MIMLBag) - Method in interface miml.core.distance.IDistance
+
+
Get the distance between two MIMLBag.
+
+
distance(Instance, Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
distance(Instance, Instance, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
distance(Instance, Instance, double, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
distance(Instance, Instance, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
distance(Instances, Instances) - Method in class miml.core.distance.AverageHausdorff
+
 
+
distance(Instances, Instances) - Method in interface miml.core.distance.IDistance
+
+
Get the distance between two bags in the form of a set of Instances.
+
+
distance(Instances, Instances) - Method in class miml.core.distance.MaximalHausdorff
+
 
+
distance(Instances, Instances) - Method in class miml.core.distance.MinimalHausdorff
+
 
+
distance_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Distance matrix between dataset's instances.
+
+
distributionBags - Variable in class miml.data.statistics.MIStatistics
+
+
The distribution of number of instances per bag.
+
+
distributionBagsToCSV() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns distributionBags in CSV representation.
+
+
distributionBagsToCSV() - Method in class miml.data.statistics.MIStatistics
+
+
Returns distributionBags in CSV representation.
+
+
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns labelSkew in CSV representation.
+
+
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
+
Returns labelSkew in CSV representation.
+
+
distributionBagsToString() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns distributionBags in textual representation.
+
+
distributionBagsToString() - Method in class miml.data.statistics.MIStatistics
+
+
Returns distributionBags in textual representation.
+
+
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns labelSkew in textual representation.
+
+
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
+
Returns labelSkew in textual representation.
+
+
distributionForInstance(Instance) - Method in class miml.classifiers.mi.MISMOWrapper
+
 
+
distributionLabelsPerExample - Variable in class miml.data.statistics.MLStatistics
+
+
The number of examples having 0, 1, 2,... , numLabel labels.
+
+
DMIMLkNN - Class in miml.classifiers.miml.lazy
+
+
DMIMLkNN is the adaptation to the MIML framework of the DMLkNN[1] multi-label + algorithm.
+
+
DMIMLkNN() - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
+
No-arg constructor for xml configuration
+
+
DMIMLkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
+
A constructor that sets the number of neighbours and the value of smooth.
+
+
DMIMLkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
+
A constructor that sets the number of neighbours.
+
+
DMIMLkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
+
Default constructor.
+
+
+ + + +

E

+
+
e - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Tolerance to compare float values.
+
+
elnn - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
To perform neighborhood search.
+
+
elnn - Variable in class miml.classifiers.ml.MLDGC
+
+
Searching of neighborhood
+
+
enmimlnn - Static variable in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
A matlab object wrapping the EnMIMLNNmetric algorithm.
+
+
EnMIMLNNmetric - Class in miml.classifiers.miml.neural
+
+
+ Class to execute the EnMIMLNNmetric + algorithm for MIML data.
+
+
EnMIMLNNmetric() - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
No-argument constructor for xml configuration.
+
+
EnMIMLNNmetric(double, double) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Basic constructor to initialize the classifier.
+
+
EnMIMLNNmetric(double, double, int) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Constructor to initialize the classifier.
+
+
ensemble - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
The ensemble of MultiLabelLearners.
+
+
epsilon - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
The epsilon parameter for the algorithm.
+
+
evaluation - Variable in class miml.evaluation.EvaluatorHoldout
+
+
The evaluation method used in holdout.
+
+
EvaluatorCV - Class in miml.evaluation
+
+
Class that allow evaluate an algorithm applying a cross-validation method + with random partitioning.
+
+
EvaluatorCV() - Constructor for class miml.evaluation.EvaluatorCV
+
+
No-argument constructor for xml configuration.
+
+
EvaluatorCV(MIMLInstances, int) - Constructor for class miml.evaluation.EvaluatorCV
+
+
Instantiates a new CV evaluator.
+
+
EvaluatorHoldout - Class in miml.evaluation
+
+
Class that allow evaluate an algorithm applying a holdout method.
+
+
EvaluatorHoldout() - Constructor for class miml.evaluation.EvaluatorHoldout
+
+
No-argument constructor for xml configuration.
+
+
EvaluatorHoldout(MIMLInstances, double) - Constructor for class miml.evaluation.EvaluatorHoldout
+
+
Instantiates a new holdout evaluator with random partitioning method.
+
+
EvaluatorHoldout(MIMLInstances, double, int, int) - Constructor for class miml.evaluation.EvaluatorHoldout
+
+
Instantiates a new Holdout evaluator with a partitioning method and a seed.
+
+
EvaluatorHoldout(MIMLInstances, MIMLInstances) - Constructor for class miml.evaluation.EvaluatorHoldout
+
+
Instantiates a new holdout evaluator with provided train and test partitions.
+
+
extension - Variable in class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
The type of extension to be used: + + NONE: Standard BR. + EXTA: Predict top ranked label in case of empty prediction set. + EXTB: Predict top n ranked labels based on size of labelset in + neighbours. +
+
+
extNeigh - Variable in class miml.classifiers.ml.MLDGC
+
+
Whether neighborhood is extended with all the neighbors with the same + distance.
+
+
+ + + +

F

+
+
featureIndices - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
An array containing the indexes of the feature attributes within the + Instances object of the training data in increasing order.
+
+
filename - Variable in class miml.report.MIMLReport
+
+
The name of the file where report is saved.
+
+
filterMeasures(List<Measure>) - Method in class miml.report.MIMLReport
+
+
Filter measures chosen to be shown in the experiment report.
+
+
findThePossibleSpit(double[][], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Takes fold statistics and the index of the desired label (desired in the + sense the label that we will apply the stratification sampling at this point) + and it decides which are the folds that this instance can be inserted.
+
+
foldsCreation(Instances, Random, double[], int, int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
 
+
foldsToRounds(MultiLabelInstances[]) - Static method in class miml.data.partitioning.CrossValidationBase
+
+
Returns the train and test sets for each fold.
+
+
+ + + +

G

+
+
GeneratePartitions - Class in miml.tutorial
+
+
Class to split a multi-output dataset into partitions for cross-validation or + train-test.
+
+
GeneratePartitions() - Constructor for class miml.tutorial.GeneratePartitions
+
 
+
GeometricTransformation - Class in miml.transformation.mimlTOml
+
+
Class that performs a geometric transformation to convert a MIMLInstances + class to MultiLabelInstances.
+
+
GeometricTransformation() - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
GeometricTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
+
+
Constructor
+
+
getAddFeatures() - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
+
Gets the value of addFeatures.
+
+
getAlgorithmName() - Static method in class miml.core.ConfigParameters
+
+
Gets the algorithm name.
+
+
getAttributeIndices() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getAvgTestTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the average time of all folds in test.
+
+
getAvgTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the average time of all folds in train.
+
+
getBag(int) - Method in class miml.data.MIMLInstances
+
+
Gets a MIMLBag (i.e. pattern) with a certain bagIndex.
+
+
getBagAsArray(int) - Method in class miml.data.MWTranslator
+
+
Returns a bag in the format of a nInstxnAttributes array of double.
+
+
getBagAsArray(MIMLBag) - Method in class miml.data.MWTranslator
+
+
Returns a MIMLBag in the format of a nInstxnAttributes MWNumericArray of + double.
+
+
getBagAsCell(int) - Method in class miml.data.MWTranslator
+
+
Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is + stored in CellArray{1,1} as an nInstxnAttributes array of double.
+
+
getBagAsCell(MIMLBag) - Method in class miml.data.MWTranslator
+
+
Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is + stored in CellArray{1,1} as an nInstxnAttributes array of double.
+
+
getBagAsInstances() - Method in class miml.data.MIMLBag
+
+
Gets a bag in the form of a set of instances considering just the relational + information.
+
+
getBagAsInstances(int) - Method in class miml.data.MIMLInstances
+
+
Gets a MIMLBag with a certain bagIndex in the form of a set of + Instances considering just the relational information.
+
+
getBagLabels(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Gets the labels of specified bag.
+
+
getBags() - Method in class miml.data.MWTranslator
+
+
Returns all the bags in the MIMLInstances dataset in the format of a nBagsx1 + MWCellArray in which the ith bag is stored in aCellArray{i,1}.
+
+
getC() - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Gets the value of the C property.
+
+
getChi2() - Method in class miml.data.statistics.MIMLStatistics
+
+
Gets the Chi2 correlation matrix.
+
+
getChi2() - Method in class miml.data.statistics.MLStatistics
+
+
Gets the Chi2 correlation matrix.
+
+
getCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate and return the citers of a bag specified by its index.
+
+
getClasses() - Method in class miml.core.Params
+
 
+
getClassifier() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
 
+
getClassifierName() - Static method in class miml.core.ConfigParameters
+
+
Gets the classifier name.
+
+
getConfigFileName() - Static method in class miml.core.ConfigParameters
+
+
Gets the configuration file name.
+
+
getConfiguration() - Method in class miml.core.ConfigLoader
+
+
Gets the experiment's configuration.
+
+
getCost() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the cost property.
+
+
getD() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the D property.
+
+
getData() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the data used in the experiment.
+
+
getData() - Method in class miml.evaluation.EvaluatorHoldout
+
+
Gets the data used in the experiment.
+
+
getDataFileName() - Static method in class miml.core.ConfigParameters
+
+
Gets the name of data file.
+
+
getDataSet() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the dataset used to calculate the statistics.
+
+
getDebug() - Method in class miml.classifiers.miml.MIMLClassifier
+
+
Get whether debugging is turned on.
+
+
getEpsilon() - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Gets the value of the epsilon property.
+
+
getEvaluation() - Method in class miml.evaluation.EvaluatorCV
+
 
+
getEvaluation() - Method in class miml.evaluation.EvaluatorHoldout
+
 
+
getEvaluation() - Method in interface miml.evaluation.IEvaluator
+
+
Gets the evaluation generated by the experiment.
+
+
getExtension() - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
Gets the type of extension to be used (see BRkNN.ExtensionType).
+
+
getFilename() - Method in class miml.report.MIMLReport
+
+
Gets the filename.
+
+
getFolds(int) - Method in class miml.data.partitioning.CrossValidationBase
+
+
Splits a dataset into nfolds partitions.
+
+
getFolds(int) - Method in class miml.data.partitioning.iterative.IterativeCrossValidation
+
 
+
getFolds(int) - Method in class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
 
+
getFolds(int) - Method in class miml.data.partitioning.random.RandomCrossValidation
+
 
+
getH() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the h property.
+
+
getInstance(int) - Method in class miml.data.MIMLBag
+
+
Returns an instance of the Bag with index bagIndex.
+
+
getInstance(int, int) - Method in class miml.data.MIMLInstances
+
+
Gets an instance of a bag.
+
+
getInstances() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getInvertSelection() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getIsTransformation() - Static method in class miml.core.ConfigParameters
+
+
Gets if the method used is transformation.
+
+
getIteration() - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Gets the value of the iteration property.
+
+
getK() - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Gets the value of the K property.
+
+
getLabels() - Method in class miml.data.MWTranslator
+
+
Returns label associations of all bags in the MIMLInstances dataset in the + format of a nLabelsxnBags MWNumericArray of double.
+
+
getLabels(int) - Method in class miml.data.MWTranslator
+
+
Returns label associations of a MIMLbag in the format of a nLabelsx1 + MWNumericArray of double.
+
+
getLabels(MIMLBag) - Method in class miml.data.MWTranslator
+
+
Returns label associations of a MIMLbag in the format of a nLabelsx1 + MWNumericArray of double.
+
+
getLambda() - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Returns the regularization parameter used to compute matrix inverse.
+
+
getLambda() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the lambda property.
+
+
getLPT() - Method in class miml.transformation.mimlTOmi.LPTransformation
+
+
Returns the format of the transformed instances.
+
+
getMax() - Method in class miml.data.normalization.MinMaxNormalization
+
+
Retuns an array with the maximum values for all bag attributes in the + dataset.
+
+
getMaxiter() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the maxiter property.
+
+
getMeasures() - Method in class miml.report.MIMLReport
+
+
Gets the measures shown in the report.
+
+
getMetric() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getMetric() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Gets the distance metric considered by the classifier.
+
+
getMin() - Method in class miml.data.normalization.MinMaxNormalization
+
+
Retuns an array with the minimum values for all bag attributes in the + dataset.
+
+
getMLDataSet() - Method in class miml.data.MIMLInstances
+
+
Returns the dataset as MultiLabelInstances.
+
+
getMu() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Returns the scaling factor parameter considered to build the classifier.
+
+
getMu() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Returns the scaling factor parameter considered to build the classifier.
+
+
getMu() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the mu property.
+
+
getnFeatures() - Method in class miml.data.normalization.MinMaxNormalization
+
+
Retuns the number of bag attributes in the dataset.
+
+
getNorm_up() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the norm_up property.
+
+
getNum_sub() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the num_sub property.
+
+
getNumAttributes() - Method in class miml.data.MIMLInstances
+
+
Gets the number of attributes of the dataset considering label attributes and + the relational attribute with bags as a single attribute.
+
+
getNumAttributesInABag() - Method in class miml.data.MIMLBag
+
+
Gets the number of attributes of in the relational attribute of a Bag.
+
+
getNumAttributesInABag() - Method in class miml.data.MIMLInstances
+
+
Gets the number of attributes per bag.
+
+
getNumAttributesWithRelational() - Method in class miml.data.MIMLBag
+
+
Gets the total number of attributes of the Bag.
+
+
getNumAttributesWithRelational() - Method in class miml.data.MIMLInstances
+
+
Gets the total number of attributes of the dataset.
+
+
getNumBags() - Method in class miml.data.MIMLInstances
+
+
Gets the number of bags of the dataset.
+
+
getNumCiters() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Returns the number of citers considered to estimate the class prediction of + tests bags.
+
+
getNumClassifiers() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Returns the number of classifiers of the ensemble.
+
+
getNumFolds() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the number of folds used in the experiment.
+
+
getNumInstances() - Method in class miml.data.MIMLBag
+
+
Gets the number of instances of the Bag.
+
+
getNumInstances(int) - Method in class miml.data.MIMLInstances
+
+
Gets the number of instances of a bag.
+
+
getNumOfNeighbours() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Gets the number of neigbors considered by the classifier.
+
+
getNumReferences() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Returns the number of references considered to estimate the class prediction + of tests bags.
+
+
getObjects() - Method in class miml.core.Params
+
 
+
getOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getOpts_average_begin() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the opts_average_begin property.
+
+
getOpts_average_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the opts_average_size property.
+
+
getOpts_beta() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the opts_beta property.
+
+
getOpts_C() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the opts_C property.
+
+
getOpts_epsilon() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the opts_epsilon property.
+
+
getOpts_iteration() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the opts_iteration property.
+
+
getOpts_m() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the opts_m property.
+
+
getOpts_norm() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the opts_norm property.
+
+
getPara() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the para property.
+
+
getPhi() - Method in class miml.data.statistics.MIMLStatistics
+
+
Gets the Phi correlation matrix.
+
+
getPhi() - Method in class miml.data.statistics.MLStatistics
+
+
Gets the Phi correlation matrix.
+
+
getPhiHistogram() - Method in class miml.data.statistics.MIMLStatistics
+
+
Calculates a histogram of Phi correlations.
+
+
getPhiHistogram() - Method in class miml.data.statistics.MLStatistics
+
+
Calculates a histogram of Phi correlations.
+
+
getRange() - Method in class miml.data.normalization.MinMaxNormalization
+
+
Retuns an array with the range values (i.e. max-min) for all bag attributes + in the dataset.
+
+
getRatio() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Returns the fraction parameter considered to build the classifier.
+
+
getRatio() - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Returns the fraction parameter considered to determine the number of clusters + to build the classifier.
+
+
getRatio() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Returns the fraction parameter considered to build the classifier.
+
+
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the ratio property.
+
+
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Gets the value of the ratio property.
+
+
getReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Gets the references of a specified bag.
+
+
getRelationMethod() - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Gets the value of the relationMethod property.
+
+
getRevision() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
getRounds(int) - Method in class miml.data.partitioning.CrossValidationBase
+
+
Returns the train and test sets for each fold.
+
+
getSamplePercentage() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Returns the percentage of instances used for sampling with replacement.
+
+
getSeed() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Returns the seed for kmedoids clustering considered to build the classifier.
+
+
getSeed() - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Returns the seed for kmedoids clustering considered to build the classifier.
+
+
getSeed() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Returns the seed for kmedoids clustering considered to build the classifier.
+
+
getSeed() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the seed property.
+
+
getSeed() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the seed used in the experiment.
+
+
getSmooth() - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
+
Gets the smooth factor considered by the classifier.
+
+
getSmooth() - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
Gets the smooth factor considered by the classifier.
+
+
getStdTestTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the standard deviation time of all folds in test.
+
+
getStdTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the standard deviation time of all folds in train.
+
+
getStep_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Gets the value of the step_size property.
+
+
getTechnicalInformation() - Method in class miml.classifiers.ml.MLDGC
+
 
+
getTestTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the time spent in testing in each fold.
+
+
getTestTime() - Method in class miml.evaluation.EvaluatorHoldout
+
+
Gets the time spent in testing.
+
+
getThreshold() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Returns the value of the threshold.
+
+
getTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
+
Gets the time spent in training in each fold.
+
+
getTrainTime() - Method in class miml.evaluation.EvaluatorHoldout
+
+
Gets the time spent in training.
+
+
getTransformationMethod() - Static method in class miml.core.ConfigParameters
+
+
Gets the transformation method used in the experiment.
+
+
getTrueLabels(Instance, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns the relevant labels of one instance.
+
+
getType() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gets the value of the type property.
+
+
getUnionNeighbours(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Gets the union of references and citers (without repetitions) of the bag + specified.
+
+
getWeightsMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Calculate the weights matrix used for prediction.
+
+
globalInfo() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
+ + + +

H

+
+
h - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Whether to use the shrinking heuristics, 0 or 1 (default 1).
+
+
hasInstances() - Method in class miml.core.distance.HausdorffDistance
+
 
+
HausdorffDistance - Class in miml.core.distance
+
 
+
HausdorffDistance() - Constructor for class miml.core.distance.HausdorffDistance
+
 
+
HausdorffDistance(MIMLInstances) - Constructor for class miml.core.distance.HausdorffDistance
+
 
+
header - Variable in class miml.report.MIMLReport
+
+
If the header is going to be printed.
+
+
HoldoutExperiment - Class in miml.tutorial
+
+
Class implementing an example of using holdout with train/test dataset and a + single dataset applying percentage split.
+
+
HoldoutExperiment() - Constructor for class miml.tutorial.HoldoutExperiment
+
 
+
holdoutToCSV(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
+
+
Read the holdout results and transform to CSV format.
+
+
holdoutToString(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
+
+
Read the holdout results and transform to plain text.
+
+
+ + + +

I

+
+
IConfiguration - Interface in miml.core
+
+
Interface used to indicate that a class can be configured.
+
+
IDistance - Interface in miml.core.distance
+
+
Interface to implement the metrics used to measure the distance between + MIMLBag of a data sets.
+
+
IEvaluator<T> - Interface in miml.evaluation
+
+
Interface for run and evaluate a experiment.
+
+
IMIMLClassifier - Interface in miml.classifiers.miml
+
+
Common interface for MIML classifiers.
+
+
includeBagId - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Whether bag attribute will be included in the transformed data
+
+
indexes - Variable in class miml.data.partitioning.random.RandomCrossValidation
+
+
A matrix of nFoldsx2 representing the index of the first and last instance of + each partition
+
+
ini - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Type of initialization: Crisp, fuzzy
+
+
innerClassIR() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the innerClassIR for each label as + negativePatterns/positivePatterns.
+
+
innerClassIR() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the innerClassIR for each label as + negativePatterns/positivePatterns.
+
+
insertAttributesToBags(ArrayList<Attribute>) - Method in class miml.data.MIMLInstances
+
+
Adds a set of attributes to the relational attribute with values '?'
+
+
insertAttributeToBags(Attribute) - Method in class miml.data.MIMLInstances
+
+
Adds an attribute to the relational attribute with value '?'
+
+
InsertingAttributesToBags - Class in miml.tutorial
+
+
Class implementing an example of inserting a new group of attributes to the + relational attribute of the dataset with {0,1} values.
+
+
InsertingAttributesToBags() - Constructor for class miml.tutorial.InsertingAttributesToBags
+
 
+
InsertingAttributeToBag - Class in miml.tutorial
+
+
Class implementing an example of inserting a new attribute to the relational + attribute of the dataset with {0,1} values.
+
+
InsertingAttributeToBag() - Constructor for class miml.tutorial.InsertingAttributeToBag
+
 
+
interClassIR() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the interClassIR for each label + positiveExamplesOfMajorityLabel/positivePatternsLabel.
+
+
interClassIR() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the interClassIR for each label + positiveExamplesOfMajorityLabel/positivePatternsLabel.
+
+
IReport - Interface in miml.report
+
+
Interface for generate reports with the format specified.
+
+
isDebug - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
Whether debugging is on/off.
+
+
isExtNeigh() - Method in class miml.classifiers.ml.MLDGC
+
+
Gets the value of the property isExtNeigh.
+
+
isHeader() - Method in class miml.report.MIMLReport
+
+
Checks if header is shown.
+
+
isIncludeBagId() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Returns the value of includeBagId property.
+
+
isLabels() - Method in class miml.report.MIMLReport
+
+
Checks if measure for each label (macro-averaged measures) is shown.
+
+
isModelInitialized - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
Boolean that indicate if the model has been initialized.
+
+
isModelInitialized() - Method in class miml.classifiers.miml.MIMLClassifier
+
+
Gets whether learner's model is initialized by + MIMLClassifier.build(MultiLabelInstances).
+
+
isNormalized() - Method in class miml.data.normalization.MinMaxNormalization
+
+
Returns true if the dataset does not need normalization.
+
+
isSampleWithReplacement() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Returns true if the algorithm is configured with sampling and false + otherwise.
+
+
isStd() - Method in class miml.report.MIMLReport
+
+
Checks if std is going to be shown (only cross-validation).
+
+
isTransformation - Static variable in class miml.core.ConfigParameters
+
+
If the classifier configured in the experiment uses a method transformation.
+
+
isUpdatable() - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
isUseConfidences() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Returns whether the classifier uses confidences of bipartitions to combine + classifiers in the ensemble.
+
+
iteration - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
Maximum number of optimization iterations.
+
+
IterativeCrossValidation - Class in miml.data.partitioning.iterative
+
+
Class to carry out an stratified cross validation partition of multi-label + dataset.
+
+
IterativeCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
+
+
Constructor.
+
+
IterativeCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
+
+
Default constructor.
+
+
IterativeTrainTest - Class in miml.data.partitioning.iterative
+
+
Class to carry out an stratified iterativeTrainTest partition of multi-label + dataset.
+
+
IterativeTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Constructor.
+
+
IterativeTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Default constructor.
+
+
+ + + +

K

+
+
k - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Neighborhood size.
+
+
K - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
Maximum number of prototypes for k_means clustering.
+
+
kini - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Neighborhood size for initialization of U matrix.
+
+
kisar - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
A Matlab object wrapping the KiSar algorithm.
+
+
KiSar - Class in miml.classifiers.miml.optimization
+
+
Wrapper for Matlab + KiSar algorithm for + MIML data.
+ For more information see: Y.
+
+
KiSar() - Constructor for class miml.classifiers.miml.optimization.KiSar
+
+
No-argument constructor for xml configuration.
+
+
KiSar(double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.KiSar
+
+
Constuctor initializing fields of KiSar.
+
+
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
+
 
+
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.ml.MLDGC.LinearNNESearch
+
 
+
+ + + +

L

+
+
labelCombCount() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the HashMap containing the distinct labelsets and their frequencies.
+
+
labelCombCount() - Method in class miml.data.statistics.MLStatistics
+
+
Returns the HashMap containing the distinct labelsets and their frequencies.
+
+
labelCombinations - Variable in class miml.data.statistics.MLStatistics
+
+
LabelSets in the dataset.
+
+
labelDistance(Instance, Instance) - Method in class miml.classifiers.ml.MLDGC
+
+
Computes the label distance between two instances.
+
+
labelIndices - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
An array containing the indexes of the label attributes within the + Instances object of the training data in increasing order.
+
+
labelIndices - Variable in class miml.data.MWTranslator
+
+
Array with the attribute indices corresponding to the labels
+
+
labelNames - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
An array containing the names of the label attributes within the + Instances object of the training data in increasing order.
+
+
LabelPowersetCrossValidation - Class in miml.data.partitioning.powerset
+
+
Class to split a multi-label dataset into N multi-label for cross-validation + by applying a labelPowerset-based partition.
+
+
LabelPowersetCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
+
Constructor.
+
+
LabelPowersetCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
+
Default constructor.
+
+
LabelPowersetTrainTest - Class in miml.data.partitioning.powerset
+
+
Class to split a multi-label dataset into two multi-label datasets + corresponding to the train and test datasets respectively by applying a + labelPowerset-based partition.
+
+
LabelPowersetTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
+
Constructor.
+
+
LabelPowersetTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
+
Default constructor.
+
+
labels - Variable in class miml.report.MIMLReport
+
+
If macro measures are broken down by labels.
+
+
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the frequency of a label set in the dataset.
+
+
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MLStatistics
+
+
Returns the frequency of a label set in the dataset.
+
+
labelSets() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns a set with the distinct label sets of the dataset.
+
+
labelSets() - Method in class miml.data.statistics.MLStatistics
+
+
Returns a set with the distinct label sets of the dataset.
+
+
labelSkew() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns + of the labelSet).
+
+
labelSkew() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns + of the labelSet).
+
+
lambda - Variable in class miml.classifiers.miml.neural.MIMLNN
+
+
The regularization parameter used to compute matrix inverse, default=1.
+
+
lambda - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Lambda.
+
+
linearClassifier(double[], double[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Classifier that determines the labels associated with an example.
+
+
LinearNNESearch(Instances) - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
+
 
+
LinearNNESearch(Instances) - Constructor for class miml.classifiers.ml.MLDGC.LinearNNESearch
+
 
+
listOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
loadClassifier() - Method in class miml.core.ConfigLoader
+
+
Read current configuration to load and configure the classifier.
+
+
loadEvaluator() - Method in class miml.core.ConfigLoader
+
+
Read current configuration to load and configure the evaluator.
+
+
loadReport() - Method in class miml.core.ConfigLoader
+
+
Read current configuration to load and configure the report.
+
+
LPT - Variable in class miml.transformation.mimlTOmi.LPTransformation
+
+
LabelPowerSetTransformation.
+
+
LPTransformation - Class in miml.transformation.mimlTOmi
+
+
Class that uses LabelPowerset transformation to convert MIMLInstances to MIL + Instances with relational attribute.
+
+
LPTransformation() - Constructor for class miml.transformation.mimlTOmi.LPTransformation
+
+
Constructor.
+
+
+ + + +

M

+
+
m - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Fuzzy exponent.
+
+
main(String[]) - Static method in class miml.run.RunAlgorithm
+
+
The main method to configure and run an algorithm.
+
+
main(String[]) - Static method in class miml.tutorial.CrossValidationExperiment
+
 
+
main(String[]) - Static method in class miml.tutorial.GeneratePartitions
+
+
Main method.
+
+
main(String[]) - Static method in class miml.tutorial.HoldoutExperiment
+
 
+
main(String[]) - Static method in class miml.tutorial.InsertingAttributesToBags
+
 
+
main(String[]) - Static method in class miml.tutorial.InsertingAttributeToBag
+
 
+
main(String[]) - Static method in class miml.tutorial.ManagingMIMLInstances
+
 
+
main(String[]) - Static method in class miml.tutorial.MIMLtoMITransformation
+
 
+
main(String[]) - Static method in class miml.tutorial.MIMLtoMLTransformation
+
 
+
main(String[]) - Static method in class miml.tutorial.NormalizingDataset
+
 
+
main(String[]) - Static method in class miml.tutorial.Resampling
+
 
+
makeCopy() - Method in interface miml.classifiers.miml.IMIMLClassifier
+
 
+
makeCopy() - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
makePrediction(Instance) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
 
+
makePrediction(Instance) - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MIMLClassifier
+
+
Learner specific implementation for predicting on specified data based on + trained model.
+
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MWClassifier
+
 
+
makePredictionInternal(Instance) - Method in class miml.classifiers.ml.MLDGC
+
 
+
ManagingMIMLInstances - Class in miml.tutorial
+
+
Class implementing basic handling of MIML datasets.
+
+
ManagingMIMLInstances() - Constructor for class miml.tutorial.ManagingMIMLInstances
+
 
+
Max - Variable in class miml.data.normalization.MinMaxNormalization
+
+
Max, Min and Range values for features.
+
+
maxCount - Variable in class miml.data.statistics.MLStatistics
+
+
Number of labelSets with the peak value.
+
+
MaximalHausdorff - Class in miml.core.distance
+
+
Class that implements Maximal Hausdorff metric to measure the distance + between 2 bags of a data set.
+
+
MaximalHausdorff() - Constructor for class miml.core.distance.MaximalHausdorff
+
 
+
MaximalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MaximalHausdorff
+
 
+
maxInstancesPerBag - Variable in class miml.data.statistics.MIStatistics
+
+
The maximum number of instances per bag.
+
+
maxiter - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Number of iterations.
+
+
meanArray(long[]) - Method in class miml.evaluation.EvaluatorCV
+
+
Calculate the mean of given array.
+
+
measures - Variable in class miml.report.MIMLReport
+
+
The measures shown in the report.
+
+
metric - Variable in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
+
Metric to measure distance between bags.
+
+
metric - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Metric for measure the distance between bags.
+
+
metric - Variable in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Metric for measure the distance between bags.
+
+
milstatistics - Variable in class miml.data.statistics.MIMLStatistics
+
+
Class with methods to obtain information about a MI dataset.
+
+
miml.classifiers.mi - package miml.classifiers.mi
+
 
+
miml.classifiers.miml - package miml.classifiers.miml
+
 
+
miml.classifiers.miml.lazy - package miml.classifiers.miml.lazy
+
 
+
miml.classifiers.miml.meta - package miml.classifiers.miml.meta
+
 
+
miml.classifiers.miml.mimlTOmi - package miml.classifiers.miml.mimlTOmi
+
 
+
miml.classifiers.miml.mimlTOml - package miml.classifiers.miml.mimlTOml
+
 
+
miml.classifiers.miml.neural - package miml.classifiers.miml.neural
+
 
+
miml.classifiers.miml.optimization - package miml.classifiers.miml.optimization
+
 
+
miml.classifiers.ml - package miml.classifiers.ml
+
 
+
miml.core - package miml.core
+
 
+
miml.core.distance - package miml.core.distance
+
 
+
miml.data - package miml.data
+
 
+
miml.data.normalization - package miml.data.normalization
+
 
+
miml.data.partitioning - package miml.data.partitioning
+
 
+
miml.data.partitioning.iterative - package miml.data.partitioning.iterative
+
 
+
miml.data.partitioning.powerset - package miml.data.partitioning.powerset
+
 
+
miml.data.partitioning.random - package miml.data.partitioning.random
+
 
+
miml.data.statistics - package miml.data.statistics
+
 
+
miml.evaluation - package miml.evaluation
+
 
+
miml.report - package miml.report
+
 
+
miml.run - package miml.run
+
 
+
miml.transformation.mimlTOmi - package miml.transformation.mimlTOmi
+
 
+
miml.transformation.mimlTOml - package miml.transformation.mimlTOml
+
 
+
miml.tutorial - package miml.tutorial
+
 
+
MIMLBag - Class in miml.data
+
+
Class inheriting from DenseInstance to represent a MIML bag.
+
+
MIMLBag(Instance) - Constructor for class miml.data.MIMLBag
+
+
Constructor.
+
+
MIMLBagging - Class in miml.classifiers.miml.meta
+
+
MIMLBagging is the adaptation of the traditional bagging strategy of the + machine learning [1] that does not need any previous transformation of the + problem.
+
+
MIMLBagging() - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
+
No-argument constructor for xml configuration.
+
+
MIMLBagging(IMIMLClassifier, int) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
+
Constructor of the class.
+
+
MIMLBagging(IMIMLClassifier, int, double) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
+
Constructor of the class.
+
+
MIMLBinaryRelevance - Class in miml.classifiers.miml.mimlTOmi
+
+
Wrapper for mulan BinaryRelevance to be used in MIML to MI algorithms.
+
+
MIMLBinaryRelevance(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance
+
+
Creates a new instance.
+
+
MIMLBRkNN - Class in miml.classifiers.miml.lazy
+
+
MIMLBRkNN is the adaptation to the MIML framework of the BRkNN[1] multi-label + algorithm.
+
+
MIMLBRkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
No-arg constructor for xml configuration
+
+
MIMLBRkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
Default constructor.
+
+
MIMLBRkNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
A constructor that sets the number of neighbours.
+
+
MIMLBRkNN(MIMLDistanceFunction, int, BRkNN.ExtensionType) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
Constructor giving the option to select an extension of the base version.
+
+
MIMLClassifier - Class in miml.classifiers.miml
+
+
This java class is based on the mulan.data.Statistics.java class provided in + the Mulan java framework for multi-label learning Tsoumakas, G., Katakis, + I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining and Knowledge + Discovery Handbook, O.
+
+
MIMLClassifier() - Constructor for class miml.classifiers.miml.MIMLClassifier
+
 
+
MIMLClassifierToMI - Class in miml.classifiers.miml.mimlTOmi
+
+
+ Class implementing the transformation algorithm for MIML data to solve it + with MI learning.
+
+
MIMLClassifierToMI() - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
+
No-argument constructor for xml configuration.
+
+
MIMLClassifierToMI(MultiLabelLearner) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
+
Basic constructor.
+
+
MIMLClassifierToML - Class in miml.classifiers.miml.mimlTOml
+
+
+ Class implementing the transformation algorithm for MIML data to solve it + with ML learning.
+
+
MIMLClassifierToML() - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
No-argument constructor for xml configuration.
+
+
MIMLClassifierToML(MultiLabelLearner, MIMLtoML) - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
Basic constructor to initialize the classifier.
+
+
mimlDataset - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
The miml dataset.
+
+
mimlDataSet - Variable in class miml.data.MWTranslator
+
+
A MIML dataset.
+
+
MIMLDGC - Class in miml.classifiers.miml.lazy
+
+
MIMLDGC is the adaptation to the MIML framework of the MLDGC[1] multi-label + algorithm.
+
+
MIMLDGC() - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
+
No-arg constructor for xml configuration
+
+
MIMLDGC(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
+
Default constructor.
+
+
MIMLDGC(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
+
A constructor that sets the number of neighbours.
+
+
MIMLDistanceFunction - Class in miml.classifiers.miml.lazy
+
+
Wrapper for using IDistance metrics of MIML package with Mulan Lazy + algorithms.
+
+
MIMLDistanceFunction(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
+
Constructor that sets the metric to be used.
+
+
mimlfast - Static variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
A matlab object wrapping the MIMLFast algorithm.
+
+
MIMLFast - Class in miml.classifiers.miml.optimization
+
+
Wrapper for Matlab + MIMLFast + algorithm for MIML data.
+ See: S.
+
+
MIMLFast() - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
+
No-argument constructor for xml configuration.
+
+
MIMLFast(int, int, int, double, double, int, int, int, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
+
Constructor setting several properties.
+
+
MIMLFast(int, int, int, double, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
+
Constructor setting several properties.
+
+
MIMLFuzzykNN - Class in miml.classifiers.miml.lazy
+
 
+
MIMLFuzzykNN() - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
 
+
MIMLFuzzykNN.LinearNNESearch - Class in miml.classifiers.miml.lazy
+
 
+
MIMLIBLR - Class in miml.classifiers.miml.lazy
+
+
MIMLIBLR is the adaptation to the MIML framework of the IBLR_ML[1] + multi-label algorithm.
+
+
MIMLIBLR() - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
+
No-arg constructor for xml configuration
+
+
MIMLIBLR(int, boolean, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
+
A constructor that sets the number of neighbours and whether IBLR-ML or + IBLR-ML+ is used.
+
+
MIMLIBLR(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
+
A constructor that sets the number of neighbours.
+
+
MIMLIBLR(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
+
Default constructor.
+
+
MIMLInstances - Class in miml.data
+
+
Class inheriting from MultiLabelnstances to represent MIML data.
+
+
MIMLInstances(String, int) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLInstances(String, String) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLInstances(MIMLInstances) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLInstances(Instances, String) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLInstances(Instances, LabelsMetaData) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLkNN - Class in miml.classifiers.miml.lazy
+
+
Class implementing the MIMLkNN algorithm for MIML data.
+
+
MIMLkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
+
No-argument constructor for xml configuration.
+
+
MIMLkNN(int, int, IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
+
Basic constructor to initialize the classifier.
+
+
MIMLkNN(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
+
Instantiates a new MIMLkNN with values by default except distance metric.
+
+
MIMLLabelPowerset - Class in miml.classifiers.miml.mimlTOmi
+
+
Wrapper for mulan LabelPowerset to be used in MIML to MI algorithms.
+
+
MIMLLabelPowerset(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
+
+
Constructor that initializes the learner with a base classifier.
+
+
MIMLLabelPowersetTransformation - Class in miml.transformation.mimlTOmi
+
+
Class that uses LabelPowerset transformation to convert MIMLInstances to MIL + Instances with relational attribute.
+
+
MIMLLabelPowersetTransformation() - Constructor for class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
+
 
+
MIMLMAPkNN - Class in miml.classifiers.miml.lazy
+
+
MIMLMAPkNN is the adaptation to the MIML framework of the MLkNN[1] + multi-label algorithm.
+
+
MIMLMAPkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
No-arg constructor for xml configuration
+
+
MIMLMAPkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
A constructor that sets the number of neighbours and the value of smooth.
+
+
MIMLMAPkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
A constructor that sets the number of neighbours.
+
+
MIMLMAPkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
Default constructor.
+
+
mimlnn - Static variable in class miml.classifiers.miml.neural.MIMLNN
+
+
A matlab object wrapping the EnMIMLNNmetric algorithm.
+
+
MIMLNN - Class in miml.classifiers.miml.neural
+
+
+ Class to execute the + MIMLNNalgorithm for + MIML data.
+
+
MIMLNN() - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
+
No-argument constructor for xml configuration.
+
+
MIMLNN(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
+
Basic constructor to initialize the classifier.
+
+
MIMLNN(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
+
Constructor to initialize the classifier.
+
+
mimlrbf - Static variable in class miml.classifiers.miml.neural.MIMLRBF
+
+
A matlab object wrapping the mimlrbf algorithm.
+
+
MIMLRBF - Class in miml.classifiers.miml.neural
+
+
+ Class to execute the + MIMLRBF algorithm + for MIML data.
+
+
MIMLRBF() - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
+
No-argument constructor for xml configuration.
+
+
MIMLRBF(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
+
Basic constructor to initialize the classifier.
+
+
MIMLRBF(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
+
Constructor to initialize the classifier.
+
+
MIMLReport - Class in miml.report
+
+
Abstract class for a MIMLReport.
+
+
MIMLReport() - Constructor for class miml.report.MIMLReport
+
+
No-argument constructor for xml configuration.
+
+
MIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.MIMLReport
+
+
Basic constructor to initialize the report.
+
+
MIMLStatistics - Class in miml.data.statistics
+
+
Class with methods to obtain information about a MIML dataset.
+
+
MIMLStatistics(MIMLInstances) - Constructor for class miml.data.statistics.MIMLStatistics
+
+
Constructor.
+
+
mimlsvm - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
A matlab object wrapping the MIMLSVM algorithm.
+
+
MIMLSVM - Class in miml.classifiers.miml.optimization
+
+
Wrapper for Matlab + MIMLSVM algorithm + for MIML data.
+ See: Z.
+
+
MIMLSVM() - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
+
+
No-argument constructor for xml configuration.
+
+
MIMLSVM(String, String, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
+
+
Constructor initializing fields of MIMLSVM.
+
+
MIMLtoMITransformation - Class in miml.tutorial
+
+
Class for basic handling of MIML to MIL LP and BR transformation.
+
+
MIMLtoMITransformation() - Constructor for class miml.tutorial.MIMLtoMITransformation
+
 
+
MIMLtoML - Class in miml.transformation.mimlTOml
+
+
Abstract class to transform MIMLInstances into MultiLabelInstances.
+
+
MIMLtoML() - Constructor for class miml.transformation.mimlTOml.MIMLtoML
+
 
+
MIMLtoMLTransformation - Class in miml.tutorial
+
+
Class for basic handling of the transformation MIML to ML transformations.
+
+
MIMLtoMLTransformation() - Constructor for class miml.tutorial.MIMLtoMLTransformation
+
 
+
mimlwel - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
A matlab object wrapping the MIMLWel algorithm.
+
+
MIMLWel - Class in miml.classifiers.miml.optimization
+
+
Wrapper for Matlab + MIMLFast + algorithm for MIML data.
+ See: S.
+
+
MIMLWel() - Constructor for class miml.classifiers.miml.optimization.MIMLWel
+
+
No-argument constructor for xml configuration.
+
+
MIMLWel(double, double, double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLWel
+
+
Constructor initializing fields of MIMLWel.
+
+
Min - Variable in class miml.data.normalization.MinMaxNormalization
+
 
+
MinimalHausdorff - Class in miml.core.distance
+
+
Class that implements Minimal Hausdorff metric to measure the distance + between 2 bags of a data set.
+
+
MinimalHausdorff() - Constructor for class miml.core.distance.MinimalHausdorff
+
 
+
MinimalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MinimalHausdorff
+
 
+
minimax(Instances, int) - Static method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Get the minimal and maximal value of a certain attribute in a data set.
+
+
minInstancesPerBag - Variable in class miml.data.statistics.MIStatistics
+
+
The minimum number of instances per bag.
+
+
MinMaxNormalization - Class in miml.data.normalization
+
+
Class implementing min-max normalization for MIML datasets.
+
+
MinMaxNormalization() - Constructor for class miml.data.normalization.MinMaxNormalization
+
 
+
MinMaxTransformation - Class in miml.transformation.mimlTOml
+
+
Class that performs a miniMaxc transformation to convert a MIMLInstances + class to MultiLabelInstances.
+
+
MinMaxTransformation() - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
MinMaxTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
+
+
Constructor.
+
+
MISMOWrapper - Class in miml.classifiers.mi
+
+
Wrapper for MISMO algorithm to work in MIML to MI classifiers.
+
+
MISMOWrapper() - Constructor for class miml.classifiers.mi.MISMOWrapper
+
 
+
MIStatistics - Class in miml.data.statistics
+
+
Class with methods to obtain information about a MI dataset such as the + number of attributes per bag, the average number of instances per bag, and + the distribution of number of instances per bag...
+
+
MIStatistics(Instances) - Constructor for class miml.data.statistics.MIStatistics
+
 
+
mlDataSet - Variable in class miml.data.statistics.MLStatistics
+
+
Multi label dataset
+
+
mlDataSetWithBagId - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
MLDGC - Class in miml.classifiers.ml
+
+
Implementation of MLDGC (Multi-Label Data Gravitation Model) algorithm.
+
+
MLDGC() - Constructor for class miml.classifiers.ml.MLDGC
+
+
The default constructor.
+
+
MLDGC(int) - Constructor for class miml.classifiers.ml.MLDGC
+
+
Constructor initializing the number of neighbors.
+
+
MLDGC(int, DistanceFunction) - Constructor for class miml.classifiers.ml.MLDGC
+
+
Constructor initializing the number of neighbors and the distance function.
+
+
MLDGC.LinearNNESearch - Class in miml.classifiers.ml
+
 
+
MLSave - Class in miml.data
+
+
Class with methods to write to file a multi-label dataset.
+
+
MLSave() - Constructor for class miml.data.MLSave
+
 
+
mlstatistics - Variable in class miml.data.statistics.MIMLStatistics
+
+
Class with methods to obtain information about a ML dataset.
+
+
MLStatistics - Class in miml.data.statistics
+
+
Class with methods to obtain information about a ML dataset.
+
+
MLStatistics(MultiLabelInstances) - Constructor for class miml.data.statistics.MLStatistics
+
+
Constructor.
+
+
mu - Variable in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
The ratio used to determine the standard deviation of the Gaussian activation + function.
+
+
mu - Variable in class miml.classifiers.miml.neural.MIMLRBF
+
+
The ratio used to determine the standard deviation of the Gaussian activation + function.
+
+
mu - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
The ratio used to determine the standard deviation of the Gaussian activation + function.
+
+
MultiInstanceMultiLabelKNN - Class in miml.classifiers.miml.lazy
+
+
Wrapper for class MultiLabelKNN of Mulan to work with MIML data
+
+
MultiInstanceMultiLabelKNN() - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
No-arg constructor for xml configuration
+
+
MultiInstanceMultiLabelKNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Constructor to initialize the classifier.
+
+
MultiInstanceMultiLabelKNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Constructor to initialize the classifier.
+
+
multipleEvaluation - Variable in class miml.evaluation.EvaluatorCV
+
+
The evaluation method used in cross-validation.
+
+
MWClassifier - Class in miml.classifiers.miml
+
+
+ Class to execute Matlab MIML classifiers.
+
+
MWClassifier() - Constructor for class miml.classifiers.miml.MWClassifier
+
 
+
MWTranslator - Class in miml.data
+
+
Class to serve as interface between MIMLInstances and Matlab data types.
+
+
MWTranslator(MIMLInstances) - Constructor for class miml.data.MWTranslator
+
+
Constructor.
+
+
+ + + +

N

+
+
nBags - Variable in class miml.data.MWTranslator
+
+
Number of bags of the dataset
+
+
nFeatures - Variable in class miml.data.normalization.MinMaxNormalization
+
+
Number of features of the bags in the MIML dataset.
+
+
NGC - Variable in class miml.classifiers.ml.MLDGC
+
+
Neighborhood-based Gravitation Coefficient for each training example
+
+
nLabels - Variable in class miml.data.MWTranslator
+
+
Number of labels of the dataset
+
+
norm_up - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Norm of each vector.
+
+
normalize(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
+
+
Applies min-max normalization on a MIMLInstances dataset.
+
+
normalized - Variable in class miml.data.normalization.MinMaxNormalization
+
+
Value indicating if the bag attributes of the dataset were normalized before + calling normalize (e.g. the dataset does not need normalization).
+
+
NormalizingDataset - Class in miml.tutorial
+
+
Class to show an example of normalization of a MIML Dataset.
+
+
NormalizingDataset() - Constructor for class miml.tutorial.NormalizingDataset
+
 
+
num_citers - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Number of citers.
+
+
num_references - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Number of references.
+
+
num_sub - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Number of sub concepts.
+
+
numAttributes - Variable in class miml.data.statistics.MLStatistics
+
+
The number of attributes.
+
+
numBags - Variable in class miml.data.statistics.MIStatistics
+
+
The number of bags.
+
+
numClassifiers - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Number of classifiers in the ensemble.
+
+
numExamples - Variable in class miml.data.statistics.MLStatistics
+
+
The number of examples.
+
+
numFolds - Variable in class miml.evaluation.EvaluatorCV
+
+
The number of folds.
+
+
numLabels - Variable in class miml.classifiers.miml.MIMLClassifier
+
+
The number of labels the learner can handle.
+
+
numLabels - Variable in class miml.data.statistics.MLStatistics
+
+
The number of labels.
+
+
numNominal - Variable in class miml.data.statistics.MLStatistics
+
+
The number of nominal predictive attributes.
+
+
numNumeric - Variable in class miml.data.statistics.MLStatistics
+
+
The number of numeric attributes.
+
+
numOfNeighbours - Variable in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Number of neighbours used in the k-nearest neighbor algorithm.
+
+
nUnique - Variable in class miml.data.statistics.MLStatistics
+
+
Number of labelSets with only one pattern.
+
+
+ + + +

O

+
+
objects - Variable in class miml.core.Params
+
+
List of the values for the classes array
+
+
opts_average_begin - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
opts_average_size - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
opts_beta - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
Controls the similarity between training_bags and their prototypes.
+
+
opts_C - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
Controls the empirical loss on labeled data.
+
+
opts_epsilon - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
Value for epsilon.
+
+
opts_iteration - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
Iteration number.
+
+
opts_m - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
Controls the difference between the learned training targets and the original + input training targets.
+
+
opts_norm - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
+ + + +

P

+
+
para - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
A string that gives the corresponding parameters used for the svm: + + If type is "RBF", para gives the value of gamma (i.e. para="1") where the + kernel is exp(-Gamma*|x(i)-x(j)|^2). + If type is "Poly", then para gives the value of gamma, coefficient, and + degree respectively, where the kernel is + (gamma*<x(i),x(j)>+coefficient)^degree.
+
+
Params - Class in miml.core
+
+
This class contains the list of classes and objects needed to create a new + instance of a Multi Label classifier through a specific constructor.
+
+
Params(Class<?>[], Object[]) - Constructor for class miml.core.Params
+
+
Generic constructor
+
+
PartitionerBase - Class in miml.data.partitioning
+
+
General scheme for partitioning multi-output data.
+
+
PartitionerBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
+
+
Constructor of the class
+
+
PartitionerBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
+
+
Constructor of the class
+
+
peak - Variable in class miml.data.statistics.MLStatistics
+
+
The highest labelSet count.
+
+
phi - Variable in class miml.data.statistics.MLStatistics
+
+
Phi matrix values in [-1,1] where -1 = inverse relation, 0 = no relation, 1 = + direct relation.
+
+
phi_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
The phi matrix.
+
+
pMax() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns pMax, the proportion of examples associated with the most frequently + occurring labelset.
+
+
pMax() - Method in class miml.data.statistics.MLStatistics
+
+
Returns pMax, the proportion of examples associated with the most frequently + occurring labelset.
+
+
positiveExamplesPerLabel - Variable in class miml.data.statistics.MLStatistics
+
+
The number of positive examples per label.
+
+
postProcessDistances(double[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
+
+
Performs a prediction on a test bag.
+
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
 
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances.
+
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances.
+
+
printPhiDiagram(double) - Method in class miml.data.statistics.MIMLStatistics
+
+
This method prints data, useful for the visualization of Phi per dataset.
+
+
printPhiDiagram(double) - Method in class miml.data.statistics.MLStatistics
+
+
This method prints data, useful for the visualization of Phi per dataset.
+
+
priors() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the prior probabilities of the labels.
+
+
priors() - Method in class miml.data.statistics.MLStatistics
+
+
Returns the prior probabilities of the labels.
+
+
PropositionalTransformation - Class in miml.transformation.mimlTOml
+
+
Class that performs a propositionalTransformation to convert a MIMLInstances + dataset to MultiLabelInstances.
+
+
PropositionalTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Constructor.
+
+
PropositionalTransformation(MIMLInstances, boolean) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Constructor.
+
+
pUnique() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns proportion of unique label combinations (pPunique) value defined as + the proportion of labelsets which are unique across the total number of + examples.
+
+
pUnique() - Method in class miml.data.statistics.MLStatistics
+
+
Returns proportion of unique label combinations (pPunique) value defined as + the proportion of labelsets which are unique across the total number of + examples.
+
+
+ + + +

R

+
+
RandomCrossValidation - Class in miml.data.partitioning.random
+
+
Class to split a multi-label dataset into N multi-label random datasets for + cross-validation.
+
+
RandomCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
+
+
Constructor.
+
+
RandomCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
+
+
Default constructor.
+
+
RandomTrainTest - Class in miml.data.partitioning.random
+
+
Class to split a multi-label dataset into two multi-label random datasets + corresponding to the train and test datasets respectively.
+
+
RandomTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
+
+
Constructor.
+
+
RandomTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
+
+
Default constructor.
+
+
Range - Variable in class miml.data.normalization.MinMaxNormalization
+
 
+
ratio - Variable in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
The number of centroids of the i-th label is set to be ratio*Ti, where Ti is + the number of train bags with label i.
+
+
ratio - Variable in class miml.classifiers.miml.neural.MIMLNN
+
+
The number of clusters is set to ratio*numberOfTrainingBags, default=0.4.
+
+
ratio - Variable in class miml.classifiers.miml.neural.MIMLRBF
+
+
The number of centroids of the i-th label is set to be ratio*Ti, where Ti is + the number of train bags with label i.
+
+
ratio - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Parameter k is set to be 20% of the number of training bags.
+
+
ratio - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
The number of centroids of the i-th class is set to be ratio*Ti, where Ti is + the number of train bags with label i.
+
+
readMultiLabelLearnerParams(Configuration) - Static method in class miml.core.Utils
+
+
Read the configuration parameters for a specific Multi Label classifier's + constructor
+
+
ref_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Instances' references matrix.
+
+
relationMethod - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
Method used to build relation matrix.
+ + 1 => the identity matrix is returned.
+
+
removeBagId(MultiLabelInstances) - Static method in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Removes the bagId attribute in MultiLabelInstances.
+
+
removeFilter - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
removeFilter - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Filter
+
+
resample(Instances, double, boolean, int) - Static method in class miml.core.Utils
+
+
Obtains a sample of the original data.
+
+
Resampling - Class in miml.tutorial
+
+
Class to show an example of sampling with replacement.
+
+
Resampling() - Constructor for class miml.tutorial.Resampling
+
 
+
returnPossibleSplitsForNotAnnotated(double[][]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns the possible folds for the examples that are not annotated with any + label.
+
+
RunAlgorithm - Class in miml.run
+
+
Class that allow run any algorithm of the library configured by a file + configuration.
+
+
RunAlgorithm() - Constructor for class miml.run.RunAlgorithm
+
 
+
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorCV
+
 
+
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorHoldout
+
 
+
runExperiment(IMIMLClassifier) - Method in interface miml.evaluation.IEvaluator
+
+
Run an experiment.
+
+
+ + + +

S

+
+
samplePercentage - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
The size of the sample to build each base classifier.
+
+
sampleWithReplacement - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Determines whether the classifier will consider sampling with replacement.
+
+
saveArff(MIMLInstances, String) - Static method in class miml.data.MLSave
+
+
Writes an arff file with a multi-label dataset.
+
+
saveArff(MultiLabelInstances, String) - Static method in class miml.data.MLSave
+
+
Writes an arff file with a multi-label dataset.
+
+
saveArff(Instances, String) - Static method in class miml.data.MLSave
+
+
Writes an arff file with an Instances dataset.
+
+
saveReport(String) - Method in interface miml.report.IReport
+
+
Save in a file the specified report.
+
+
saveReport(String) - Method in class miml.report.MIMLReport
+
+
Save in a file the specified report.
+
+
saveXml(ArrayList<String>, String) - Static method in class miml.data.MLSave
+
+
Writes an xml file.
+
+
saveXml(MultiLabelInstances, String) - Static method in class miml.data.MLSave
+
+
Writes an xml file with label definitions of a multi-label dataset.
+
+
saveXml(Instances, String) - Static method in class miml.data.MLSave
+
+
Writes an xml file with label definitions of an instances dataset.
+
+
seed - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Seed for randomization.
+
+
seed - Variable in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Seed for kmedoids clustering.
+
+
seed - Variable in class miml.classifiers.miml.neural.MIMLNN
+
+
The seed for kmedoids clustering
+
+
seed - Variable in class miml.classifiers.miml.neural.MIMLRBF
+
+
Seed for kmedoids clustering.
+
+
seed - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Seed for kmedoids clustering.
+
+
seed - Variable in class miml.data.partitioning.PartitionerBase
+
+
Seed for reproduction of results
+
+
seed - Variable in class miml.evaluation.EvaluatorCV
+
+
The seed for the partition.
+
+
serialVersionUID - Static variable in class miml.classifiers.mi.MISMOWrapper
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.DMIMLkNN
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLDGC
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
+
+
For serialization
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLIBLR
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.MIMLClassifier
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.MWClassifier
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.neural.MIMLNN
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.neural.MIMLRBF
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.optimization.KiSar
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.classifiers.ml.MLDGC.LinearNNESearch
+
+
For serialization
+
+
serialVersionUID - Static variable in class miml.classifiers.ml.MLDGC
+
+
For serialization
+
+
serialVersionUID - Static variable in class miml.core.distance.AverageHausdorff
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.core.distance.HausdorffDistance
+
 
+
serialVersionUID - Static variable in class miml.core.distance.MaximalHausdorff
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.core.distance.MinimalHausdorff
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.data.MIMLBag
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.data.MIMLInstances
+
+
Generated Serial version UID.
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOmi.BRTransformation
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOmi.LPTransformation
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
+
 
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.ArithmeticTransformation
+
+
For serialization
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.GeometricTransformation
+
+
For serialization
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.MIMLtoML
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.MinMaxTransformation
+
+
For serialization
+
+
setAddFeatures(boolean) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
+
Sets the value of AddFeatures.
+
+
setAlgorithmName(String) - Static method in class miml.core.ConfigParameters
+
+
Sets the algorithm name.
+
+
setAttributeIndices(String) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
setC(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Sets the value of the C property.
+
+
setClasses(Class<?>[]) - Method in class miml.core.Params
+
 
+
setClassifier(MultiLabelKNN) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
 
+
setClassifierName(String) - Static method in class miml.core.ConfigParameters
+
+
Sets the classifier name.
+
+
setConfigFileName(String) - Static method in class miml.core.ConfigParameters
+
+
Sets the configuration file name.
+
+
setConfiguration(Configuration) - Method in class miml.core.ConfigLoader
+
+
Sets the configuration for the experiment.
+
+
setCost(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the cost property.
+
+
setD(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the D property.
+
+
setDataFileName(String) - Static method in class miml.core.ConfigParameters
+
+
Sets the data file name.
+
+
setDataSet(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
+
Set the dataset used.
+
+
setDebug(boolean) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
 
+
setDebug(boolean) - Method in class miml.classifiers.miml.MIMLClassifier
+
 
+
setEpsilon(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Sets the value of the epsilon property.
+
+
setExtension(BRkNN.ExtensionType) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
+
Sets the type of extension to be used (see BRkNN.ExtensionType).
+
+
setExtNeigh(boolean) - Method in class miml.classifiers.ml.MLDGC
+
+
Sets the value of the property isExtNeigh.
+
+
setFilename(String) - Method in class miml.report.MIMLReport
+
+
Sets the name of the file.
+
+
setH(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the h property.
+
+
setHeader(boolean) - Method in class miml.report.MIMLReport
+
+
Sets if header is shown.
+
+
setIncludeBagId(boolean) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Sets the value for includeBagId property.
+
+
setInstances(MIMLInstances) - Method in class miml.core.distance.HausdorffDistance
+
 
+
setInstances(Instances) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
setInvertSelection(boolean) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
setIsTransformation(Boolean) - Static method in class miml.core.ConfigParameters
+
+
Sets if the method used is transformation.
+
+
setIteration(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Sets the value of the iteration property.
+
+
setK(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Sets the value of the k property.
+
+
setLabels(boolean) - Method in class miml.report.MIMLReport
+
+
Sets if measure for each label (macro-averaged measures) is shown.
+
+
setLambda(double) - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Sets the fraction parameter considered to determine the number of clusters to + build the classifier.
+
+
setLambda(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the lambda property.
+
+
setMaxiter(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the maxiter property.
+
+
setMeasures(List<String>) - Method in class miml.report.MIMLReport
+
+
Sets the measures shown in the report.
+
+
setMetric(IDistance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
+
Sets the metric to be used.
+
+
setMetric(DistanceFunction) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Sets the distance metric considered by the classifier.
+
+
setMu(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Sets the scaling factor parameter to build the classifier.
+
+
setMu(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Sets the scaling factor parameter to build the classifier.
+
+
setMu(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the mu property.
+
+
setNorm_up(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the norm_up property.
+
+
setNum_sub(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the num_sub property.
+
+
setNumCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Sets the number of citers considered to estimate the class prediction of + tests bags.
+
+
setNumFolds(int) - Method in class miml.evaluation.EvaluatorCV
+
+
Sets the number of folds used in the experiment.
+
+
setnumOfNeighbours(int) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
+
Sets the number of neigbors considered by the classifier.
+
+
setNumReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Sets the number of references considered to estimate the class prediction of + tests bags.
+
+
setObjects(Object[]) - Method in class miml.core.Params
+
 
+
setOptions(String[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
setOpts_average_begin(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the opts_average_begin property.
+
+
setOpts_average_size(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the opts_average_size property.
+
+
setOpts_beta(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the beta property.
+
+
setOpts_C(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the opts_C property.
+
+
setOpts_epsilon(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the opts_epsilon property.
+
+
setOpts_iteration(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the opts_iteration property.
+
+
setOpts_m(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the opts_m property.
+
+
setOpts_norm(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the opts_norm property.
+
+
setPara(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the para property.
+
+
setRatio(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Sets the fraction parameter to build the classifier.
+
+
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Sets the fraction parameter considered to determine the number of clusters to + build the classifier.
+
+
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Sets the fraction parameter to build the classifier.
+
+
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the ratio property.
+
+
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
+
Sets the value of the ratio property.
+
+
setRelationMethod(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
+
Sets the value of the relationMethod property.
+
+
setSamplePercentage(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Sets the percentage of instances used for sampling with replacement*.
+
+
setSampleWithReplacement(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Configure the classifier to use/not use sampling with replacement.
+
+
setSeed(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the seed property.
+
+
setSeed(int) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Sets the seed value.
+
+
setSeed(int) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
+
Sets the seed for kmedoids clustering considered to build the classifier.
+
+
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLNN
+
+
Sets the seed for kmedoids clustering considered to build the classifier.
+
+
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
+
Returns the seed for kmedoids clustering considered to build the classifier.
+
+
setSeed(int) - Method in class miml.evaluation.EvaluatorCV
+
+
Sets the seed used in the experiment.
+
+
setSmooth(double) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
+
Sets the smooth factor considered by the classifier.
+
+
setSmooth(double) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
Sets the smooth factor considered by the classifier.
+
+
setStd(boolean) - Method in class miml.report.MIMLReport
+
+
Sets if the std is going to be shown (only cross-validation).
+
+
setStep_size(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
+
Sets the value of the step_size property.
+
+
setThreshold(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Sets the value of the threshold.
+
+
setTransformationMethod(String) - Static method in class miml.core.ConfigParameters
+
+
Sets the transformation method used in the experiment.
+
+
setType(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the type property.
+
+
setUseConfidences(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
+
Stablishes whether confidences or bipartitions are used to combine + classifiers in the ensemble.
+
+
setValue(int, int, double) - Method in class miml.data.MIMLBag
+
+
Sets the value of attrIndex attribute of the instanceIndex to a certain + value.
+
+
showUse() - Static method in class miml.tutorial.CrossValidationExperiment
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.GeneratePartitions
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.HoldoutExperiment
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.InsertingAttributesToBags
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.InsertingAttributeToBag
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.ManagingMIMLInstances
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.MIMLtoMITransformation
+
+
Shows the help on command line.
+
+
showUse() - Static method in class miml.tutorial.MIMLtoMLTransformation
+
+
Shows the help on command line.
+
+
skewRatio() - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the skewRatio as peak/base.
+
+
skewRatio() - Method in class miml.data.statistics.MLStatistics
+
+
Computes the skewRatio as peak/base.
+
+
smooth - Variable in class miml.classifiers.miml.lazy.DMIMLkNN
+
+
Smoothing parameter controlling the strength of uniform prior
+ (Default value is set to 1 which yields the Laplace smoothing).
+
+
smooth - Variable in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
Smooth factor
+
+
split(double) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
 
+
split(double) - Method in class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
 
+
split(double) - Method in class miml.data.partitioning.random.RandomTrainTest
+
 
+
split(double) - Method in class miml.data.partitioning.TrainTestBase
+
+
Returns a array with two multi-label random datasets corresponding to the + train and test sets respectively.
+
+
splitData(MIMLInstances, double, int, int) - Static method in class miml.data.MIMLInstances
+
+
Split MIML data train and test partition given a percentage and a partitioning method.
+
+
std - Variable in class miml.report.MIMLReport
+
+
If measures' standard deviation are shown.
+
+
stdArray(long[]) - Method in class miml.evaluation.EvaluatorCV
+
+
Calculate the standard deviation of given array.
+
+
step_size - Variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
Step size of SGD (stochastic gradient descent).
+
+
+ + + +

T

+
+
t_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
The t matrix.
+
+
takeTheInstancesOfTheLabel(Instances, int, int[], int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns two sets of instances.
+
+
takingTheSmallestIndexAndNumberInVector(int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Returns the rarest label and the number of examples that are annotated with + that label.
+
+
template - Variable in class miml.transformation.mimlTOml.MIMLtoML
+
+
Template to store Instances.
+
+
template - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Template to store Instances.
+
+
testData - Variable in class miml.evaluation.EvaluatorHoldout
+
+
The test data used in the experiment.
+
+
testTime - Variable in class miml.evaluation.EvaluatorCV
+
+
Test time in milliseconds.
+
+
testTime - Variable in class miml.evaluation.EvaluatorHoldout
+
+
Test time in milliseconds.
+
+
threshold - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Threshold for predictions.
+
+
toCSV() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns statistics in CSV representation.
+
+
toCSV() - Method in class miml.data.statistics.MIStatistics
+
+
Returns statistics in CSV representation.
+
+
toCSV() - Method in class miml.data.statistics.MLStatistics
+
+
Returns statistics in CSV representation.
+
+
toCSV(IEvaluator) - Method in class miml.report.BaseMIMLReport
+
 
+
toCSV(IEvaluator) - Method in interface miml.report.IReport
+
+
Convert to CSV the evaluator results.
+
+
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the indices of the labels that have the strongest Phi correlation + with the label which is given as a parameter.
+
+
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MLStatistics
+
+
Returns the indices of the labels that have the strongest Phi correlation + with the label which is given as a parameter.
+
+
toString() - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns statistics in textual representation.
+
+
toString() - Method in class miml.data.statistics.MIStatistics
+
+
Returns statistics in textual representation.
+
+
toString() - Method in class miml.data.statistics.MLStatistics
+
+
Returns statistics in textual representation.
+
+
toString(IEvaluator) - Method in class miml.report.BaseMIMLReport
+
 
+
toString(IEvaluator) - Method in interface miml.report.IReport
+
+
Convert to plain text the evaluator results.
+
+
totalInstances - Variable in class miml.data.statistics.MIStatistics
+
+
The total of instances.
+
+
trainData - Variable in class miml.evaluation.EvaluatorHoldout
+
+
The data used in the experiment.
+
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
+
+
Trains a Matlab classifier.
+
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
 
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
 
+
TrainTestBase - Class in miml.data.partitioning
+
+
General scheme for train test partitioning of multi-output data.
+
+
TrainTestBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
+
+
Constructor.
+
+
TrainTestBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
+
+
Default constructor.
+
+
trainTime - Variable in class miml.evaluation.EvaluatorCV
+
+
Train time in milliseconds.
+
+
trainTime - Variable in class miml.evaluation.EvaluatorHoldout
+
+
Train time in milliseconds.
+
+
transformationClassifier - Variable in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
+
Generic classifier used for transformation.
+
+
transformationMethod - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
The transform method.
+
+
transformationMethod - Static variable in class miml.core.ConfigParameters
+
+
The name of the method used in the experiment if this is a transformation + method.
+
+
transformBag(int, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
+
Removes all label attributes except labelToKeep.
+
+
transformBag(MIMLBag, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
+
Removes all label attributes except labelToKeep.
+
+
transformBag(MIMLBag, int[]) - Method in class miml.transformation.mimlTOmi.LPTransformation
+
 
+
transformBag(MIMLBag, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
+
+
Remove all label attributes except label at position indexToKeep.
+
+
transformBags(int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
+
Remove all label attributes except labelToKeep.
+
+
transformBags(MIMLInstances) - Method in class miml.transformation.mimlTOmi.LPTransformation
+
 
+
transformBags(MIMLInstances, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
+
+
Remove all label attributes except that at indexOfLabelToKeep.
+
+
transformDataset() - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
transformDataset() - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
transformDataset() - Method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Transforms MIMLInstances into MultiLabelInstances.
+
+
transformDataset() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformDataset() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Transforms MIMLInstances into MultiLabelInstances.
+
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Transforms MIMLBag into Instance.
+
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformInstance(Instance, int[]) - Method in class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
+
 
+
type - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Gaussian kernel SVM.
+
+
+ + + +

U

+
+
U - Variable in class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
+
Partition matrix of num_labels x num_bags
+
+
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MIMLStatistics
+
+
Returns the indices of the labels whose Phi coefficient values lie between + -bound <= phi <= bound.
+
+
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MLStatistics
+
+
Returns the indices of the labels whose Phi coefficient values lie between + -bound <= phi <= bound.
+
+
update(MIMLBag) - Method in class miml.core.distance.HausdorffDistance
+
 
+
update(Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
updateDesiredSplitStatistics(double[], boolean[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
+
Updates the desired splits every time that an instance is inserted into a + fold.
+
+
updateDistance(double, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
updatedLabelIndices - Variable in class miml.transformation.mimlTOml.MIMLtoML
+
+
Array of updated label indices.
+
+
updatedLabelIndices - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Array of updated label indices.
+
+
updateStats(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
+
+
Set the max and min values for all attributes in the bag.
+
+
useConfidences - Variable in class miml.classifiers.miml.meta.MIMLBagging
+
+
Determines whether confidences [0,1] or relevance {0,1} is used to compute + bipartition.
+
+
Utils - Class in miml.core
+
+
This class has utilies that can be used anywhere in the library.
+
+
Utils() - Constructor for class miml.core.Utils
+
 
+
+ + + +

V

+
+
varianceIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
+
+
Computes the variance of any IR vector.
+
+
varianceIR(double[]) - Method in class miml.data.statistics.MLStatistics
+
+
Computes the variance of any IR vector.
+
+
+ + + +

W

+
+
weight_max - Variable in class miml.classifiers.ml.MLDGC
+
+
Values used to normalize weights
+
+
weight_min - Variable in class miml.classifiers.ml.MLDGC
+
 
+
weights - Variable in class miml.classifiers.ml.MLDGC
+
+
Weights
+
+
weights_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
+
+
Weights matrix.
+
+
workingSet - Variable in class miml.data.partitioning.PartitionerBase
+
+
A copy of the instances to generate partitions
+
+
wrapper - Variable in class miml.classifiers.miml.MWClassifier
+
+
Wrapper for Matlab data types.
+
+
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages
+
+
+ +
+ + diff --git a/documentation/apidoc/index-files/index-1.html b/documentation/apidoc/index-files/index-1.html old mode 100755 new mode 100644 index d6e0e20..0eb11a0 --- a/documentation/apidoc/index-files/index-1.html +++ b/documentation/apidoc/index-files/index-1.html @@ -1,12 +1,22 @@ - + - + A-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

A

-
addBag(MIMLBag) - Method in class miml.data.MIMLInstances
+
addBag(MIMLBag) - Method in class miml.data.MIMLInstances
Adds a Bag of Instances to the dataset.
@@ -82,7 +107,7 @@

A

By default, IBLR-ML is used (addFeatures is false).
-
addInstance(MIMLBag, int) - Method in class miml.data.MIMLInstances
+
addInstance(MIMLBag, int) - Method in class miml.data.MIMLInstances
Adds a Bag of Instances to the dataset in a certain index.
@@ -95,12 +120,16 @@

A

Class that performs an arithmetic transformation to convert a MIMLInstances class to MultiLabelInstances.
-
ArithmeticTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
+
ArithmeticTransformation() - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
+
 
+
ArithmeticTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
Constructor.
-
ArithmeticTransformation() - Constructor for class miml.transformation.mimlTOml.ArithmeticTransformation
-
 
+
assignInstancesToMedoids(int[]) - Method in class miml.clusterers.KMedoids
+
+
Assign all instances from the data set to the medoids.
+
attributesPerBag - Variable in class miml.data.MWTranslator
Number of attributes per bag
@@ -114,23 +143,23 @@

A

Class that implements Average Hausdorff metric to measure the distance between 2 bags of a data set.
-
AverageHausdorff() - Constructor for class miml.core.distance.AverageHausdorff
+
AverageHausdorff() - Constructor for class miml.core.distance.AverageHausdorff
 
-
AverageHausdorff(MIMLInstances) - Constructor for class miml.core.distance.AverageHausdorff
+
AverageHausdorff(MIMLInstances) - Constructor for class miml.core.distance.AverageHausdorff
 
-
averageIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
+
averageIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
Computes the average of any IR vector.
-
averageIR(double[]) - Method in class miml.data.statistics.MLStatistics
+
averageIR(double[]) - Method in class miml.data.statistics.MLStatistics
Computes the average of any IR vector.
-
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
Computes the average labelSkew.
-
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
averageSkew(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
Computes the average labelSkew.
@@ -139,17 +168,20 @@

A

The average number of instances per bag.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-10.html b/documentation/apidoc/index-files/index-10.html old mode 100755 new mode 100644 index 2b61e2c..1c24509 --- a/documentation/apidoc/index-files/index-10.html +++ b/documentation/apidoc/index-files/index-10.html @@ -1,12 +1,22 @@ - + - + K-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

K

@@ -86,40 +111,90 @@

K

Neighborhood size for initialization of U matrix.
+
kisar - Variable in class miml.classifiers.miml.optimization.KiSar
+
+
A Matlab object wrapping the KiSar algorithm.
+
KiSar - Class in miml.classifiers.miml.optimization
Wrapper for Matlab KiSar algorithm for - MIML data.
+ MIML data.
+ For more information see: Y.
-
KiSar() - Constructor for class miml.classifiers.miml.optimization.KiSar
+
KiSar() - Constructor for class miml.classifiers.miml.optimization.KiSar
No-argument constructor for xml configuration.
-
KiSar(double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.KiSar
+
KiSar(double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.KiSar
Constuctor initializing fields of KiSar.
-
kisar - Variable in class miml.classifiers.miml.optimization.KiSar
+
KMeansTransformation - Class in miml.transformation.mimlTOml
-
A Matlab object wrapping the KiSar algorithm.
+
Class implementing the kmeans-based transformation described in [1] to + transform an MIML problem to ML
+
+
KMeansTransformation() - Constructor for class miml.transformation.mimlTOml.KMeansTransformation
+
+
Constructor.
+
+
KMeansTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.KMeansTransformation
+
+
Constructor.
+
+
KMeansTransformation(MIMLInstances, SimpleKMeans) - Constructor for class miml.transformation.mimlTOml.KMeansTransformation
+
+
Constructor.
+
+
KMedoids - Class in miml.clusterers
+
+
Class implementing the PAM (Partitioning Around Medoids) approximation [1] to + kMedoids for multi-instance data
+
+
KMedoids() - Constructor for class miml.clusterers.KMedoids
+
+
Creates a new instance of the k-medoids algorithm with default parameters.
+
+
KMedoids(int) - Constructor for class miml.clusterers.KMedoids
+
+
Creates a new instance of the k-medoids algorithm with with the specified + parameters.
+
+
KMedoids(int, int, IDistance) - Constructor for class miml.clusterers.KMedoids
+
+
Creates a new instance of the k-medoids algorithm with the specified + parameters.
+
+
KMedoids(int, IDistance) - Constructor for class miml.clusterers.KMedoids
+
+
Creates a new instance of the k-medoids algorithm with the specified + parameters.
+
+
KMedoids(IDistance) - Constructor for class miml.clusterers.KMedoids
+
+
Creates a new instance of the k-medoids algorithm with the specified dist + measure.
-
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
+
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
 
-
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.ml.MLDGC.LinearNNESearch
+
kNearestNeighboursIndices(Instance, int) - Method in class miml.classifiers.ml.MLDGC.LinearNNESearch
 
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-11.html b/documentation/apidoc/index-files/index-11.html old mode 100755 new mode 100644 index 6a2f754..009a94d --- a/documentation/apidoc/index-files/index-11.html +++ b/documentation/apidoc/index-files/index-11.html @@ -1,12 +1,22 @@ - + - + L-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

L

-
labelCombCount() - Method in class miml.data.statistics.MIMLStatistics
+
labelCombCount() - Method in class miml.data.statistics.MIMLStatistics
Returns the HashMap containing the distinct labelsets and their frequencies.
-
labelCombCount() - Method in class miml.data.statistics.MLStatistics
+
labelCombCount() - Method in class miml.data.statistics.MLStatistics
Returns the HashMap containing the distinct labelsets and their frequencies.
@@ -86,7 +111,7 @@

L

LabelSets in the dataset.
-
labelDistance(Instance, Instance) - Method in class miml.classifiers.ml.MLDGC
+
labelDistance(Instance, Instance) - Method in class miml.classifiers.ml.MLDGC
Computes the label distance between two instances.
@@ -109,11 +134,11 @@

L

Class to split a multi-label dataset into N multi-label for cross-validation by applying a labelPowerset-based partition.
-
LabelPowersetCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
LabelPowersetCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
Constructor.
-
LabelPowersetCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
LabelPowersetCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetCrossValidation
Default constructor.
@@ -123,11 +148,11 @@

L

corresponding to the train and test datasets respectively by applying a labelPowerset-based partition.
-
LabelPowersetTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
LabelPowersetTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
Constructor.
-
LabelPowersetTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
LabelPowersetTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.powerset.LabelPowersetTrainTest
Default constructor.
@@ -135,28 +160,28 @@

L

If macro measures are broken down by labels.
-
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MIMLStatistics
+
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MIMLStatistics
Returns the frequency of a label set in the dataset.
-
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MLStatistics
+
labelSetFrequency(LabelSet) - Method in class miml.data.statistics.MLStatistics
Returns the frequency of a label set in the dataset.
-
labelSets() - Method in class miml.data.statistics.MIMLStatistics
+
labelSets() - Method in class miml.data.statistics.MIMLStatistics
Returns a set with the distinct label sets of the dataset.
-
labelSets() - Method in class miml.data.statistics.MLStatistics
+
labelSets() - Method in class miml.data.statistics.MLStatistics
Returns a set with the distinct label sets of the dataset.
-
labelSkew() - Method in class miml.data.statistics.MIMLStatistics
+
labelSkew() - Method in class miml.data.statistics.MIMLStatistics
Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns of the labelSet).
-
labelSkew() - Method in class miml.data.statistics.MLStatistics
+
labelSkew() - Method in class miml.data.statistics.MLStatistics
Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns of the labelSet).
@@ -169,25 +194,25 @@

L

Lambda.
-
linearClassifier(double[], double[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
linearClassifier(double[], double[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Classifier that determines the labels associated with an example.
-
LinearNNESearch(Instances) - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
+
LinearNNESearch(Instances) - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch
 
-
LinearNNESearch(Instances) - Constructor for class miml.classifiers.ml.MLDGC.LinearNNESearch
+
LinearNNESearch(Instances) - Constructor for class miml.classifiers.ml.MLDGC.LinearNNESearch
 
-
listOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
listOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
loadClassifier() - Method in class miml.core.ConfigLoader
+
loadClassifier() - Method in class miml.core.ConfigLoader
Read current configuration to load and configure the classifier.
-
loadEvaluator() - Method in class miml.core.ConfigLoader
+
loadEvaluator() - Method in class miml.core.ConfigLoader
Read current configuration to load and configure the evaluator.
-
loadReport() - Method in class miml.core.ConfigLoader
+
loadReport() - Method in class miml.core.ConfigLoader
Read current configuration to load and configure the report.
@@ -200,22 +225,25 @@

L

Class that uses LabelPowerset transformation to convert MIMLInstances to MIL Instances with relational attribute.
-
LPTransformation() - Constructor for class miml.transformation.mimlTOmi.LPTransformation
+
LPTransformation() - Constructor for class miml.transformation.mimlTOmi.LPTransformation
Constructor.
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-12.html b/documentation/apidoc/index-files/index-12.html old mode 100755 new mode 100644 index 88aa81c..80c7109 --- a/documentation/apidoc/index-files/index-12.html +++ b/documentation/apidoc/index-files/index-12.html @@ -1,12 +1,22 @@ - + - + M-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

M

@@ -78,64 +103,68 @@

M

Fuzzy exponent.
-
main(String[]) - Static method in class miml.run.RunAlgorithm
+
main(String[]) - Static method in class miml.run.RunAlgorithm
The main method to configure and run an algorithm.
-
main(String[]) - Static method in class miml.tutorial.CrossValidationExperiment
+
main(String[]) - Static method in class miml.tutorial.Clustering
+
 
+
main(String[]) - Static method in class miml.tutorial.CrossValidationExperiment
 
-
main(String[]) - Static method in class miml.tutorial.GeneratePartitions
+
main(String[]) - Static method in class miml.tutorial.GeneratePartitions
Main method.
-
main(String[]) - Static method in class miml.tutorial.HoldoutExperiment
+
main(String[]) - Static method in class miml.tutorial.HoldoutExperiment
 
-
main(String[]) - Static method in class miml.tutorial.InsertingAttributesToBags
+
main(String[]) - Static method in class miml.tutorial.HoldoutToML_RFPCT
 
-
main(String[]) - Static method in class miml.tutorial.InsertingAttributeToBag
+
main(String[]) - Static method in class miml.tutorial.InsertingAttributesToBags
 
-
main(String[]) - Static method in class miml.tutorial.ManagingMIMLInstances
+
main(String[]) - Static method in class miml.tutorial.InsertingAttributeToBag
 
-
main(String[]) - Static method in class miml.tutorial.MIMLtoMITransformation
+
main(String[]) - Static method in class miml.tutorial.ManagingMIMLInstances
 
-
main(String[]) - Static method in class miml.tutorial.MIMLtoMLTransformation
+
main(String[]) - Static method in class miml.tutorial.MIMLtoMITransformation
 
-
main(String[]) - Static method in class miml.tutorial.NormalizingDataset
+
main(String[]) - Static method in class miml.tutorial.MIMLtoMLTransformation
 
-
main(String[]) - Static method in class miml.tutorial.Resampling
+
main(String[]) - Static method in class miml.tutorial.NormalizingDataset
 
-
makeCopy() - Method in interface miml.classifiers.miml.IMIMLClassifier
+
main(String[]) - Static method in class miml.tutorial.Resampling
 
-
makeCopy() - Method in class miml.classifiers.miml.MIMLClassifier
+
makeCopy() - Method in interface miml.classifiers.miml.IMIMLClassifier
 
-
makePrediction(Instance) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
makeCopy() - Method in class miml.classifiers.miml.MIMLClassifier
 
-
makePrediction(Instance) - Method in class miml.classifiers.miml.MIMLClassifier
+
makePrediction(Instance) - Method in interface miml.classifiers.miml.IMIMLClassifier
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
makePrediction(Instance) - Method in class miml.classifiers.miml.MIMLClassifier
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MIMLkNN
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MIMLClassifier
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
 
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MIMLClassifier
Learner specific implementation for predicting on specified data based on trained model.
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
 
-
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MWClassifier
+
makePredictionInternal(MIMLBag) - Method in class miml.classifiers.miml.MWClassifier
 
-
makePredictionInternal(Instance) - Method in class miml.classifiers.ml.MLDGC
+
makePredictionInternal(Instance) - Method in class miml.classifiers.ml.MLDGC
 
ManagingMIMLInstances - Class in miml.tutorial
Class implementing basic handling of MIML datasets.
-
ManagingMIMLInstances() - Constructor for class miml.tutorial.ManagingMIMLInstances
+
ManagingMIMLInstances() - Constructor for class miml.tutorial.ManagingMIMLInstances
 
Max - Variable in class miml.data.normalization.MinMaxNormalization
@@ -150,9 +179,9 @@

M

Class that implements Maximal Hausdorff metric to measure the distance between 2 bags of a data set.
-
MaximalHausdorff() - Constructor for class miml.core.distance.MaximalHausdorff
+
MaximalHausdorff() - Constructor for class miml.core.distance.MaximalHausdorff
 
-
MaximalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MaximalHausdorff
+
MaximalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MaximalHausdorff
 
maxInstancesPerBag - Variable in class miml.data.statistics.MIStatistics
@@ -162,7 +191,11 @@

M

Number of iterations.
-
meanArray(long[]) - Method in class miml.evaluation.EvaluatorCV
+
maxIterations - Variable in class miml.clusterers.KMedoids
+
+
The maximum number of iterations the algorithm is allowed to run.
+
+
meanArray(long[]) - Method in class miml.evaluation.EvaluatorCV
Calculate the mean of given array.
@@ -170,6 +203,47 @@

M

The measures shown in the report.
+
medoidIndex(int) - Method in class miml.clusterers.KMedoids
+
+
Determines if an instance is being considered as medoid.
+
+
medoidIndices - Variable in class miml.clusterers.KMedoids
+
+
The medoid indices.
+
+
medoidInstances - Variable in class miml.clusterers.KMedoids
+
+
The medoid instances.
+
+
MedoidTransformation - Class in miml.transformation.mimlTOml
+
+
Class implementing the medoid-based transformation described in [1] to + transform an MIML problem to ML
+
+
MedoidTransformation() - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
+
MedoidTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
+
MedoidTransformation(MIMLInstances, double) - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
+
MedoidTransformation(MIMLInstances, int) - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
+
MedoidTransformation(MIMLInstances, KMedoids, boolean) - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
+
MedoidTransformation(MIMLInstances, IDistance, int) - Constructor for class miml.transformation.mimlTOml.MedoidTransformation
+
+
Constructor.
+
metric - Variable in class miml.classifiers.miml.lazy.MIMLDistanceFunction
Metric to measure distance between bags.
@@ -182,6 +256,10 @@

M

Metric for measure the distance between bags.
+
metric - Variable in class miml.clusterers.KMedoids
+
+
Distance function.
+
milstatistics - Variable in class miml.data.statistics.MIMLStatistics
Class with methods to obtain information about a MI dataset.
@@ -204,6 +282,8 @@

M

 
miml.classifiers.ml - package miml.classifiers.ml
 
+
miml.clusterers - package miml.clusterers
+
 
miml.core - package miml.core
 
miml.core.distance - package miml.core.distance
@@ -238,7 +318,7 @@

M

Class inheriting from DenseInstance to represent a MIML bag.
-
MIMLBag(Instance) - Constructor for class miml.data.MIMLBag
+
MIMLBag(Instance) - Constructor for class miml.data.MIMLBag
Constructor.
@@ -248,15 +328,15 @@

M

machine learning [1] that does not need any previous transformation of the problem.
-
MIMLBagging() - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
MIMLBagging() - Constructor for class miml.classifiers.miml.meta.MIMLBagging
No-argument constructor for xml configuration.
-
MIMLBagging(IMIMLClassifier, int) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
MIMLBagging(IMIMLClassifier, int) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
Constructor of the class.
-
MIMLBagging(IMIMLClassifier, int, double) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
+
MIMLBagging(IMIMLClassifier, int, double) - Constructor for class miml.classifiers.miml.meta.MIMLBagging
Constructor of the class.
@@ -264,7 +344,7 @@

M

Wrapper for mulan BinaryRelevance to be used in MIML to MI algorithms.
-
MIMLBinaryRelevance(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance
+
MIMLBinaryRelevance(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance
Creates a new instance.
@@ -273,19 +353,19 @@

M

MIMLBRkNN is the adaptation to the MIML framework of the BRkNN[1] multi-label algorithm.
-
MIMLBRkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
MIMLBRkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
No-arg constructor for xml configuration
-
MIMLBRkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
MIMLBRkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
Default constructor.
-
MIMLBRkNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
MIMLBRkNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
A constructor that sets the number of neighbours.
-
MIMLBRkNN(MIMLDistanceFunction, int, BRkNN.ExtensionType) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
+
MIMLBRkNN(MIMLDistanceFunction, int, BRkNN.ExtensionType) - Constructor for class miml.classifiers.miml.lazy.MIMLBRkNN
Constructor giving the option to select an extension of the base version.
@@ -296,7 +376,7 @@

M

I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining and Knowledge Discovery Handbook, O. -
MIMLClassifier() - Constructor for class miml.classifiers.miml.MIMLClassifier
+
MIMLClassifier() - Constructor for class miml.classifiers.miml.MIMLClassifier
 
MIMLClassifierToMI - Class in miml.classifiers.miml.mimlTOmi
@@ -304,13 +384,13 @@

M

Class implementing the transformation algorithm for MIML data to solve it with MI learning.
-
MIMLClassifierToMI(MultiLabelLearner) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
MIMLClassifierToMI() - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
-
Basic constructor.
+
No-argument constructor for xml configuration.
-
MIMLClassifierToMI() - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
MIMLClassifierToMI(MultiLabelLearner) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
-
No-argument constructor for xml configuration.
+
Basic constructor.
MIMLClassifierToML - Class in miml.classifiers.miml.mimlTOml
@@ -318,13 +398,13 @@

M

Class implementing the transformation algorithm for MIML data to solve it with ML learning.
-
MIMLClassifierToML(MultiLabelLearner, MIMLtoML) - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
MIMLClassifierToML() - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
-
Basic constructor to initialize the classifier.
+
No-argument constructor for xml configuration.
-
MIMLClassifierToML() - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
MIMLClassifierToML(MultiLabelLearner, MIMLtoML) - Constructor for class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
-
No-argument constructor for xml configuration.
+
Basic constructor to initialize the classifier.
mimlDataset - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
@@ -339,15 +419,15 @@

M

MIMLDGC is the adaptation to the MIML framework of the MLDGC[1] multi-label algorithm.
-
MIMLDGC() - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
MIMLDGC() - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
No-arg constructor for xml configuration
-
MIMLDGC(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
MIMLDGC(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
Default constructor.
-
MIMLDGC(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
+
MIMLDGC(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MIMLDGC
A constructor that sets the number of neighbours.
@@ -356,35 +436,36 @@

M

Wrapper for using IDistance metrics of MIML package with Mulan Lazy algorithms.
-
MIMLDistanceFunction(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
MIMLDistanceFunction(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLDistanceFunction
Constructor that sets the metric to be used.
+
mimlfast - Static variable in class miml.classifiers.miml.optimization.MIMLFast
+
+
A matlab object wrapping the MIMLFast algorithm.
+
MIMLFast - Class in miml.classifiers.miml.optimization
Wrapper for Matlab MIMLFast - algorithm for MIML data.
+ algorithm for MIML data.
+ See: S.
-
MIMLFast() - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
MIMLFast() - Constructor for class miml.classifiers.miml.optimization.MIMLFast
No-argument constructor for xml configuration.
-
MIMLFast(int, int, int, double, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
MIMLFast(int, int, int, double, double, int, int, int, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
Constructor setting several properties.
-
MIMLFast(int, int, int, double, double, int, int, int, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
+
MIMLFast(int, int, int, double, int) - Constructor for class miml.classifiers.miml.optimization.MIMLFast
Constructor setting several properties.
-
mimlfast - Static variable in class miml.classifiers.miml.optimization.MIMLFast
-
-
A matlab object wrapping the MIMLFast algorithm.
-
MIMLFuzzykNN - Class in miml.classifiers.miml.lazy
 
-
MIMLFuzzykNN() - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN
+
MIMLFuzzykNN() - Constructor for class miml.classifiers.miml.lazy.MIMLFuzzykNN
 
MIMLFuzzykNN.LinearNNESearch - Class in miml.classifiers.miml.lazy
 
@@ -393,44 +474,48 @@

M

MIMLIBLR is the adaptation to the MIML framework of the IBLR_ML[1] multi-label algorithm.
-
MIMLIBLR(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
MIMLIBLR() - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
-
Default constructor.
-
-
MIMLIBLR(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
-
-
A constructor that sets the number of neighbours.
+
No-arg constructor for xml configuration
-
MIMLIBLR(int, boolean, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
MIMLIBLR(int, boolean, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
A constructor that sets the number of neighbours and whether IBLR-ML or IBLR-ML+ is used.
-
MIMLIBLR() - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
MIMLIBLR(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
-
No-arg constructor for xml configuration
+
A constructor that sets the number of neighbours.
+
+
MIMLIBLR(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLIBLR
+
+
Default constructor.
MIMLInstances - Class in miml.data
Class inheriting from MultiLabelnstances to represent MIML data.
-
MIMLInstances(Instances, String) - Constructor for class miml.data.MIMLInstances
+
MIMLInstances(String, int) - Constructor for class miml.data.MIMLInstances
Constructor.
-
MIMLInstances(Instances, LabelsMetaData) - Constructor for class miml.data.MIMLInstances
+
MIMLInstances(String, String) - Constructor for class miml.data.MIMLInstances
Constructor.
-
MIMLInstances(String, String) - Constructor for class miml.data.MIMLInstances
+
MIMLInstances(MIMLInstances) - Constructor for class miml.data.MIMLInstances
Constructor.
-
MIMLInstances(String, int) - Constructor for class miml.data.MIMLInstances
+
MIMLInstances(MultiLabelInstances) - Constructor for class miml.data.MIMLInstances
Constructor.
-
MIMLInstances(MIMLInstances) - Constructor for class miml.data.MIMLInstances
+
MIMLInstances(Instances, String) - Constructor for class miml.data.MIMLInstances
+
+
Constructor.
+
+
MIMLInstances(Instances, LabelsMetaData) - Constructor for class miml.data.MIMLInstances
Constructor.
@@ -438,23 +523,23 @@

M

Class implementing the MIMLkNN algorithm for MIML data.
-
MIMLkNN(int, int, IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
MIMLkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
-
Basic constructor to initialize the classifier.
+
No-argument constructor for xml configuration.
-
MIMLkNN(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
MIMLkNN(int, int, IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
-
Instantiates a new MIMLkNN with values by default except distance metric.
+
Basic constructor to initialize the classifier.
-
MIMLkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
+
MIMLkNN(IDistance) - Constructor for class miml.classifiers.miml.lazy.MIMLkNN
-
No-argument constructor for xml configuration.
+
Instantiates a new MIMLkNN with values by default except distance metric.
MIMLLabelPowerset - Class in miml.classifiers.miml.mimlTOmi
Wrapper for mulan LabelPowerset to be used in MIML to MI algorithms.
-
MIMLLabelPowerset(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
+
MIMLLabelPowerset(Classifier) - Constructor for class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
Constructor that initializes the learner with a base classifier.
@@ -463,28 +548,32 @@

M

Class that uses LabelPowerset transformation to convert MIMLInstances to MIL Instances with relational attribute.
-
MIMLLabelPowersetTransformation() - Constructor for class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
+
MIMLLabelPowersetTransformation() - Constructor for class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
 
MIMLMAPkNN - Class in miml.classifiers.miml.lazy
MIMLMAPkNN is the adaptation to the MIML framework of the MLkNN[1] multi-label algorithm.
-
MIMLMAPkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
MIMLMAPkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
-
Default constructor.
+
No-arg constructor for xml configuration
+
+
MIMLMAPkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
+
A constructor that sets the number of neighbours and the value of smooth.
-
MIMLMAPkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
MIMLMAPkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
A constructor that sets the number of neighbours.
-
MIMLMAPkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
MIMLMAPkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
-
A constructor that sets the number of neighbours and the value of smooth.
+
Default constructor.
-
MIMLMAPkNN() - Constructor for class miml.classifiers.miml.lazy.MIMLMAPkNN
+
mimlnn - Static variable in class miml.classifiers.miml.neural.MIMLNN
-
No-arg constructor for xml configuration
+
A matlab object wrapping the EnMIMLNNmetric algorithm.
MIMLNN - Class in miml.classifiers.miml.neural
@@ -493,21 +582,21 @@

M

MIMLNNalgorithm for MIML data.
-
MIMLNN() - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
MIMLNN() - Constructor for class miml.classifiers.miml.neural.MIMLNN
No-argument constructor for xml configuration.
-
MIMLNN(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
MIMLNN(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLNN
Basic constructor to initialize the classifier.
-
MIMLNN(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLNN
+
MIMLNN(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLNN
Constructor to initialize the classifier.
-
mimlnn - Static variable in class miml.classifiers.miml.neural.MIMLNN
+
mimlrbf - Static variable in class miml.classifiers.miml.neural.MIMLRBF
-
A matlab object wrapping the EnMIMLNNmetric algorithm.
+
A matlab object wrapping the mimlrbf algorithm.
MIMLRBF - Class in miml.classifiers.miml.neural
@@ -516,96 +605,100 @@

M

MIMLRBF algorithm for MIML data.
-
MIMLRBF() - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
MIMLRBF() - Constructor for class miml.classifiers.miml.neural.MIMLRBF
No-argument constructor for xml configuration.
-
MIMLRBF(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
MIMLRBF(double, double) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
Basic constructor to initialize the classifier.
-
MIMLRBF(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
+
MIMLRBF(double, double, int) - Constructor for class miml.classifiers.miml.neural.MIMLRBF
Constructor to initialize the classifier.
-
mimlrbf - Static variable in class miml.classifiers.miml.neural.MIMLRBF
-
-
A matlab object wrapping the mimlrbf algorithm.
-
MIMLReport - Class in miml.report
Abstract class for a MIMLReport.
-
MIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.MIMLReport
+
MIMLReport() - Constructor for class miml.report.MIMLReport
-
Basic constructor to initialize the report.
+
No-argument constructor for xml configuration.
-
MIMLReport() - Constructor for class miml.report.MIMLReport
+
MIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.MIMLReport
-
No-argument constructor for xml configuration.
+
Basic constructor to initialize the report.
MIMLStatistics - Class in miml.data.statistics
Class with methods to obtain information about a MIML dataset.
-
MIMLStatistics(MIMLInstances) - Constructor for class miml.data.statistics.MIMLStatistics
+
MIMLStatistics(MIMLInstances) - Constructor for class miml.data.statistics.MIMLStatistics
Constructor.
+
mimlsvm - Variable in class miml.classifiers.miml.optimization.MIMLSVM
+
+
A matlab object wrapping the MIMLSVM algorithm.
+
MIMLSVM - Class in miml.classifiers.miml.optimization
Wrapper for Matlab MIMLSVM algorithm - for MIML data.
+ for MIML data.
+ See: Z.
-
MIMLSVM() - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
+
MIMLSVM() - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
No-argument constructor for xml configuration.
-
MIMLSVM(String, String, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
+
MIMLSVM(String, String, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLSVM
Constructor initializing fields of MIMLSVM.
-
mimlsvm - Variable in class miml.classifiers.miml.optimization.MIMLSVM
-
-
A matlab object wrapping the MIMLSVM algorithm.
-
MIMLtoMITransformation - Class in miml.tutorial
Class for basic handling of MIML to MIL LP and BR transformation.
-
MIMLtoMITransformation() - Constructor for class miml.tutorial.MIMLtoMITransformation
+
MIMLtoMITransformation() - Constructor for class miml.tutorial.MIMLtoMITransformation
 
MIMLtoML - Class in miml.transformation.mimlTOml
Abstract class to transform MIMLInstances into MultiLabelInstances.
-
MIMLtoML() - Constructor for class miml.transformation.mimlTOml.MIMLtoML
-
 
+
MIMLtoML() - Constructor for class miml.transformation.mimlTOml.MIMLtoML
+
+
Constructor that does not sets the dataset
+
+
MIMLtoML(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.MIMLtoML
+
+
Constructor that sets the dataset
+
MIMLtoMLTransformation - Class in miml.tutorial
Class for basic handling of the transformation MIML to ML transformations.
-
MIMLtoMLTransformation() - Constructor for class miml.tutorial.MIMLtoMLTransformation
+
MIMLtoMLTransformation() - Constructor for class miml.tutorial.MIMLtoMLTransformation
 
+
mimlwel - Variable in class miml.classifiers.miml.optimization.MIMLWel
+
+
A matlab object wrapping the MIMLWel algorithm.
+
MIMLWel - Class in miml.classifiers.miml.optimization
Wrapper for Matlab MIMLFast - algorithm for MIML data.
+ algorithm for MIML data.
+ See: S.
-
MIMLWel() - Constructor for class miml.classifiers.miml.optimization.MIMLWel
+
MIMLWel() - Constructor for class miml.classifiers.miml.optimization.MIMLWel
No-argument constructor for xml configuration.
-
MIMLWel(double, double, double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLWel
+
MIMLWel(double, double, double, double, double, double, double) - Constructor for class miml.classifiers.miml.optimization.MIMLWel
Constructor initializing fields of MIMLWel.
-
mimlwel - Variable in class miml.classifiers.miml.optimization.MIMLWel
-
-
A matlab object wrapping the MIMLWel algorithm.
-
Min - Variable in class miml.data.normalization.MinMaxNormalization
 
MinimalHausdorff - Class in miml.core.distance
@@ -613,14 +706,18 @@

M

Class that implements Minimal Hausdorff metric to measure the distance between 2 bags of a data set.
-
MinimalHausdorff() - Constructor for class miml.core.distance.MinimalHausdorff
+
MinimalHausdorff() - Constructor for class miml.core.distance.MinimalHausdorff
 
-
MinimalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MinimalHausdorff
+
MinimalHausdorff(MIMLInstances) - Constructor for class miml.core.distance.MinimalHausdorff
 
-
minimax(Instances, int) - Static method in class miml.transformation.mimlTOml.MIMLtoML
+
minimax(Instances, int) - Static method in class miml.transformation.mimlTOml.MIMLtoML
Get the minimal and maximal value of a certain attribute in a data set.
+
minimize - Variable in class miml.clusterers.KMedoids
+
+
Whether the metric is maximized o minimized.
+
minInstancesPerBag - Variable in class miml.data.statistics.MIStatistics
The minimum number of instances per bag.
@@ -629,24 +726,24 @@

M

Class implementing min-max normalization for MIML datasets.
-
MinMaxNormalization() - Constructor for class miml.data.normalization.MinMaxNormalization
+
MinMaxNormalization() - Constructor for class miml.data.normalization.MinMaxNormalization
 
MinMaxTransformation - Class in miml.transformation.mimlTOml
Class that performs a miniMaxc transformation to convert a MIMLInstances class to MultiLabelInstances.
-
MinMaxTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
+
MinMaxTransformation() - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
MinMaxTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
Constructor.
-
MinMaxTransformation() - Constructor for class miml.transformation.mimlTOml.MinMaxTransformation
-
 
MISMOWrapper - Class in miml.classifiers.mi
Wrapper for MISMO algorithm to work in MIML to MI classifiers.
-
MISMOWrapper() - Constructor for class miml.classifiers.mi.MISMOWrapper
+
MISMOWrapper() - Constructor for class miml.classifiers.mi.MISMOWrapper
 
MIStatistics - Class in miml.data.statistics
@@ -654,27 +751,25 @@

M

number of attributes per bag, the average number of instances per bag, and the distribution of number of instances per bag...
-
MIStatistics(Instances) - Constructor for class miml.data.statistics.MIStatistics
+
MIStatistics(Instances) - Constructor for class miml.data.statistics.MIStatistics
 
mlDataSet - Variable in class miml.data.statistics.MLStatistics
Multi label dataset
-
mlDataSetWithBagId - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
-
 
MLDGC - Class in miml.classifiers.ml
Implementation of MLDGC (Multi-Label Data Gravitation Model) algorithm.
-
MLDGC() - Constructor for class miml.classifiers.ml.MLDGC
+
MLDGC() - Constructor for class miml.classifiers.ml.MLDGC
The default constructor.
-
MLDGC(int) - Constructor for class miml.classifiers.ml.MLDGC
+
MLDGC(int) - Constructor for class miml.classifiers.ml.MLDGC
Constructor initializing the number of neighbors.
-
MLDGC(int, DistanceFunction) - Constructor for class miml.classifiers.ml.MLDGC
+
MLDGC(int, DistanceFunction) - Constructor for class miml.classifiers.ml.MLDGC
Constructor initializing the number of neighbors and the distance function.
@@ -684,7 +779,7 @@

M

Class with methods to write to file a multi-label dataset.
-
MLSave() - Constructor for class miml.data.MLSave
+
MLSave() - Constructor for class miml.data.MLSave
 
mlstatistics - Variable in class miml.data.statistics.MIMLStatistics
@@ -694,7 +789,7 @@

M

Class with methods to obtain information about a ML dataset.
-
MLStatistics(MultiLabelInstances) - Constructor for class miml.data.statistics.MLStatistics
+
MLStatistics(MultiLabelInstances) - Constructor for class miml.data.statistics.MLStatistics
Constructor.
@@ -717,17 +812,17 @@

M

Wrapper for class MultiLabelKNN of Mulan to work with MIML data
-
MultiInstanceMultiLabelKNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
MultiInstanceMultiLabelKNN() - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
-
Constructor to initialize the classifier.
+
No-arg constructor for xml configuration
-
MultiInstanceMultiLabelKNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
MultiInstanceMultiLabelKNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
Constructor to initialize the classifier.
-
MultiInstanceMultiLabelKNN() - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
MultiInstanceMultiLabelKNN(MIMLDistanceFunction, int) - Constructor for class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
-
No-arg constructor for xml configuration
+
Constructor to initialize the classifier.
multipleEvaluation - Variable in class miml.evaluation.EvaluatorCV
@@ -738,28 +833,31 @@

M

Class to execute Matlab MIML classifiers.
-
MWClassifier() - Constructor for class miml.classifiers.miml.MWClassifier
+
MWClassifier() - Constructor for class miml.classifiers.miml.MWClassifier
 
MWTranslator - Class in miml.data
Class to serve as interface between MIMLInstances and Matlab data types.
-
MWTranslator(MIMLInstances) - Constructor for class miml.data.MWTranslator
+
MWTranslator(MIMLInstances) - Constructor for class miml.data.MWTranslator
Constructor.
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-13.html b/documentation/apidoc/index-files/index-13.html old mode 100755 new mode 100644 index 95b1098..d3e0713 --- a/documentation/apidoc/index-files/index-13.html +++ b/documentation/apidoc/index-files/index-13.html @@ -1,12 +1,22 @@ - + - + N-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

N

@@ -94,10 +119,19 @@

N

Norm of each vector.
-
normalize(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
+
normalize - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
True if the resulting transformed dataset will be normalized to (0,1) with + min-max normalization.
+
+
normalize(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
Applies min-max normalization on a MIMLInstances dataset.
+
normalize(MultiLabelInstances) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Normalizes a multi-label dataset performing min-max normalization.
+
normalized - Variable in class miml.data.normalization.MinMaxNormalization
Value indicating if the bag attributes of the dataset were normalized before @@ -107,7 +141,7 @@

N

Class to show an example of normalization of a MIML Dataset.
-
NormalizingDataset() - Constructor for class miml.tutorial.NormalizingDataset
+
NormalizingDataset() - Constructor for class miml.tutorial.NormalizingDataset
 
num_citers - Variable in class miml.classifiers.miml.lazy.MIMLkNN
@@ -129,10 +163,24 @@

N

The number of bags.
+
numberOfClusters() - Method in class miml.clusterers.KMedoids
+
 
numClassifiers - Variable in class miml.classifiers.miml.meta.MIMLBagging
Number of classifiers in the ensemble.
+
numClusters - Variable in class miml.clusterers.KMedoids
+
+
Number of clusters to generate.
+
+
numClusters - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
The number of clusters.
+
+
numClusters - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
The number of clusters for kmedoids.
+
numExamples - Variable in class miml.data.statistics.MLStatistics
The number of examples.
@@ -141,6 +189,14 @@

N

The number of folds.
+
numInstances - Variable in class miml.clusterers.KMedoids
+
+
Number of instances in the dataset.
+
+
numIterations - Variable in class miml.clusterers.KMedoids
+
+
Final number of iterations to perform clustering.
+
numLabels - Variable in class miml.classifiers.miml.MIMLClassifier
The number of labels the learner can handle.
@@ -161,22 +217,29 @@

N

Number of neighbours used in the k-nearest neighbor algorithm.
+
numTrees - Variable in class miml.classifiers.ml.RFPCT
+
+
The number of random trees in the ensemble.
+
nUnique - Variable in class miml.data.statistics.MLStatistics
Number of labelSets with only one pattern.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-14.html b/documentation/apidoc/index-files/index-14.html old mode 100755 new mode 100644 index b6d6d37..1a19643 --- a/documentation/apidoc/index-files/index-14.html +++ b/documentation/apidoc/index-files/index-14.html @@ -1,12 +1,22 @@ - + - + O-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

O

@@ -106,17 +131,20 @@

O

opts_norm - Variable in class miml.classifiers.miml.optimization.MIMLFast
 
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-15.html b/documentation/apidoc/index-files/index-15.html old mode 100755 new mode 100644 index b463135..dfd3e58 --- a/documentation/apidoc/index-files/index-15.html +++ b/documentation/apidoc/index-files/index-15.html @@ -1,12 +1,22 @@ - + - + P-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

P

@@ -79,14 +104,17 @@

P

A string that gives the corresponding parameters used for the svm: If type is "RBF", para gives the value of gamma (i.e. para="1") where the - kernel is exp(-Gamma*|x(i)-x(j)|^2).
+ kernel is exp(-Gamma*|x(i)-x(j)|^2). + If type is "Poly", then para gives the value of gamma, coefficient, and + degree respectively, where the kernel is + (gamma*<x(i),x(j)>+coefficient)^degree.
Params - Class in miml.core
This class contains the list of classes and objects needed to create a new instance of a Multi Label classifier through a specific constructor.
-
Params(Class<?>[], Object[]) - Constructor for class miml.core.Params
+
Params(Class<?>[], Object[]) - Constructor for class miml.core.Params
Generic constructor
@@ -94,11 +122,11 @@

P

General scheme for partitioning multi-output data.
-
PartitionerBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
+
PartitionerBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
Constructor of the class
-
PartitionerBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
+
PartitionerBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.PartitionerBase
Constructor of the class
@@ -106,6 +134,16 @@

P

The highest labelSet count.
+
percentage - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of training bags in the dataset.
+
+
percentage - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of bags of the dataset.
+
phi - Variable in class miml.data.statistics.MLStatistics
Phi matrix values in [-1,1] where -1 = inverse relation, 0 = no relation, 1 = @@ -115,12 +153,12 @@

P

The phi matrix.
-
pMax() - Method in class miml.data.statistics.MIMLStatistics
+
pMax() - Method in class miml.data.statistics.MIMLStatistics
Returns pMax, the proportion of examples associated with the most frequently occurring labelset.
-
pMax() - Method in class miml.data.statistics.MLStatistics
+
pMax() - Method in class miml.data.statistics.MLStatistics
Returns pMax, the proportion of examples associated with the most frequently occurring labelset.
@@ -129,51 +167,57 @@

P

The number of positive examples per label.
-
postProcessDistances(double[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
postProcessDistances(double[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
Performs a prediction on a test bag.
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
 
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
 
-
predictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
prepareMeasuresClassification(MultiLabelInstances) - Method in class miml.evaluation.EvaluatorHoldoutClus
 
-
prepareTemplate() - Method in class miml.transformation.mimlTOml.MIMLtoML
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
 
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
 
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.MIMLtoML
Prepares a template to perform the transformation from MIMLInstances to MultiLabelInstances.
-
prepareTemplate() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
 
-
prepareTemplate() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
prepareTemplate() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
Prepares a template to perform the transformation from MIMLInstances to MultiLabelInstances.
-
printPhiDiagram(double) - Method in class miml.data.statistics.MIMLStatistics
+
printPhiDiagram(double) - Method in class miml.data.statistics.MIMLStatistics
This method prints data, useful for the visualization of Phi per dataset.
-
printPhiDiagram(double) - Method in class miml.data.statistics.MLStatistics
+
printPhiDiagram(double) - Method in class miml.data.statistics.MLStatistics
This method prints data, useful for the visualization of Phi per dataset.
-
priors() - Method in class miml.data.statistics.MIMLStatistics
+
priors() - Method in class miml.data.statistics.MIMLStatistics
Returns the prior probabilities of the labels.
-
priors() - Method in class miml.data.statistics.MLStatistics
+
priors() - Method in class miml.data.statistics.MLStatistics
Returns the prior probabilities of the labels.
@@ -182,38 +226,46 @@

P

Class that performs a propositionalTransformation to convert a MIMLInstances dataset to MultiLabelInstances.
-
PropositionalTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
+
PropositionalTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
Constructor.
-
PropositionalTransformation(MIMLInstances, boolean) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
+
PropositionalTransformation(MIMLInstances, boolean) - Constructor for class miml.transformation.mimlTOml.PropositionalTransformation
Constructor.
-
pUnique() - Method in class miml.data.statistics.MIMLStatistics
+
prototypes - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Clustering prototypes obtained each one as the nearest instance to each + centroid.
+
+
pUnique() - Method in class miml.data.statistics.MIMLStatistics
Returns proportion of unique label combinations (pPunique) value defined as the proportion of labelsets which are unique across the total number of examples.
-
pUnique() - Method in class miml.data.statistics.MLStatistics
+
pUnique() - Method in class miml.data.statistics.MLStatistics
Returns proportion of unique label combinations (pPunique) value defined as the proportion of labelsets which are unique across the total number of examples.
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-16.html b/documentation/apidoc/index-files/index-16.html old mode 100755 new mode 100644 index 8018a22..a4d2d8e --- a/documentation/apidoc/index-files/index-16.html +++ b/documentation/apidoc/index-files/index-16.html @@ -1,12 +1,22 @@ - + - + R-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

R

@@ -79,24 +104,33 @@

R

Class to split a multi-label dataset into N multi-label random datasets for cross-validation.
-
RandomCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
+
RandomCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
Constructor.
-
RandomCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
+
RandomCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomCrossValidation
Default constructor.
+
randomInitialization - Variable in class miml.clusterers.KMedoids
+
+
Whether the initialization of medoids is random o applying the BUILD method + of PAM algorithm.
+
+
randomInitialization() - Method in class miml.clusterers.KMedoids
+
+
Performs a random initialization of medoids.
+
RandomTrainTest - Class in miml.data.partitioning.random
Class to split a multi-label dataset into two multi-label random datasets corresponding to the train and test datasets respectively.
-
RandomTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
+
RandomTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
Constructor.
-
RandomTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
+
RandomTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.random.RandomTrainTest
Default constructor.
@@ -125,7 +159,7 @@

R

The number of centroids of the i-th class is set to be ratio*Ti, where Ti is the number of train bags with label i.
-
readMultiLabelLearnerParams(Configuration) - Static method in class miml.core.Utils
+
readMultiLabelLearnerParams(Configuration) - Static method in class miml.core.Utils
Read the configuration parameters for a specific Multi Label classifier's constructor
@@ -136,19 +170,23 @@

R

relationMethod - Variable in class miml.classifiers.miml.optimization.KiSar
-
Method used to build relation matrix.
+
Method used to build relation matrix.
+ + 1 => the identity matrix is returned.
-
removeBagId(MultiLabelInstances) - Static method in class miml.transformation.mimlTOml.PropositionalTransformation
+
removeBagId(MultiLabelInstances) - Static method in class miml.transformation.mimlTOml.PropositionalTransformation
Removes the bagId attribute in MultiLabelInstances.
removeFilter - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
-
 
+
+
The filter that removes the bagId attribute
+
removeFilter - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
Filter
-
resample(Instances, double, boolean, int) - Static method in class miml.core.Utils
+
resample(Instances, double, boolean, int) - Static method in class miml.core.Utils
Obtains a sample of the original data.
@@ -156,40 +194,66 @@

R

Class to show an example of sampling with replacement.
-
Resampling() - Constructor for class miml.tutorial.Resampling
+
Resampling() - Constructor for class miml.tutorial.Resampling
 
-
returnPossibleSplitsForNotAnnotated(double[][]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
returnPossibleSplitsForNotAnnotated(double[][]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns the possible folds for the examples that are not annotated with any label.
+
RFPCT - Class in miml.classifiers.ml
+
+
This class is a wrapper for RFPCT implemented in the clus library + CLUS library.
+
+
RFPCT() - Constructor for class miml.classifiers.ml.RFPCT
+
+
No-argument constructor for xml configuration.
+
+
RFPCT(String) - Constructor for class miml.classifiers.ml.RFPCT
+
+
Constructor.
+
+
RFPCT(String, String, int, long) - Constructor for class miml.classifiers.ml.RFPCT
+
+
Constructor.
+
+
roundsCV(MIMLInstances, int, int, int) - Static method in class miml.data.MIMLInstances
+
+
Generate tran/test partitions for CV cross validation.
+
RunAlgorithm - Class in miml.run
Class that allow run any algorithm of the library configured by a file configuration.
-
RunAlgorithm() - Constructor for class miml.run.RunAlgorithm
+
RunAlgorithm() - Constructor for class miml.run.RunAlgorithm
 
-
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorCV
+
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorCV
 
-
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorHoldout
+
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorHoldout
 
-
runExperiment(IMIMLClassifier) - Method in interface miml.evaluation.IEvaluator
+
runExperiment(IMIMLClassifier) - Method in class miml.evaluation.EvaluatorHoldoutClus
+
 
+
runExperiment(IMIMLClassifier) - Method in interface miml.evaluation.IEvaluator
Run an experiment.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-17.html b/documentation/apidoc/index-files/index-17.html old mode 100755 new mode 100644 index 73a9ad3..ca339ba --- a/documentation/apidoc/index-files/index-17.html +++ b/documentation/apidoc/index-files/index-17.html @@ -1,12 +1,22 @@ - + - + S-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

S

@@ -82,37 +107,37 @@

S

Determines whether the classifier will consider sampling with replacement.
-
saveArff(MIMLInstances, String) - Static method in class miml.data.MLSave
+
saveArff(MIMLInstances, String) - Static method in class miml.data.MLSave
Writes an arff file with a multi-label dataset.
-
saveArff(MultiLabelInstances, String) - Static method in class miml.data.MLSave
+
saveArff(MultiLabelInstances, String) - Static method in class miml.data.MLSave
Writes an arff file with a multi-label dataset.
-
saveArff(Instances, String) - Static method in class miml.data.MLSave
+
saveArff(Instances, String) - Static method in class miml.data.MLSave
Writes an arff file with an Instances dataset.
-
saveReport(String) - Method in interface miml.report.IReport
+
saveReport(String) - Method in interface miml.report.IReport
Save in a file the specified report.
-
saveReport(String) - Method in class miml.report.MIMLReport
+
saveReport(String) - Method in class miml.report.MIMLReport
Save in a file the specified report.
-
saveXml(MultiLabelInstances, String) - Static method in class miml.data.MLSave
+
saveXml(ArrayList<String>, String) - Static method in class miml.data.MLSave
-
Writes an xml file with label definitions of a multi-label dataset.
+
Writes an xml file.
-
saveXml(Instances, String) - Static method in class miml.data.MLSave
+
saveXml(MultiLabelInstances, String) - Static method in class miml.data.MLSave
-
Writes an xml file with label definitions of an instances dataset.
+
Writes an xml file with label definitions of a multi-label dataset.
-
saveXml(ArrayList<String>, String) - Static method in class miml.data.MLSave
+
saveXml(Instances, String) - Static method in class miml.data.MLSave
-
Writes an xml file.
+
Writes an xml file with label definitions of an instances dataset.
seed - Variable in class miml.classifiers.miml.meta.MIMLBagging
@@ -134,6 +159,10 @@

S

Seed for kmedoids clustering.
+
seed - Variable in class miml.classifiers.ml.RFPCT
+
+
A seed for randomization.
+
seed - Variable in class miml.data.partitioning.PartitionerBase
Seed for reproduction of results
@@ -142,6 +171,14 @@

S

The seed for the partition.
+
seed - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
The seed for kmeans clustering.
+
+
seed - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
The seed for kmedoids clustering.
+
serialVersionUID - Static variable in class miml.classifiers.mi.MISMOWrapper
Generated Serial version UID.
@@ -248,6 +285,14 @@

S

For serialization
+
serialVersionUID - Static variable in class miml.classifiers.ml.RFPCT
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.clusterers.KMedoids
+
+
For serialization.
+
serialVersionUID - Static variable in class miml.core.distance.AverageHausdorff
Generated Serial version UID.
@@ -288,6 +333,14 @@

S

For serialization
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
For serialization.
+
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
For serialization
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.MIMLtoML
For serialization.
@@ -296,341 +349,424 @@

S

For serialization
-
setAddFeatures(boolean) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
serialVersionUID - Static variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
For serialization.
+
+
setAddFeatures(boolean) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
Sets the value of AddFeatures.
-
setAlgorithmName(String) - Static method in class miml.core.ConfigParameters
+
setAlgorithmName(String) - Static method in class miml.core.ConfigParameters
Sets the algorithm name.
-
setAttributeIndices(String) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
setAttributeIndices(String) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
setC(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
setC(double) - Method in class miml.classifiers.miml.optimization.KiSar
Sets the value of the C property.
-
setClasses(Class<?>[]) - Method in class miml.core.Params
+
setClasses(Class<?>[]) - Method in class miml.core.Params
 
-
setClassifier(MultiLabelKNN) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
setClassifier(MultiLabelKNN) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
 
-
setClassifierName(String) - Static method in class miml.core.ConfigParameters
+
setClassifierName(String) - Static method in class miml.core.ConfigParameters
Sets the classifier name.
-
setConfigFileName(String) - Static method in class miml.core.ConfigParameters
+
setConfigFileName(String) - Static method in class miml.core.ConfigParameters
Sets the configuration file name.
-
setConfiguration(Configuration) - Method in class miml.core.ConfigLoader
+
setConfiguration(Configuration) - Method in class miml.core.ConfigLoader
Sets the configuration for the experiment.
-
setCost(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setCost(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
Sets the value of the cost property.
-
setD(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setD(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the D property.
-
setDataFileName(String) - Static method in class miml.core.ConfigParameters
+
setDataFileName(String) - Static method in class miml.core.ConfigParameters
Sets the data file name.
-
setDataSet(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
setDataSet(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
Set the dataset used.
-
setDebug(boolean) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
setDebug(boolean) - Method in interface miml.classifiers.miml.IMIMLClassifier
 
-
setDebug(boolean) - Method in class miml.classifiers.miml.MIMLClassifier
+
setDebug(boolean) - Method in class miml.classifiers.miml.MIMLClassifier
 
-
setEpsilon(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
setDistanceFunction(IDistance) - Method in class miml.clusterers.KMedoids
+
+
Sets the distance function to use for clustering.
+
+
setDistanceFunction(IDistance) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the distance function to use for clustering.
+
+
setEpsilon(double) - Method in class miml.classifiers.miml.optimization.KiSar
Sets the value of the epsilon property.
-
setExtension(BRkNN.ExtensionType) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
setExtension(BRkNN.ExtensionType) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
Sets the type of extension to be used (see BRkNN.ExtensionType).
-
setExtNeigh(boolean) - Method in class miml.classifiers.ml.MLDGC
+
setExtNeigh(boolean) - Method in class miml.classifiers.ml.MLDGC
Sets the value of the property isExtNeigh.
-
setFilename(String) - Method in class miml.report.MIMLReport
+
setFilename(String) - Method in class miml.report.MIMLReport
Sets the name of the file.
-
setH(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setH(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
Sets the value of the h property.
-
setHeader(boolean) - Method in class miml.report.MIMLReport
+
setHeader(boolean) - Method in class miml.report.MIMLReport
Sets if header is shown.
-
setIncludeBagId(boolean) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
setIncludeBagId(boolean) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
Sets the value for includeBagId property.
-
setInstances(Instances) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
setInstances(MIMLInstances) - Method in class miml.core.distance.HausdorffDistance
 
-
setInstances(MIMLInstances) - Method in class miml.core.distance.HausdorffDistance
+
setInstances(MIMLInstances) - Method in interface miml.core.distance.IDistance
+
+
Sets the Intances in the form of MIMLBags.
+
+
setInstances(Instances) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
setInvertSelection(boolean) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
setInstances(Instances) - Method in class miml.core.distance.HausdorffDistance
 
-
setIsTransformation(Boolean) - Static method in class miml.core.ConfigParameters
+
setInstances(Instances) - Method in interface miml.core.distance.IDistance
+
+
Sets the Intances in the form of a set of Instances with relational + attribute.
+
+
setInvertSelection(boolean) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
setIsTransformation(Boolean) - Static method in class miml.core.ConfigParameters
Sets if the method used is transformation.
-
setIteration(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
setIteration(double) - Method in class miml.classifiers.miml.optimization.KiSar
Sets the value of the iteration property.
-
setK(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
setK(double) - Method in class miml.classifiers.miml.optimization.KiSar
Sets the value of the k property.
-
setLabels(boolean) - Method in class miml.report.MIMLReport
+
setLabels(boolean) - Method in class miml.report.MIMLReport
Sets if measure for each label (macro-averaged measures) is shown.
-
setLambda(double) - Method in class miml.classifiers.miml.neural.MIMLNN
+
setLambda(double) - Method in class miml.classifiers.miml.neural.MIMLNN
Sets the fraction parameter considered to determine the number of clusters to build the classifier.
-
setLambda(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setLambda(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the lambda property.
-
setMaxiter(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setMaxiter(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the maxiter property.
-
setMeasures(List<String>) - Method in class miml.report.MIMLReport
+
setMaxIterations(int) - Method in class miml.clusterers.KMedoids
+
+
Sets the maximum number of iterations for clustering.
+
+
setMaxIterations(int) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the maximum number of iterations for clustering.
+
+
setMeasures(List<String>) - Method in class miml.report.MIMLReport
Sets the measures shown in the report.
-
setMetric(IDistance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
setMetric(IDistance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
Sets the metric to be used.
-
setMetric(DistanceFunction) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
setMetric(DistanceFunction) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
Sets the distance metric considered by the classifier.
-
setMu(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
setMu(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Sets the scaling factor parameter to build the classifier.
-
setMu(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
setMu(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
Sets the scaling factor parameter to build the classifier.
-
setMu(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setMu(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the mu property.
-
setNorm_up(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setNorm_up(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the norm_up property.
-
setNum_sub(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setNormalize(Boolean) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the property normalized.
+
+
setNum_sub(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the num_sub property.
-
setNumCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
setNumCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Sets the number of citers considered to estimate the class prediction of tests bags.
-
setNumFolds(int) - Method in class miml.evaluation.EvaluatorCV
+
setNumClusters(int) - Method in class miml.clusterers.KMedoids
+
+
Sets the number of clusters to perform clustering.
+
+
setNumClusters(int) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Sets the number of clusters to perform clustering in both the transformer and + in the clusterer.
+
+
setNumClusters(int) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the number of clusters to perform clustering in both the transformer and + in the clusterer.
+
+
setNumFolds(int) - Method in class miml.evaluation.EvaluatorCV
Sets the number of folds used in the experiment.
-
setnumOfNeighbours(int) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
setnumOfNeighbours(int) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
Sets the number of neigbors considered by the classifier.
-
setNumReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
setNumReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Sets the number of references considered to estimate the class prediction of tests bags.
-
setObjects(Object[]) - Method in class miml.core.Params
+
setNumTrees(int) - Method in class miml.classifiers.ml.RFPCT
+
+
Sets the number of trees in the forest.
+
+
setObjects(Object[]) - Method in class miml.core.Params
 
-
setOptions(String[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
setOptions(String[]) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
setOpts_average_begin(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setOpts_average_begin(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the opts_average_begin property.
-
setOpts_average_size(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setOpts_average_size(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the opts_average_size property.
-
setOpts_beta(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setOpts_beta(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the beta property.
-
setOpts_C(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setOpts_C(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the opts_C property.
-
setOpts_epsilon(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setOpts_epsilon(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the opts_epsilon property.
-
setOpts_iteration(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setOpts_iteration(int) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the opts_iteration property.
-
setOpts_m(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setOpts_m(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the opts_m property.
-
setOpts_norm(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setOpts_norm(int) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the opts_norm property.
-
setPara(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setPara(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
Sets the value of the para property.
-
setRatio(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
setPercentage(double) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
 
+
setPercentage(double) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the value of the percentage property.
+
+
setRandomInitialization(boolean) - Method in class miml.clusterers.KMedoids
+
+
Sets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering.
+
+
setRatio(double) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Sets the fraction parameter to build the classifier.
-
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLNN
+
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLNN
Sets the fraction parameter considered to determine the number of clusters to build the classifier.
-
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
setRatio(double) - Method in class miml.classifiers.miml.neural.MIMLRBF
Sets the fraction parameter to build the classifier.
-
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
Sets the value of the ratio property.
-
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
setRatio(double) - Method in class miml.classifiers.miml.optimization.MIMLWel
Sets the value of the ratio property.
-
setRelationMethod(double) - Method in class miml.classifiers.miml.optimization.KiSar
+
setRelationMethod(double) - Method in class miml.classifiers.miml.optimization.KiSar
Sets the value of the relationMethod property.
-
setSamplePercentage(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
setSamplePercentage(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
Sets the percentage of instances used for sampling with replacement*.
-
setSampleWithReplacement(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
setSampleWithReplacement(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
Configure the classifier to use/not use sampling with replacement.
-
setSeed(int) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
setSeed(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
+
Sets the value of the seed property.
+
+
setSeed(int) - Method in class miml.classifiers.miml.meta.MIMLBagging
Sets the seed value.
-
setSeed(int) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
setSeed(int) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Sets the seed for kmedoids clustering considered to build the classifier.
-
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLNN
+
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLNN
Sets the seed for kmedoids clustering considered to build the classifier.
-
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
setSeed(int) - Method in class miml.classifiers.miml.neural.MIMLRBF
Returns the seed for kmedoids clustering considered to build the classifier.
-
setSeed(double) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setSeed(int) - Method in class miml.evaluation.EvaluatorCV
-
Sets the value of the seed property.
+
Sets the seed used in the experiment.
-
setSeed(int) - Method in class miml.evaluation.EvaluatorCV
+
setSeed(int) - Method in class miml.transformation.mimlTOml.KMeansTransformation
-
Sets the seed used in the experiment.
+
Sets the value of the seed used for clustering in both the transformer and in + the clusterer.
-
setSmooth(double) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
setSeed(int) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Sets the value of the seed used for clustering in both the transformer and in + the clusterer.
+
+
setSeed(long) - Method in class miml.classifiers.ml.RFPCT
+
+
Sets the seed used by the random generator.
+
+
setSmooth(double) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
Sets the smooth factor considered by the classifier.
-
setSmooth(double) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
setSmooth(double) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
Sets the smooth factor considered by the classifier.
-
setStd(boolean) - Method in class miml.report.MIMLReport
+
setStd(boolean) - Method in class miml.report.MIMLReport
Sets if the std is going to be shown (only cross-validation).
-
setStep_size(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
setStep_size(double) - Method in class miml.classifiers.miml.optimization.MIMLFast
Sets the value of the step_size property.
-
setThreshold(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
setThreshold(double) - Method in class miml.classifiers.miml.meta.MIMLBagging
Sets the value of the threshold.
-
setTransformationMethod(String) - Static method in class miml.core.ConfigParameters
+
setTransformationMethod(String) - Static method in class miml.core.ConfigParameters
Sets the transformation method used in the experiment.
-
setType(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
setType(String) - Method in class miml.classifiers.miml.optimization.MIMLSVM
Sets the value of the type property.
-
setUseConfidences(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
setUseConfidences(boolean) - Method in class miml.classifiers.miml.meta.MIMLBagging
Stablishes whether confidences or bipartitions are used to combine classifiers in the ensemble.
-
setValue(int, int, double) - Method in class miml.data.MIMLBag
+
setValue(int, int, double) - Method in class miml.data.MIMLBag
Sets the value of attrIndex attribute of the instanceIndex to a certain value.
-
showUse() - Static method in class miml.tutorial.CrossValidationExperiment
+
showUse() - Static method in class miml.tutorial.CrossValidationExperiment
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.GeneratePartitions
+
showUse() - Static method in class miml.tutorial.GeneratePartitions
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.HoldoutExperiment
+
showUse() - Static method in class miml.tutorial.HoldoutExperiment
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.InsertingAttributesToBags
+
showUse() - Static method in class miml.tutorial.InsertingAttributesToBags
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.InsertingAttributeToBag
+
showUse() - Static method in class miml.tutorial.InsertingAttributeToBag
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.ManagingMIMLInstances
+
showUse() - Static method in class miml.tutorial.ManagingMIMLInstances
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.MIMLtoMITransformation
+
showUse() - Static method in class miml.tutorial.MIMLtoMITransformation
Shows the help on command line.
-
showUse() - Static method in class miml.tutorial.MIMLtoMLTransformation
+
showUse() - Static method in class miml.tutorial.MIMLtoMLTransformation
Shows the help on command line.
-
skewRatio() - Method in class miml.data.statistics.MIMLStatistics
+
similarity(Instance, MIMLBag, double) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Computes similarity between a centroid, represented by a single instance, and + a bag.
+
+
skewRatio() - Method in class miml.data.statistics.MIMLStatistics
Computes the skewRatio as peak/base.
-
skewRatio() - Method in class miml.data.statistics.MLStatistics
+
skewRatio() - Method in class miml.data.statistics.MLStatistics
Computes the skewRatio as peak/base.
@@ -643,26 +779,36 @@

S

Smooth factor
-
split(double) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
split(double) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
 
-
split(double) - Method in class miml.data.partitioning.powerset.LabelPowersetTrainTest
+
split(double) - Method in class miml.data.partitioning.powerset.LabelPowersetTrainTest
 
-
split(double) - Method in class miml.data.partitioning.random.RandomTrainTest
+
split(double) - Method in class miml.data.partitioning.random.RandomTrainTest
 
-
split(double) - Method in class miml.data.partitioning.TrainTestBase
+
split(double) - Method in class miml.data.partitioning.TrainTestBase
Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
-
splitData(MIMLInstances, double, int, int) - Static method in class miml.data.MIMLInstances
+
splitData(MIMLInstances, double, int, int) - Static method in class miml.data.MIMLInstances
-
Split MIML data train and test partition given a percentage and a partitioning method.
+
Split MIML data train and test partition given a percentage and a + partitioning method.
+
statsToString(MultiLabelInstances[]) - Method in class miml.data.partitioning.CrossValidationBase
+
 
+
statsToString(MultiLabelInstances[]) - Method in class miml.data.partitioning.PartitionerBase
+
+
Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
+
+
statsToString(MultiLabelInstances[]) - Method in class miml.data.partitioning.TrainTestBase
+
 
std - Variable in class miml.report.MIMLReport
If measures' standard deviation are shown.
-
stdArray(long[]) - Method in class miml.evaluation.EvaluatorCV
+
stdArray(long[]) - Method in class miml.evaluation.EvaluatorCV
Calculate the standard deviation of given array.
@@ -671,17 +817,20 @@

S

Step size of SGD (stochastic gradient descent).
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-18.html b/documentation/apidoc/index-files/index-18.html old mode 100755 new mode 100644 index 414d521..09cc0b9 --- a/documentation/apidoc/index-files/index-18.html +++ b/documentation/apidoc/index-files/index-18.html @@ -1,12 +1,22 @@ - + - + T-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

T

@@ -78,11 +103,11 @@

T

The t matrix.
-
takeTheInstancesOfTheLabel(Instances, int, int[], int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
takeTheInstancesOfTheLabel(Instances, int, int[], int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns two sets of instances.
-
takingTheSmallestIndexAndNumberInVector(int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
takingTheSmallestIndexAndNumberInVector(int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns the rarest label and the number of examples that are annotated with that label.
@@ -95,6 +120,10 @@

T

Template to store Instances.
+
templateWithBagId - Variable in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
+
An empty dataset used as template for prediction
+
testData - Variable in class miml.evaluation.EvaluatorHoldout
The test data used in the experiment.
@@ -111,52 +140,56 @@

T

Threshold for predictions.
-
toCSV() - Method in class miml.data.statistics.MIMLStatistics
+
toCSV() - Method in class miml.data.statistics.MIMLStatistics
Returns statistics in CSV representation.
-
toCSV() - Method in class miml.data.statistics.MIStatistics
+
toCSV() - Method in class miml.data.statistics.MIStatistics
Returns statistics in CSV representation.
-
toCSV() - Method in class miml.data.statistics.MLStatistics
+
toCSV() - Method in class miml.data.statistics.MLStatistics
Returns statistics in CSV representation.
-
toCSV(IEvaluator) - Method in class miml.report.BaseMIMLReport
+
toCSV(IEvaluator) - Method in class miml.report.BaseMIMLReport
 
-
toCSV(IEvaluator) - Method in interface miml.report.IReport
+
toCSV(IEvaluator) - Method in interface miml.report.IReport
Convert to CSV the evaluator results.
-
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MIMLStatistics
+
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MIMLStatistics
Returns the indices of the labels that have the strongest Phi correlation with the label which is given as a parameter.
-
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MLStatistics
+
topPhiCorrelatedLabels(int, int) - Method in class miml.data.statistics.MLStatistics
Returns the indices of the labels that have the strongest Phi correlation with the label which is given as a parameter.
-
toString() - Method in class miml.data.statistics.MIMLStatistics
+
toString() - Method in class miml.data.statistics.MIMLStatistics
Returns statistics in textual representation.
-
toString() - Method in class miml.data.statistics.MIStatistics
+
toString() - Method in class miml.data.statistics.MIStatistics
Returns statistics in textual representation.
-
toString() - Method in class miml.data.statistics.MLStatistics
+
toString() - Method in class miml.data.statistics.MLStatistics
Returns statistics in textual representation.
-
toString(IEvaluator) - Method in class miml.report.BaseMIMLReport
+
toString(IEvaluator) - Method in class miml.report.BaseMIMLReport
 
-
toString(IEvaluator) - Method in interface miml.report.IReport
+
toString(IEvaluator) - Method in interface miml.report.IReport
Convert to plain text the evaluator results.
+
totalExamples() - Method in class miml.data.partitioning.PartitionerBase
+
+
Returns the number of examples of the dataset to be partitioned.
+
totalInstances - Variable in class miml.data.statistics.MIStatistics
The total of instances.
@@ -165,33 +198,33 @@

T

The data used in the experiment.
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.MWClassifier
Trains a Matlab classifier.
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLNN
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.neural.MIMLRBF
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.KiSar
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLFast
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLSVM
 
-
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
trainMWClassifier(MWCellArray, MWNumericArray) - Method in class miml.classifiers.miml.optimization.MIMLWel
 
TrainTestBase - Class in miml.data.partitioning
General scheme for train test partitioning of multi-output data.
-
TrainTestBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
+
TrainTestBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
Constructor.
-
TrainTestBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
+
TrainTestBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.TrainTestBase
Default constructor.
@@ -216,92 +249,107 @@

T

The name of the method used in the experiment if this is a transformation method.
-
transformBag(MIMLBag, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
transformBag(int, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
Removes all label attributes except labelToKeep.
-
transformBag(int, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
transformBag(MIMLBag, int) - Method in class miml.transformation.mimlTOmi.BRTransformation
Removes all label attributes except labelToKeep.
-
transformBag(MIMLBag, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
+
transformBag(MIMLBag, int[]) - Method in class miml.transformation.mimlTOmi.LPTransformation
+
 
+
transformBag(MIMLBag, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
Remove all label attributes except label at position indexToKeep.
-
transformBag(MIMLBag, int[]) - Method in class miml.transformation.mimlTOmi.LPTransformation
-
 
-
transformBags(int) - Method in class miml.transformation.mimlTOmi.BRTransformation
+
transformBags(int) - Method in class miml.transformation.mimlTOmi.BRTransformation
Remove all label attributes except labelToKeep.
-
transformBags(MIMLInstances, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
+
transformBags(MIMLInstances) - Method in class miml.transformation.mimlTOmi.LPTransformation
+
 
+
transformBags(MIMLInstances, int[], int) - Static method in class miml.transformation.mimlTOmi.BRTransformation
Remove all label attributes except that at indexOfLabelToKeep.
-
transformBags(MIMLInstances) - Method in class miml.transformation.mimlTOmi.LPTransformation
+
transformDataset() - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
 
-
transformDataset() - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
transformDataset() - Method in class miml.transformation.mimlTOml.GeometricTransformation
 
-
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
transformDataset() - Method in class miml.transformation.mimlTOml.KMeansTransformation
 
-
transformDataset() - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
transformDataset() - Method in class miml.transformation.mimlTOml.MedoidTransformation
 
-
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.GeometricTransformation
-
 
-
transformDataset() - Method in class miml.transformation.mimlTOml.MIMLtoML
+
transformDataset() - Method in class miml.transformation.mimlTOml.MIMLtoML
Transforms MIMLInstances into MultiLabelInstances.
-
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MIMLtoML
-
-
Transforms MIMLInstances into MultiLabelInstances.
-
-
transformDataset() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
transformDataset() - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformDataset() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
 
-
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
 
-
transformDataset() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.GeometricTransformation
 
-
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
 
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MIMLtoML
+
+
Transforms MIMLInstances into MultiLabelInstances.
+
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
 
-
transformInstance(Instance, int[]) - Method in class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
+
transformDataset(MIMLInstances) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
 
-
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
 
-
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
 
-
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.KMeansTransformation
 
-
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MedoidTransformation
 
-
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MIMLtoML
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MIMLtoML
Transforms MIMLBag into Instance.
-
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
 
+
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.ArithmeticTransformation
 
-
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.GeometricTransformation
 
-
transformInstance(MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.MinMaxTransformation
 
-
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
transformInstance(MIMLInstances, MIMLBag) - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
 
+
transformInstance(Instance, int[]) - Method in class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation
 
type - Variable in class miml.classifiers.miml.optimization.MIMLSVM
Gaussian kernel SVM.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-19.html b/documentation/apidoc/index-files/index-19.html old mode 100755 new mode 100644 index 174386c..3905dcc --- a/documentation/apidoc/index-files/index-19.html +++ b/documentation/apidoc/index-files/index-19.html @@ -1,12 +1,22 @@ - + - + U-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

U

@@ -78,26 +103,38 @@

U

Partition matrix of num_labels x num_bags
-
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MIMLStatistics
+
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MIMLStatistics
Returns the indices of the labels whose Phi coefficient values lie between -bound <= phi <= bound.
-
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MLStatistics
+
uncorrelatedLabels(int, double) - Method in class miml.data.statistics.MLStatistics
Returns the indices of the labels whose Phi coefficient values lie between -bound <= phi <= bound.
-
update(Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
update(MIMLBag) - Method in class miml.core.distance.HausdorffDistance
 
-
update(MIMLBag) - Method in class miml.core.distance.HausdorffDistance
+
update(MIMLBag) - Method in interface miml.core.distance.IDistance
+
+
Update the distance function (if necessary) for the newly added instance in + the form of MIMLBag.
+
+
update(Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
 
+
update(Instance) - Method in class miml.core.distance.HausdorffDistance
 
-
updateDesiredSplitStatistics(double[], boolean[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
update(Instance) - Method in interface miml.core.distance.IDistance
+
+
Update the distance function (if necessary) for the newly added instance in + the form of Instance with relational attribute.
+
+
updateDesiredSplitStatistics(double[], boolean[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Updates the desired splits every time that an instance is inserted into a fold.
-
updateDistance(double, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
updateDistance(double, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
updatedLabelIndices - Variable in class miml.transformation.mimlTOml.MIMLtoML
@@ -107,7 +144,7 @@

U

Array of updated label indices.
-
updateStats(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
+
updateStats(MIMLInstances) - Method in class miml.data.normalization.MinMaxNormalization
Set the max and min values for all attributes in the bag.
@@ -120,20 +157,23 @@

U

This class has utilies that can be used anywhere in the library.
-
Utils() - Constructor for class miml.core.Utils
+
Utils() - Constructor for class miml.core.Utils
 
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-2.html b/documentation/apidoc/index-files/index-2.html old mode 100755 new mode 100644 index 5969271..ab51b44 --- a/documentation/apidoc/index-files/index-2.html +++ b/documentation/apidoc/index-files/index-2.html @@ -1,12 +1,22 @@ - + - + B-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

B

@@ -90,13 +115,13 @@

B

Class used to generate reports with the format specified.
-
BaseMIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.BaseMIMLReport
+
BaseMIMLReport() - Constructor for class miml.report.BaseMIMLReport
-
Basic constructor to initialize the report.
+
No-argument constructor for xml configuration.
-
BaseMIMLReport() - Constructor for class miml.report.BaseMIMLReport
+
BaseMIMLReport(List<String>, String, boolean, boolean, boolean) - Constructor for class miml.report.BaseMIMLReport
-
No-argument constructor for xml configuration.
+
Basic constructor to initialize the report.
BRT - Variable in class miml.transformation.mimlTOmi.BRTransformation
@@ -107,51 +132,63 @@

B

Class that uses Binary Relevance transformation to convert MIMLInstances to MIL Instances with relational attribute.
-
BRTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOmi.BRTransformation
+
BRTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOmi.BRTransformation
Constructor.
-
build(MIMLInstances) - Method in interface miml.classifiers.miml.IMIMLClassifier
+
build(MIMLInstances) - Method in interface miml.classifiers.miml.IMIMLClassifier
Builds the learner model from specified MIMLInstances data.
-
build(MultiLabelInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
build(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
 
-
build(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
build(MultiLabelInstances) - Method in class miml.classifiers.miml.MIMLClassifier
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
buildClusterer(Instances) - Method in class miml.clusterers.KMedoids
+
 
+
buildInitialization() - Method in class miml.clusterers.KMedoids
+
+
Performs an initialization of medoids based on the BUILD step of PAM + algorithm.
+
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MIMLkNN
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.meta.MIMLBagging
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MIMLClassifier
Learner specific implementation of building the model from MultiLabelInstances training data set.
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
 
-
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MWClassifier
 
-
buildInternal(MIMLInstances) - Method in class miml.classifiers.miml.MWClassifier
+
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
 
-
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.ml.MLDGC
+
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.ml.MLDGC
+
 
+
buildInternal(MultiLabelInstances) - Method in class miml.classifiers.ml.RFPCT
 
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-20.html b/documentation/apidoc/index-files/index-20.html old mode 100755 new mode 100644 index e8ddaac..ba7eeda --- a/documentation/apidoc/index-files/index-20.html +++ b/documentation/apidoc/index-files/index-20.html @@ -1,12 +1,22 @@ - + - + V-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

V

-
varianceIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
+
varianceIR(double[]) - Method in class miml.data.statistics.MIMLStatistics
Computes the variance of any IR vector.
-
varianceIR(double[]) - Method in class miml.data.statistics.MLStatistics
+
varianceIR(double[]) - Method in class miml.data.statistics.MLStatistics
Computes the variance of any IR vector.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-21.html b/documentation/apidoc/index-files/index-21.html old mode 100755 new mode 100644 index 5dd27ff..070d8c0 --- a/documentation/apidoc/index-files/index-21.html +++ b/documentation/apidoc/index-files/index-21.html @@ -1,12 +1,22 @@ - + - + W-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

W

@@ -97,17 +122,20 @@

W

Wrapper for Matlab data types.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-22.html b/documentation/apidoc/index-files/index-22.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/index-files/index-3.html b/documentation/apidoc/index-files/index-3.html old mode 100755 new mode 100644 index 80ef582..c0da562 --- a/documentation/apidoc/index-files/index-3.html +++ b/documentation/apidoc/index-files/index-3.html @@ -1,12 +1,22 @@ - + - + C-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

C

@@ -78,61 +103,61 @@

C

Parameter set for liblinear.
-
calculateBagReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
calculateBagReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate the references of a bag specified by its index.
-
calculateCoocurrence(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
+
calculateCoocurrence(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
This method calculates a matrix with the coocurrences of pairs of labels.
-
calculateCooncurrence(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
calculateCooncurrence(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
This method calculates a matrix with the coocurrences of pairs of labels.
-
calculateDatasetDistances() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
calculateDatasetDistances() - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate the distances matrix of current data set with the metric assigned.
-
calculatePhiChi2(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
+
calculatePhiChi2(MIMLInstances) - Method in class miml.data.statistics.MIMLStatistics
Calculates Phi and Chi-square correlation matrix.
-
calculatePhiChi2(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
+
calculatePhiChi2(MultiLabelInstances) - Method in class miml.data.statistics.MLStatistics
Calculates Phi and Chi-square correlation matrix.
-
calculateRecordLabel(Integer[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
calculateRecordLabel(Integer[]) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate the number of times each label appears in the bag's neighborhood.
-
calculateReferenceMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
calculateReferenceMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate the references matrix.
-
calculateStats() - Method in class miml.data.statistics.MIStatistics
+
calculateStats() - Method in class miml.data.statistics.MIStatistics
Calculates various MIML statistics, such as instancesPerBag and attributesPerBag.
-
calculateStats() - Method in class miml.data.statistics.MLStatistics
+
calculateStats() - Method in class miml.data.statistics.MLStatistics
Calculates various ML statistics.
-
calculatingTheDesiredSplits(int[], double[], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
calculatingTheDesiredSplits(int[], double[], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns the desired number of examples per label in each fold and in the last column the total desired number of examples in each fold.
-
calculatingTheFrequencies(Instances, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
calculatingTheFrequencies(Instances, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns the number of examples per label in each fold.
-
cardinality() - Method in class miml.data.statistics.MIMLStatistics
+
cardinality() - Method in class miml.data.statistics.MIMLStatistics
Computes the Cardinality as the average number of labels per pattern.
-
cardinality() - Method in class miml.data.statistics.MLStatistics
+
cardinality() - Method in class miml.data.statistics.MLStatistics
Computes the Cardinality as the average number of labels per pattern.
@@ -156,7 +181,79 @@

C

The classifier used in the experimentation.
-
computeWeightDensity(Instances, Instance, int) - Method in class miml.classifiers.ml.MLDGC
+
clusDatasetName - Variable in class miml.evaluation.EvaluatorHoldoutClus
+
+
The dataset name that will be used for training, test and settings files.
+
+
clusterAssignment - Variable in class miml.clusterers.KMedoids
+
+
The assignment of instances to medoids.
+
+
clusterAssignment(double[][]) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Computes a vector of nInstances with the index of the cluster assigned to + each instance.
+
+
clusterer - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Clusterer.
+
+
clusterer - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Clusterer.
+
+
Clustering - Class in miml.tutorial
+
+
Class to show an example of clustering of a MIML Dataset.
+
+
Clustering() - Constructor for class miml.tutorial.Clustering
+
 
+
clusteringDone - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Whether the clustering step has been executed or not.
+
+
clusteringDone - Variable in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Whether the clustering step has been executed or not.
+
+
clusteringStep() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
 
+
clusterInstance(Instance) - Method in class miml.clusterers.KMedoids
+
 
+
clusWorkingDir - Variable in class miml.evaluation.EvaluatorHoldoutClus
+
+
The directory where all temporary files needed or generated by CLUS library + are written.
+
+
compare(double, double) - Method in class miml.clusterers.KMedoids
+
+
Allows to maximize or minimize the metric according to the value of minimize + property.
+
+
computeCost(int[]) - Method in class miml.clusterers.KMedoids
+
+
Computes the cost of a configuration.
+
+
computeDelta(int[], Instances) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Computes the delta value for each cluster that is used for similarity + computation.
+
+
computeDistanceMatrix(Instances, Instances) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Computes the distance matrix between centroids and single instances used for + clustering.
+
+
computeDistances(Instances) - Method in class miml.clusterers.KMedoids
+
+
Computes distances between instances.
+
+
computeIndexPrototypes(double[][]) - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Computes a vector of nClusters elements with the index of the prototypes + obtained as the closest instance to each centroid.
+
+
computeWeightDensity(Instances, Instance, int) - Method in class miml.classifiers.ml.MLDGC
Given a neighborhood and an instance, computes neighborhood-weight and neighborhood-density.
@@ -169,7 +266,7 @@

C

Class used to read a xml file and configure an experiment.
-
ConfigLoader(String) - Constructor for class miml.core.ConfigLoader
+
ConfigLoader(String) - Constructor for class miml.core.ConfigLoader
Constructor that sets the configuration file
@@ -177,89 +274,105 @@

C

Class used to save configuration parameters to be used in reports.
-
ConfigParameters() - Constructor for class miml.core.ConfigParameters
+
ConfigParameters() - Constructor for class miml.core.ConfigParameters
 
configuration - Variable in class miml.core.ConfigLoader
Configuration object.
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
configurationCost - Variable in class miml.clusterers.KMedoids
+
+
Final cost of the clustering configuration.
+
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.DMIMLkNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLDGC
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLDGC
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLIBLR
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLkNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
configure(Configuration) - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.meta.MIMLBagging
+
configure(Configuration) - Method in class miml.classifiers.miml.meta.MIMLBagging
 
-
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
+
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
 
-
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
configure(Configuration) - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
 
-
configure(Configuration) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
 
-
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLNN
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLNN
 
-
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLRBF
+
configure(Configuration) - Method in class miml.classifiers.miml.neural.MIMLRBF
 
-
configure(Configuration) - Method in class miml.classifiers.miml.optimization.KiSar
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.KiSar
 
-
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLFast
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLFast
 
-
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLSVM
 
-
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLWel
+
configure(Configuration) - Method in class miml.classifiers.miml.optimization.MIMLWel
 
-
configure(Configuration) - Method in interface miml.core.IConfiguration
+
configure(Configuration) - Method in interface miml.core.IConfiguration
Method to configure the class with the given configuration.
-
configure(Configuration) - Method in class miml.evaluation.EvaluatorCV
+
configure(Configuration) - Method in class miml.evaluation.EvaluatorCV
 
-
configure(Configuration) - Method in class miml.evaluation.EvaluatorHoldout
+
configure(Configuration) - Method in class miml.evaluation.EvaluatorHoldout
 
-
configure(Configuration) - Method in class miml.report.BaseMIMLReport
+
configure(Configuration) - Method in class miml.evaluation.EvaluatorHoldoutClus
 
-
coocurrenceMatrix - Variable in class miml.data.statistics.MLStatistics
+
configure(Configuration) - Method in class miml.report.BaseMIMLReport
+
 
+
configureClusterer() - Method in class miml.transformation.mimlTOml.KMeansTransformation
-
Coocurrence matrix.
+
Determines the number of cluster depending on the values of the properties + percentage and numClusters.
-
coocurrenceToCSV() - Method in class miml.data.statistics.MLStatistics
+
configureClusterer() - Method in class miml.transformation.mimlTOml.MedoidTransformation
-
Returns coocurrenceMatrix in CSV representation.
+
Determines the number of cluster depending on the values of the properties + percentage and numClusters.
-
coocurrenceToString() - Method in class miml.data.statistics.MLStatistics
+
coocurrenceMatrix - Variable in class miml.data.statistics.MLStatistics
-
Returns coocurrenceMatrix in textual representation.
+
Coocurrence matrix.
-
cooncurrenceToCSV() - Method in class miml.data.statistics.MIMLStatistics
+
coocurrenceToCSV() - Method in class miml.data.statistics.MIMLStatistics
Returns cooCurrenceMatrix in CSV representation.
-
cooncurrenceToString() - Method in class miml.data.statistics.MIMLStatistics
+
coocurrenceToCSV() - Method in class miml.data.statistics.MLStatistics
+
+
Returns coocurrenceMatrix in CSV representation.
+
+
coocurrenceToString() - Method in class miml.data.statistics.MIMLStatistics
Returns cooCurrenceMatrix in textual representation.
-
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MIMLStatistics
+
coocurrenceToString() - Method in class miml.data.statistics.MLStatistics
+
+
Returns coocurrenceMatrix in textual representation.
+
+
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MIMLStatistics
Returns Phi correlations in CSV representation.
-
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MLStatistics
+
correlationsToCSV(double[][]) - Method in class miml.data.statistics.MLStatistics
Returns Phi correlations in CSV representation.
-
correlationsToString(double[][]) - Method in class miml.data.statistics.MIMLStatistics
+
correlationsToString(double[][]) - Method in class miml.data.statistics.MIMLStatistics
Returns Phi correlations in textual representation.
-
correlationsToString(double[][]) - Method in class miml.data.statistics.MLStatistics
+
correlationsToString(double[][]) - Method in class miml.data.statistics.MLStatistics
Returns Phi correlations in textual representation.
@@ -267,15 +380,20 @@

C

The cost parameter used for the base svm classifier.
+
createSettingsFile() - Method in class miml.classifiers.ml.RFPCT
+
+
This method creates a CLUS settings file that corresponds to the MORF + algorithm and writes it in clusWorkingDir.
+
CrossValidationBase - Class in miml.data.partitioning
General scheme for cross validation partitioners of multi-output data.
-
CrossValidationBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
+
CrossValidationBase(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
Constructor.
-
CrossValidationBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
+
CrossValidationBase(MultiLabelInstances) - Constructor for class miml.data.partitioning.CrossValidationBase
Default constructor.
@@ -284,28 +402,31 @@

C

Class implementing an example of using cross-validation with different kinds of classifier.
-
CrossValidationExperiment() - Constructor for class miml.tutorial.CrossValidationExperiment
+
CrossValidationExperiment() - Constructor for class miml.tutorial.CrossValidationExperiment
 
-
crossValidationToCSV(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
+
crossValidationToCSV(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
Read the cross-validation results and transform to CSV format.
-
crossValidationToString(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
+
crossValidationToString(EvaluatorCV) - Method in class miml.report.BaseMIMLReport
Read the cross-validation results and transform to plain text.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-4.html b/documentation/apidoc/index-files/index-4.html old mode 100755 new mode 100644 index 2169261..a2e58e6 --- a/documentation/apidoc/index-files/index-4.html +++ b/documentation/apidoc/index-files/index-4.html @@ -1,12 +1,22 @@ - + - + D-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

D

@@ -98,6 +123,14 @@

D

MIML data.
+
dataset - Variable in class miml.transformation.mimlTOml.MIMLtoML
+
+
Original data set of MIMLInstances.
+
+
dataset - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
+
+
Original data set of MIMLInstances.
+
dataSet - Variable in class miml.core.distance.HausdorffDistance
 
dataSet - Variable in class miml.data.statistics.MIMLStatistics
@@ -112,116 +145,137 @@

D

MIML dataSet.
-
dataset - Variable in class miml.transformation.mimlTOml.MIMLtoML
-
-
Original data set of MIMLInstances.
-
-
dataset - Variable in class miml.transformation.mimlTOml.PropositionalTransformation
-
-
Original data set of MIMLInstances.
-
-
debug(String) - Method in class miml.classifiers.miml.MIMLClassifier
+
debug(String) - Method in class miml.classifiers.miml.MIMLClassifier
Writes the debug message string to the console output if debug for the learner is enabled.
+
delta - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
+
The delta value for each cluster obtained as the average distance between + instances in each cluster
+
densities - Variable in class miml.classifiers.ml.MLDGC
Densities
-
density() - Method in class miml.data.statistics.MIMLStatistics
+
density() - Method in class miml.data.statistics.MIMLStatistics
Computes the density as the cardinality/numLabels.
-
density() - Method in class miml.data.statistics.MLStatistics
+
density() - Method in class miml.data.statistics.MLStatistics
Computes the density as the cardinality/numLabels.
dfun - Variable in class miml.core.distance.HausdorffDistance
 
-
dispose() - Method in class miml.classifiers.miml.MWClassifier
+
dfunc - Variable in class miml.transformation.mimlTOml.KMeansTransformation
+
 
+
dispose() - Method in class miml.classifiers.miml.MWClassifier
Disposes native MW classifier.
-
dispose() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
dispose() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
 
-
dispose() - Method in class miml.classifiers.miml.neural.MIMLNN
+
dispose() - Method in class miml.classifiers.miml.neural.MIMLNN
 
-
dispose() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
dispose() - Method in class miml.classifiers.miml.neural.MIMLRBF
 
-
dispose() - Method in class miml.classifiers.miml.optimization.KiSar
+
dispose() - Method in class miml.classifiers.miml.optimization.KiSar
 
-
dispose() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLFast
 
-
dispose() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLSVM
 
-
dispose() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
dispose() - Method in class miml.classifiers.miml.optimization.MIMLWel
 
-
distance(Instance, Instance, double, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
distance(MIMLBag, MIMLBag) - Method in class miml.core.distance.HausdorffDistance
 
-
distance(Instance, Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
distance(MIMLBag, MIMLBag) - Method in interface miml.core.distance.IDistance
+
+
Get the distance between two MIMLBag.
+
+
distance(Instance, Instance) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
distance(Instance, Instance, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
distance(Instance, Instance) - Method in class miml.core.distance.HausdorffDistance
 
-
distance(Instance, Instance, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
distance(Instance, Instance) - Method in interface miml.core.distance.IDistance
+
+
Get the distance between two bags in the form of a set of Instance + with relational attribute.
+
+
distance(Instance, Instance, double) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
distance(Instances, Instances) - Method in class miml.core.distance.AverageHausdorff
+
distance(Instance, Instance, double, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
distance(MIMLBag, MIMLBag) - Method in class miml.core.distance.HausdorffDistance
+
distance(Instance, Instance, PerformanceStats) - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
distance(MIMLBag, MIMLBag) - Method in interface miml.core.distance.IDistance
-
-
Get the distance between two MIMLBag.
-
-
distance(Instances, Instances) - Method in interface miml.core.distance.IDistance
+
distance(Instances, Instances) - Method in class miml.core.distance.AverageHausdorff
+
 
+
distance(Instances, Instances) - Method in interface miml.core.distance.IDistance
Get the distance between two bags in the form of a set of Instances.
-
distance(Instances, Instances) - Method in class miml.core.distance.MaximalHausdorff
+
distance(Instances, Instances) - Method in class miml.core.distance.MaximalHausdorff
 
-
distance(Instances, Instances) - Method in class miml.core.distance.MinimalHausdorff
+
distance(Instances, Instances) - Method in class miml.core.distance.MinimalHausdorff
 
distance_matrix - Variable in class miml.classifiers.miml.lazy.MIMLkNN
Distance matrix between dataset's instances.
-
distributionBags - Variable in class miml.data.statistics.MIStatistics
+
distancesMatrix - Variable in class miml.clusterers.KMedoids
-
The distribution of number of instances per bag.
+
Distance between instances.
-
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
distanceToMedoids(int) - Method in class miml.clusterers.KMedoids
-
Returns labelSkew in CSV representation.
+
Returns the distance of an instance in the training dataset referenced by its + index to each medoid.
-
distributionBagsToCSV() - Method in class miml.data.statistics.MIMLStatistics
+
distanceToMedoids(Instance) - Method in class miml.clusterers.KMedoids
+
+
Returns the distance of an instance to each medoid.
+
+
distributionBags - Variable in class miml.data.statistics.MIStatistics
+
+
The distribution of number of instances per bag.
+
+
distributionBagsToCSV() - Method in class miml.data.statistics.MIMLStatistics
Returns distributionBags in CSV representation.
-
distributionBagsToCSV() - Method in class miml.data.statistics.MIStatistics
+
distributionBagsToCSV() - Method in class miml.data.statistics.MIStatistics
Returns distributionBags in CSV representation.
-
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
Returns labelSkew in CSV representation.
-
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
+
distributionBagsToCSV(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
-
Returns labelSkew in textual representation.
+
Returns labelSkew in CSV representation.
-
distributionBagsToString() - Method in class miml.data.statistics.MIMLStatistics
+
distributionBagsToString() - Method in class miml.data.statistics.MIMLStatistics
Returns distributionBags in textual representation.
-
distributionBagsToString() - Method in class miml.data.statistics.MIStatistics
+
distributionBagsToString() - Method in class miml.data.statistics.MIStatistics
Returns distributionBags in textual representation.
-
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MIMLStatistics
Returns labelSkew in textual representation.
-
distributionForInstance(Instance) - Method in class miml.classifiers.mi.MISMOWrapper
+
distributionBagsToString(HashMap<LabelSet, Double>) - Method in class miml.data.statistics.MLStatistics
+
+
Returns labelSkew in textual representation.
+
+
distributionForInstance(Instance) - Method in class miml.classifiers.mi.MISMOWrapper
+
 
+
distributionForInstance(Instance) - Method in class miml.clusterers.KMedoids
 
distributionLabelsPerExample - Variable in class miml.data.statistics.MLStatistics
@@ -232,34 +286,37 @@

D

DMIMLkNN is the adaptation to the MIML framework of the DMLkNN[1] multi-label algorithm.
-
DMIMLkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
DMIMLkNN() - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
-
Default constructor.
+
No-arg constructor for xml configuration
-
DMIMLkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
DMIMLkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
-
A constructor that sets the number of neighbours.
+
A constructor that sets the number of neighbours and the value of smooth.
-
DMIMLkNN(int, double, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
DMIMLkNN(int, MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
-
A constructor that sets the number of neighbours and the value of smooth.
+
A constructor that sets the number of neighbours.
-
DMIMLkNN() - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
+
DMIMLkNN(MIMLDistanceFunction) - Constructor for class miml.classifiers.miml.lazy.DMIMLkNN
-
No-arg constructor for xml configuration
+
Default constructor.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-5.html b/documentation/apidoc/index-files/index-5.html old mode 100755 new mode 100644 index 60910da..fe51ba2 --- a/documentation/apidoc/index-files/index-5.html +++ b/documentation/apidoc/index-files/index-5.html @@ -1,12 +1,22 @@ - + - + E-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

E

@@ -93,19 +118,18 @@

E

EnMIMLNNmetric - Class in miml.classifiers.miml.neural
- Class to execute the EnMIMLNNmetric + Class to execute the EnMIMLNNmetric algorithm for MIML data.
-
EnMIMLNNmetric() - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
EnMIMLNNmetric() - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
No-argument constructor for xml configuration.
-
EnMIMLNNmetric(double, double) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
EnMIMLNNmetric(double, double) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
Basic constructor to initialize the classifier.
-
EnMIMLNNmetric(double, double, int) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
+
EnMIMLNNmetric(double, double, int) - Constructor for class miml.classifiers.miml.neural.EnMIMLNNmetric
Constructor to initialize the classifier.
@@ -126,39 +150,56 @@

E

Class that allow evaluate an algorithm applying a cross-validation method with random partitioning.
-
EvaluatorCV(MIMLInstances, int) - Constructor for class miml.evaluation.EvaluatorCV
+
EvaluatorCV() - Constructor for class miml.evaluation.EvaluatorCV
-
Instantiates a new CV evaluator.
+
No-argument constructor for xml configuration.
-
EvaluatorCV() - Constructor for class miml.evaluation.EvaluatorCV
+
EvaluatorCV(MIMLInstances, int) - Constructor for class miml.evaluation.EvaluatorCV
-
No-argument constructor for xml configuration.
+
Instantiates a new CV evaluator.
EvaluatorHoldout - Class in miml.evaluation
Class that allow evaluate an algorithm applying a holdout method.
-
EvaluatorHoldout(MIMLInstances, MIMLInstances) - Constructor for class miml.evaluation.EvaluatorHoldout
+
EvaluatorHoldout() - Constructor for class miml.evaluation.EvaluatorHoldout
-
Instantiates a new holdout evaluator with provided train and test partitions.
+
No-argument constructor for xml configuration.
-
EvaluatorHoldout(MIMLInstances, double) - Constructor for class miml.evaluation.EvaluatorHoldout
+
EvaluatorHoldout(MIMLInstances, double) - Constructor for class miml.evaluation.EvaluatorHoldout
Instantiates a new holdout evaluator with random partitioning method.
-
EvaluatorHoldout(MIMLInstances, double, int, int) - Constructor for class miml.evaluation.EvaluatorHoldout
+
EvaluatorHoldout(MIMLInstances, double, int, int) - Constructor for class miml.evaluation.EvaluatorHoldout
Instantiates a new Holdout evaluator with a partitioning method and a seed.
-
EvaluatorHoldout() - Constructor for class miml.evaluation.EvaluatorHoldout
+
EvaluatorHoldout(MIMLInstances, MIMLInstances) - Constructor for class miml.evaluation.EvaluatorHoldout
+
+
Instantiates a new holdout evaluator with provided train and test partitions.
+
+
EvaluatorHoldoutClus - Class in miml.evaluation
+
+
Class that allow evaluate a classifier applying a holdout method with the + clus System.
+
+
EvaluatorHoldoutClus() - Constructor for class miml.evaluation.EvaluatorHoldoutClus
No-argument constructor for xml configuration.
+
EvaluatorHoldoutClus(MIMLInstances, MIMLInstances, String, String) - Constructor for class miml.evaluation.EvaluatorHoldoutClus
+
+
Instantiates a new holdout evaluator with provided train and test partitions.
+
extension - Variable in class miml.classifiers.miml.lazy.MIMLBRkNN
The type of extension to be used: - NONE: Standard BR.
+ NONE: Standard BR. + EXTA: Predict top ranked label in case of empty prediction set. + EXTB: Predict top n ranked labels based on size of labelset in + neighbours. +
extNeigh - Variable in class miml.classifiers.ml.MLDGC
@@ -166,17 +207,20 @@

E

distance.
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-6.html b/documentation/apidoc/index-files/index-6.html old mode 100755 new mode 100644 index d990f4c..62a67d7 --- a/documentation/apidoc/index-files/index-6.html +++ b/documentation/apidoc/index-files/index-6.html @@ -1,12 +1,22 @@ - + - + F-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

F

@@ -83,34 +108,37 @@

F

The name of the file where report is saved.
-
filterMeasures(List<Measure>) - Method in class miml.report.MIMLReport
+
filterMeasures(List<Measure>) - Method in class miml.report.MIMLReport
Filter measures chosen to be shown in the experiment report.
-
findThePossibleSpit(double[][], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
findThePossibleSpit(double[][], int, int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Takes fold statistics and the index of the desired label (desired in the sense the label that we will apply the stratification sampling at this point) and it decides which are the folds that this instance can be inserted.
-
foldsCreation(Instances, Random, double[], int, int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
foldsCreation(Instances, Random, double[], int, int[], int) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
 
-
foldsToRounds(MultiLabelInstances[]) - Static method in class miml.data.partitioning.CrossValidationBase
+
foldsToRounds(MultiLabelInstances[]) - Static method in class miml.data.partitioning.CrossValidationBase
Returns the train and test sets for each fold.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-7.html b/documentation/apidoc/index-files/index-7.html old mode 100755 new mode 100644 index 1c731c3..c1caa57 --- a/documentation/apidoc/index-files/index-7.html +++ b/documentation/apidoc/index-files/index-7.html @@ -1,12 +1,22 @@ - + - + G-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

G

@@ -79,528 +104,615 @@

G

Class to split a multi-output dataset into partitions for cross-validation or train-test.
-
GeneratePartitions() - Constructor for class miml.tutorial.GeneratePartitions
+
GeneratePartitions() - Constructor for class miml.tutorial.GeneratePartitions
 
GeometricTransformation - Class in miml.transformation.mimlTOml
Class that performs a geometric transformation to convert a MIMLInstances class to MultiLabelInstances.
-
GeometricTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
+
GeometricTransformation() - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
+
 
+
GeometricTransformation(MIMLInstances) - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
Constructor
-
GeometricTransformation() - Constructor for class miml.transformation.mimlTOml.GeometricTransformation
-
 
-
getAddFeatures() - Method in class miml.classifiers.miml.lazy.MIMLIBLR
+
getAddFeatures() - Method in class miml.classifiers.miml.lazy.MIMLIBLR
Gets the value of addFeatures.
-
getAlgorithmName() - Static method in class miml.core.ConfigParameters
+
getAlgorithmName() - Static method in class miml.core.ConfigParameters
Gets the algorithm name.
-
getAttributeIndices() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getAssignment() - Method in class miml.clusterers.KMedoids
+
+
Gets the assignment of instances to clusters.
+
+
getAttributeIndices() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getAvgTestTime() - Method in class miml.evaluation.EvaluatorCV
+
getAvgTestTime() - Method in class miml.evaluation.EvaluatorCV
Gets the average time of all folds in test.
-
getAvgTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
getAvgTrainTime() - Method in class miml.evaluation.EvaluatorCV
Gets the average time of all folds in train.
-
getBag(int) - Method in class miml.data.MIMLInstances
+
getBag(int) - Method in class miml.data.MIMLInstances
Gets a MIMLBag (i.e. pattern) with a certain bagIndex.
-
getBagAsArray(MIMLBag) - Method in class miml.data.MWTranslator
+
getBagAsArray(int) - Method in class miml.data.MWTranslator
-
Returns a MIMLBag in the format of a nInstxnAttributes MWNumericArray of - double.
+
Returns a bag in the format of a nInstxnAttributes array of double.
-
getBagAsArray(int) - Method in class miml.data.MWTranslator
+
getBagAsArray(MIMLBag) - Method in class miml.data.MWTranslator
-
Returns a bag in the format of a nInstxnAttributes array of double.
+
Returns a MIMLBag in the format of a nInstxnAttributes MWNumericArray of + double.
-
getBagAsCell(MIMLBag) - Method in class miml.data.MWTranslator
+
getBagAsCell(int) - Method in class miml.data.MWTranslator
Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
-
getBagAsCell(int) - Method in class miml.data.MWTranslator
+
getBagAsCell(MIMLBag) - Method in class miml.data.MWTranslator
Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
-
getBagAsInstances() - Method in class miml.data.MIMLBag
+
getBagAsInstances() - Method in class miml.data.MIMLBag
Gets a bag in the form of a set of instances considering just the relational information.
-
getBagAsInstances(int) - Method in class miml.data.MIMLInstances
+
getBagAsInstances(int) - Method in class miml.data.MIMLInstances
Gets a MIMLBag with a certain bagIndex in the form of a set of Instances considering just the relational information.
-
getBagLabels(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getBagLabels(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Gets the labels of specified bag.
-
getBags() - Method in class miml.data.MWTranslator
+
getBags() - Method in class miml.data.MWTranslator
Returns all the bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in aCellArray{i,1}.
-
getC() - Method in class miml.classifiers.miml.optimization.KiSar
+
getBaseClassifier() - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
getC() - Method in class miml.classifiers.miml.optimization.KiSar
Gets the value of the C property.
-
getChi2() - Method in class miml.data.statistics.MIMLStatistics
+
getCapabilities() - Method in class miml.clusterers.KMedoids
+
 
+
getChi2() - Method in class miml.data.statistics.MIMLStatistics
Gets the Chi2 correlation matrix.
-
getChi2() - Method in class miml.data.statistics.MLStatistics
+
getChi2() - Method in class miml.data.statistics.MLStatistics
Gets the Chi2 correlation matrix.
-
getCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getCiters(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate and return the citers of a bag specified by its index.
-
getClasses() - Method in class miml.core.Params
+
getClasses() - Method in class miml.core.Params
 
-
getClassifier() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
getClassifier() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
 
-
getClassifierName() - Static method in class miml.core.ConfigParameters
+
getClassifierName() - Static method in class miml.core.ConfigParameters
Gets the classifier name.
-
getConfigFileName() - Static method in class miml.core.ConfigParameters
+
getClusDatasetName() - Method in class miml.classifiers.ml.RFPCT
+
+
Gets the clus datasetName
+
+
getConfigFileName() - Static method in class miml.core.ConfigParameters
Gets the configuration file name.
-
getConfiguration() - Method in class miml.core.ConfigLoader
+
getConfiguration() - Method in class miml.core.ConfigLoader
Gets the experiment's configuration.
-
getCost() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getConfigurationCost() - Method in class miml.clusterers.KMedoids
+
+
Gets final the cost of the configuration after applying clustering.
+
+
getCost() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the cost property.
-
getD() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getD() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the D property.
-
getData() - Method in class miml.evaluation.EvaluatorCV
+
getData() - Method in class miml.evaluation.EvaluatorCV
Gets the data used in the experiment.
-
getData() - Method in class miml.evaluation.EvaluatorHoldout
+
getData() - Method in class miml.evaluation.EvaluatorHoldout
Gets the data used in the experiment.
-
getDataFileName() - Static method in class miml.core.ConfigParameters
+
getDataFileName() - Static method in class miml.core.ConfigParameters
Gets the name of data file.
-
getDataSet() - Method in class miml.data.statistics.MIMLStatistics
+
getDataSet() - Method in class miml.data.statistics.MIMLStatistics
Returns the dataset used to calculate the statistics.
-
getDebug() - Method in class miml.classifiers.miml.MIMLClassifier
+
getDebug() - Method in class miml.classifiers.miml.MIMLClassifier
Get whether debugging is turned on.
-
getEpsilon() - Method in class miml.classifiers.miml.optimization.KiSar
+
getDistanceFunction() - Method in class miml.clusterers.KMedoids
+
+
Gets the distance function used by clusterer.
+
+
getDistanceFunction() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Returns the distance function used for clustering.
+
+
getDistances() - Method in class miml.clusterers.KMedoids
+
+
Returns a matrix the distances between all instances being distances[i][j] + the distance between the instances with indices i and j.
+
+
getEpsilon() - Method in class miml.classifiers.miml.optimization.KiSar
Gets the value of the epsilon property.
-
getEvaluation() - Method in class miml.evaluation.EvaluatorCV
+
getEvaluation() - Method in class miml.evaluation.EvaluatorCV
 
-
getEvaluation() - Method in class miml.evaluation.EvaluatorHoldout
+
getEvaluation() - Method in class miml.evaluation.EvaluatorHoldout
 
-
getEvaluation() - Method in interface miml.evaluation.IEvaluator
+
getEvaluation() - Method in interface miml.evaluation.IEvaluator
Gets the evaluation generated by the experiment.
-
getExtension() - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
+
getExtension() - Method in class miml.classifiers.miml.lazy.MIMLBRkNN
Gets the type of extension to be used (see BRkNN.ExtensionType).
-
getFilename() - Method in class miml.report.MIMLReport
+
getFilename() - Method in class miml.report.MIMLReport
Gets the filename.
-
getFolds(int) - Method in class miml.data.partitioning.CrossValidationBase
+
getFolds(int) - Method in class miml.data.partitioning.CrossValidationBase
Splits a dataset into nfolds partitions.
-
getFolds(int) - Method in class miml.data.partitioning.iterative.IterativeCrossValidation
+
getFolds(int) - Method in class miml.data.partitioning.iterative.IterativeCrossValidation
 
-
getFolds(int) - Method in class miml.data.partitioning.powerset.LabelPowersetCrossValidation
+
getFolds(int) - Method in class miml.data.partitioning.powerset.LabelPowersetCrossValidation
 
-
getFolds(int) - Method in class miml.data.partitioning.random.RandomCrossValidation
+
getFolds(int) - Method in class miml.data.partitioning.random.RandomCrossValidation
 
-
getH() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getH() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the h property.
-
getInstance(int) - Method in class miml.data.MIMLBag
+
getInstance(int) - Method in class miml.data.MIMLBag
Returns an instance of the Bag with index bagIndex.
-
getInstance(int, int) - Method in class miml.data.MIMLInstances
+
getInstance(int, int) - Method in class miml.data.MIMLInstances
Gets an instance of a bag.
-
getInstances() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getInstances() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getInvertSelection() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getInvertSelection() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getIsTransformation() - Static method in class miml.core.ConfigParameters
+
getIsTransformation() - Static method in class miml.core.ConfigParameters
Gets if the method used is transformation.
-
getIteration() - Method in class miml.classifiers.miml.optimization.KiSar
+
getIteration() - Method in class miml.classifiers.miml.optimization.KiSar
Gets the value of the iteration property.
-
getK() - Method in class miml.classifiers.miml.optimization.KiSar
+
getK() - Method in class miml.classifiers.miml.optimization.KiSar
Gets the value of the K property.
-
getLabels() - Method in class miml.data.MWTranslator
+
getLabels() - Method in class miml.data.MWTranslator
Returns label associations of all bags in the MIMLInstances dataset in the format of a nLabelsxnBags MWNumericArray of double.
-
getLabels(MIMLBag) - Method in class miml.data.MWTranslator
+
getLabels(int) - Method in class miml.data.MWTranslator
Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double.
-
getLabels(int) - Method in class miml.data.MWTranslator
+
getLabels(MIMLBag) - Method in class miml.data.MWTranslator
Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double.
-
getLambda() - Method in class miml.classifiers.miml.neural.MIMLNN
+
getLambda() - Method in class miml.classifiers.miml.neural.MIMLNN
Returns the regularization parameter used to compute matrix inverse.
-
getLambda() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getLambda() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the lambda property.
-
getLPT() - Method in class miml.transformation.mimlTOmi.LPTransformation
+
getLPT() - Method in class miml.transformation.mimlTOmi.LPTransformation
Returns the format of the transformed instances.
-
getMax() - Method in class miml.data.normalization.MinMaxNormalization
+
getMax() - Method in class miml.data.normalization.MinMaxNormalization
Retuns an array with the maximum values for all bag attributes in the dataset.
-
getMaxiter() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getMaxiter() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the maxiter property.
-
getMeasures() - Method in class miml.report.MIMLReport
+
getMaxIterations() - Method in class miml.clusterers.KMedoids
+
+
Gets the maximum number of iterations used by clusterer.
+
+
getMaxIterations() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Gets the maximum number of iterations used by the clusterer.
+
+
getMeasures() - Method in class miml.report.MIMLReport
Gets the measures shown in the report.
-
getMetric() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getMedoidInstances() - Method in class miml.clusterers.KMedoids
+
+
Gets the medoids obtained after performing clustering.
+
+
getMetric() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getMetric() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
getMetric() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
Gets the distance metric considered by the classifier.
-
getMin() - Method in class miml.data.normalization.MinMaxNormalization
+
getMin() - Method in class miml.data.normalization.MinMaxNormalization
Retuns an array with the minimum values for all bag attributes in the dataset.
-
getMLDataSet() - Method in class miml.data.MIMLInstances
+
getMLDataSet() - Method in class miml.data.MIMLInstances
Returns the dataset as MultiLabelInstances.
-
getMu() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
getMu() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Returns the scaling factor parameter considered to build the classifier.
-
getMu() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
getMu() - Method in class miml.classifiers.miml.neural.MIMLRBF
Returns the scaling factor parameter considered to build the classifier.
-
getMu() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getMu() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the mu property.
-
getnFeatures() - Method in class miml.data.normalization.MinMaxNormalization
+
getnFeatures() - Method in class miml.data.normalization.MinMaxNormalization
Retuns the number of bag attributes in the dataset.
-
getNorm_up() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getNorm_up() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the norm_up property.
-
getNum_sub() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getNormalize() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Returns the value of the property normalize.
+
+
getNum_sub() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the num_sub property.
-
getNumAttributes() - Method in class miml.data.MIMLInstances
+
getNumAttributes() - Method in class miml.data.MIMLInstances
Gets the number of attributes of the dataset considering label attributes and the relational attribute with bags as a single attribute.
-
getNumAttributesInABag() - Method in class miml.data.MIMLBag
+
getNumAttributesInABag() - Method in class miml.data.MIMLBag
Gets the number of attributes of in the relational attribute of a Bag.
-
getNumAttributesInABag() - Method in class miml.data.MIMLInstances
+
getNumAttributesInABag() - Method in class miml.data.MIMLInstances
Gets the number of attributes per bag.
-
getNumAttributesWithRelational() - Method in class miml.data.MIMLBag
+
getNumAttributesWithRelational() - Method in class miml.data.MIMLBag
Gets the total number of attributes of the Bag.
-
getNumAttributesWithRelational() - Method in class miml.data.MIMLInstances
+
getNumAttributesWithRelational() - Method in class miml.data.MIMLInstances
Gets the total number of attributes of the dataset.
-
getNumBags() - Method in class miml.data.MIMLInstances
+
getNumBags() - Method in class miml.data.MIMLInstances
Gets the number of bags of the dataset.
-
getNumCiters() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getNumCiters() - Method in class miml.classifiers.miml.lazy.MIMLkNN
Returns the number of citers considered to estimate the class prediction of tests bags.
-
getNumClassifiers() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
getNumClassifiers() - Method in class miml.classifiers.miml.meta.MIMLBagging
Returns the number of classifiers of the ensemble.
-
getNumFolds() - Method in class miml.evaluation.EvaluatorCV
+
getNumClusters() - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Returns the number of clusters.
+
+
getNumClusters() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Returns the number of clusters.
+
+
getNumFolds() - Method in class miml.evaluation.EvaluatorCV
Gets the number of folds used in the experiment.
-
getNumInstances() - Method in class miml.data.MIMLBag
+
getNumInstances() - Method in class miml.data.MIMLBag
Gets the number of instances of the Bag.
-
getNumInstances(int) - Method in class miml.data.MIMLInstances
+
getNumInstances(int) - Method in class miml.data.MIMLInstances
Gets the number of instances of a bag.
-
getNumOfNeighbours() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
+
getNumIterations() - Method in class miml.clusterers.KMedoids
+
+
Gets the number of iterations performed in the clustering process.
+
+
getNumOfNeighbours() - Method in class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN
Gets the number of neigbors considered by the classifier.
-
getNumReferences() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getNumReferences() - Method in class miml.classifiers.miml.lazy.MIMLkNN
Returns the number of references considered to estimate the class prediction of tests bags.
-
getObjects() - Method in class miml.core.Params
+
getNumTrees() - Method in class miml.classifiers.ml.RFPCT
+
+
Returns the number of trees in the forest.
+
+
getObjects() - Method in class miml.core.Params
 
-
getOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getOptions() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getOpts_average_begin() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getOpts_average_begin() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the opts_average_begin property.
-
getOpts_average_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getOpts_average_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the opts_average_size property.
-
getOpts_beta() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getOpts_beta() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the opts_beta property.
-
getOpts_C() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getOpts_C() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the opts_C property.
-
getOpts_epsilon() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getOpts_epsilon() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the opts_epsilon property.
-
getOpts_iteration() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getOpts_iteration() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the opts_iteration property.
-
getOpts_m() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getOpts_m() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the opts_m property.
-
getOpts_norm() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getOpts_norm() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the opts_norm property.
-
getPara() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getPara() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the para property.
-
getPhi() - Method in class miml.data.statistics.MIMLStatistics
+
getPercentage() - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
 
+
getPercentage() - Method in class miml.transformation.mimlTOml.MedoidTransformation
+
+
Gets the value of the percentage property.
+
+
getPhi() - Method in class miml.data.statistics.MIMLStatistics
Gets the Phi correlation matrix.
-
getPhi() - Method in class miml.data.statistics.MLStatistics
+
getPhi() - Method in class miml.data.statistics.MLStatistics
Gets the Phi correlation matrix.
-
getPhiHistogram() - Method in class miml.data.statistics.MIMLStatistics
+
getPhiHistogram() - Method in class miml.data.statistics.MIMLStatistics
Calculates a histogram of Phi correlations.
-
getPhiHistogram() - Method in class miml.data.statistics.MLStatistics
+
getPhiHistogram() - Method in class miml.data.statistics.MLStatistics
Calculates a histogram of Phi correlations.
-
getRange() - Method in class miml.data.normalization.MinMaxNormalization
+
getRandomInitialization() - Method in class miml.clusterers.KMedoids
+
+
Gets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering.
+
+
getRange() - Method in class miml.data.normalization.MinMaxNormalization
Retuns an array with the range values (i.e. max-min) for all bag attributes in the dataset.
-
getRatio() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
getRatio() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Returns the fraction parameter considered to build the classifier.
-
getRatio() - Method in class miml.classifiers.miml.neural.MIMLNN
+
getRatio() - Method in class miml.classifiers.miml.neural.MIMLNN
Returns the fraction parameter considered to determine the number of clusters to build the classifier.
-
getRatio() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
getRatio() - Method in class miml.classifiers.miml.neural.MIMLRBF
Returns the fraction parameter considered to build the classifier.
-
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the ratio property.
-
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLWel
+
getRatio() - Method in class miml.classifiers.miml.optimization.MIMLWel
Gets the value of the ratio property.
-
getReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getReferences(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Gets the references of a specified bag.
-
getRelationMethod() - Method in class miml.classifiers.miml.optimization.KiSar
+
getRelationMethod() - Method in class miml.classifiers.miml.optimization.KiSar
Gets the value of the relationMethod property.
-
getRevision() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
getRemoveFilter() - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
getRevision() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-
getRounds(int) - Method in class miml.data.partitioning.CrossValidationBase
+
getRounds(int) - Method in class miml.data.partitioning.CrossValidationBase
Returns the train and test sets for each fold.
-
getSamplePercentage() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
getSamplePercentage() - Method in class miml.classifiers.miml.meta.MIMLBagging
Returns the percentage of instances used for sampling with replacement.
-
getSeed() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
+
getSeed() - Method in class miml.classifiers.miml.neural.EnMIMLNNmetric
Returns the seed for kmedoids clustering considered to build the classifier.
-
getSeed() - Method in class miml.classifiers.miml.neural.MIMLNN
+
getSeed() - Method in class miml.classifiers.miml.neural.MIMLNN
Returns the seed for kmedoids clustering considered to build the classifier.
-
getSeed() - Method in class miml.classifiers.miml.neural.MIMLRBF
+
getSeed() - Method in class miml.classifiers.miml.neural.MIMLRBF
Returns the seed for kmedoids clustering considered to build the classifier.
-
getSeed() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getSeed() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the seed property.
-
getSeed() - Method in class miml.evaluation.EvaluatorCV
+
getSeed() - Method in class miml.classifiers.ml.RFPCT
+
+
Gets the seed used by the random generator.
+
+
getSeed() - Method in class miml.evaluation.EvaluatorCV
Gets the seed used in the experiment.
-
getSmooth() - Method in class miml.classifiers.miml.lazy.DMIMLkNN
+
getSeed() - Method in class miml.transformation.mimlTOml.KMeansTransformation
+
+
Returns the value of the seed of the clusterer.
+
+
getSmooth() - Method in class miml.classifiers.miml.lazy.DMIMLkNN
Gets the smooth factor considered by the classifier.
-
getSmooth() - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
+
getSmooth() - Method in class miml.classifiers.miml.lazy.MIMLMAPkNN
Gets the smooth factor considered by the classifier.
-
getStdTestTime() - Method in class miml.evaluation.EvaluatorCV
+
getStdTestTime() - Method in class miml.evaluation.EvaluatorCV
Gets the standard deviation time of all folds in test.
-
getStdTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
getStdTrainTime() - Method in class miml.evaluation.EvaluatorCV
Gets the standard deviation time of all folds in train.
-
getStep_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
+
getStep_size() - Method in class miml.classifiers.miml.optimization.MIMLFast
Gets the value of the step_size property.
-
getTechnicalInformation() - Method in class miml.classifiers.ml.MLDGC
+
getTechnicalInformation() - Method in class miml.classifiers.ml.MLDGC
 
-
getTestTime() - Method in class miml.evaluation.EvaluatorCV
+
getTestTime() - Method in class miml.evaluation.EvaluatorCV
Gets the time spent in testing in each fold.
-
getTestTime() - Method in class miml.evaluation.EvaluatorHoldout
+
getTestTime() - Method in class miml.evaluation.EvaluatorHoldout
Gets the time spent in testing.
-
getThreshold() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
getThreshold() - Method in class miml.classifiers.miml.meta.MIMLBagging
Returns the value of the threshold.
-
getTrainTime() - Method in class miml.evaluation.EvaluatorCV
+
getTrainTime() - Method in class miml.evaluation.EvaluatorCV
Gets the time spent in training in each fold.
-
getTrainTime() - Method in class miml.evaluation.EvaluatorHoldout
+
getTrainTime() - Method in class miml.evaluation.EvaluatorHoldout
Gets the time spent in training.
-
getTransformationMethod() - Static method in class miml.core.ConfigParameters
+
getTransformationMethod() - Method in class miml.classifiers.miml.mimlTOml.MIMLClassifierToML
+
 
+
getTransformationMethod() - Static method in class miml.core.ConfigParameters
Gets the transformation method used in the experiment.
-
getTrueLabels(Instance, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
+
getTrueLabels(Instance, int, int[]) - Method in class miml.data.partitioning.iterative.IterativeTrainTest
Returns the relevant labels of one instance.
-
getType() - Method in class miml.classifiers.miml.optimization.MIMLSVM
+
getType() - Method in class miml.classifiers.miml.optimization.MIMLSVM
Gets the value of the type property.
-
getUnionNeighbours(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getUnionNeighbours(int) - Method in class miml.classifiers.miml.lazy.MIMLkNN
Gets the union of references and citers (without repetitions) of the bag specified.
-
getWeightsMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
+
getWeightsMatrix() - Method in class miml.classifiers.miml.lazy.MIMLkNN
Calculate the weights matrix used for prediction.
-
globalInfo() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
+
globalInfo() - Method in class miml.classifiers.miml.lazy.MIMLDistanceFunction
 
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-8.html b/documentation/apidoc/index-files/index-8.html old mode 100755 new mode 100644 index bbe0ede..57b633c --- a/documentation/apidoc/index-files/index-8.html +++ b/documentation/apidoc/index-files/index-8.html @@ -1,12 +1,22 @@ - + - + H-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

H

@@ -78,13 +103,13 @@

H

Whether to use the shrinking heuristics, 0 or 1 (default 1).
-
hasInstances() - Method in class miml.core.distance.HausdorffDistance
+
hasInstances() - Method in class miml.core.distance.HausdorffDistance
 
HausdorffDistance - Class in miml.core.distance
 
-
HausdorffDistance() - Constructor for class miml.core.distance.HausdorffDistance
+
HausdorffDistance() - Constructor for class miml.core.distance.HausdorffDistance
 
-
HausdorffDistance(MIMLInstances) - Constructor for class miml.core.distance.HausdorffDistance
+
HausdorffDistance(MIMLInstances) - Constructor for class miml.core.distance.HausdorffDistance
 
header - Variable in class miml.report.MIMLReport
@@ -95,28 +120,38 @@

H

Class implementing an example of using holdout with train/test dataset and a single dataset applying percentage split.
-
HoldoutExperiment() - Constructor for class miml.tutorial.HoldoutExperiment
+
HoldoutExperiment() - Constructor for class miml.tutorial.HoldoutExperiment
 
-
holdoutToCSV(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
+
holdoutToCSV(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
Read the holdout results and transform to CSV format.
-
holdoutToString(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
+
HoldoutToML_RFPCT - Class in miml.tutorial
+
+
Class implementing an example of using holdout with train/test dataset and a + toML classifier with RFPCT as base classifier.
+
+
HoldoutToML_RFPCT() - Constructor for class miml.tutorial.HoldoutToML_RFPCT
+
 
+
holdoutToString(EvaluatorHoldout) - Method in class miml.report.BaseMIMLReport
Read the holdout results and transform to plain text.
-A B C D E F G H I K L M N O P R S T U V W 
+A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index-files/index-9.html b/documentation/apidoc/index-files/index-9.html old mode 100755 new mode 100644 index 0a2f91f..aa33ffe --- a/documentation/apidoc/index-files/index-9.html +++ b/documentation/apidoc/index-files/index-9.html @@ -1,12 +1,22 @@ - + - + I-Index - + + + + + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
+
A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages

I

@@ -104,21 +129,21 @@

I

Type of initialization: Crisp, fuzzy
-
innerClassIR() - Method in class miml.data.statistics.MIMLStatistics
+
innerClassIR() - Method in class miml.data.statistics.MIMLStatistics
Computes the innerClassIR for each label as negativePatterns/positivePatterns.
-
innerClassIR() - Method in class miml.data.statistics.MLStatistics
+
innerClassIR() - Method in class miml.data.statistics.MLStatistics
Computes the innerClassIR for each label as negativePatterns/positivePatterns.
-
insertAttributesToBags(ArrayList<Attribute>) - Method in class miml.data.MIMLInstances
+
insertAttributesToBags(ArrayList<Attribute>) - Method in class miml.data.MIMLInstances
Adds a set of attributes to the relational attribute with values '?'
-
insertAttributeToBags(Attribute) - Method in class miml.data.MIMLInstances
+
insertAttributeToBags(Attribute) - Method in class miml.data.MIMLInstances
Adds an attribute to the relational attribute with value '?'
@@ -127,21 +152,21 @@

I

Class implementing an example of inserting a new group of attributes to the relational attribute of the dataset with {0,1} values.
-
InsertingAttributesToBags() - Constructor for class miml.tutorial.InsertingAttributesToBags
+
InsertingAttributesToBags() - Constructor for class miml.tutorial.InsertingAttributesToBags
 
InsertingAttributeToBag - Class in miml.tutorial
Class implementing an example of inserting a new attribute to the relational attribute of the dataset with {0,1} values.
-
InsertingAttributeToBag() - Constructor for class miml.tutorial.InsertingAttributeToBag
+
InsertingAttributeToBag() - Constructor for class miml.tutorial.InsertingAttributeToBag
 
-
interClassIR() - Method in class miml.data.statistics.MIMLStatistics
+
interClassIR() - Method in class miml.data.statistics.MIMLStatistics
Computes the interClassIR for each label positiveExamplesOfMajorityLabel/positivePatternsLabel.
-
interClassIR() - Method in class miml.data.statistics.MLStatistics
+
interClassIR() - Method in class miml.data.statistics.MLStatistics
Computes the interClassIR for each label positiveExamplesOfMajorityLabel/positivePatternsLabel.
@@ -154,41 +179,45 @@

I

Whether debugging is on/off.
-
isExtNeigh() - Method in class miml.classifiers.ml.MLDGC
+
isExtNeigh() - Method in class miml.classifiers.ml.MLDGC
Gets the value of the property isExtNeigh.
-
isHeader() - Method in class miml.report.MIMLReport
+
isHeader() - Method in class miml.report.MIMLReport
Checks if header is shown.
-
isIncludeBagId() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
+
isIncludeBagId() - Method in class miml.transformation.mimlTOml.PropositionalTransformation
Returns the value of includeBagId property.
-
isLabels() - Method in class miml.report.MIMLReport
+
isLabels() - Method in class miml.report.MIMLReport
Checks if measure for each label (macro-averaged measures) is shown.
+
isMedoid(int) - Method in class miml.clusterers.KMedoids
+
+
Determines if an instance is being considered as medoid.
+
isModelInitialized - Variable in class miml.classifiers.miml.MIMLClassifier
Boolean that indicate if the model has been initialized.
-
isModelInitialized() - Method in class miml.classifiers.miml.MIMLClassifier
+
isModelInitialized() - Method in class miml.classifiers.miml.MIMLClassifier
Gets whether learner's model is initialized by - MIMLClassifier.build(MultiLabelInstances).
+ MIMLClassifier.build(MultiLabelInstances).
-
isNormalized() - Method in class miml.data.normalization.MinMaxNormalization
+
isNormalized() - Method in class miml.data.normalization.MinMaxNormalization
Returns true if the dataset does not need normalization.
-
isSampleWithReplacement() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
isSampleWithReplacement() - Method in class miml.classifiers.miml.meta.MIMLBagging
Returns true if the algorithm is configured with sampling and false otherwise.
-
isStd() - Method in class miml.report.MIMLReport
+
isStd() - Method in class miml.report.MIMLReport
Checks if std is going to be shown (only cross-validation).
@@ -196,9 +225,9 @@

I

If the classifier configured in the experiment uses a method transformation.
-
isUpdatable() - Method in class miml.classifiers.miml.MIMLClassifier
+
isUpdatable() - Method in class miml.classifiers.miml.MIMLClassifier
 
-
isUseConfidences() - Method in class miml.classifiers.miml.meta.MIMLBagging
+
isUseConfidences() - Method in class miml.classifiers.miml.meta.MIMLBagging
Returns whether the classifier uses confidences of bipartitions to combine classifiers in the ensemble.
@@ -212,11 +241,11 @@

I

Class to carry out an stratified cross validation partition of multi-label dataset.
-
IterativeCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
+
IterativeCrossValidation(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
Constructor.
-
IterativeCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
+
IterativeCrossValidation(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeCrossValidation
Default constructor.
@@ -225,26 +254,29 @@

I

Class to carry out an stratified iterativeTrainTest partition of multi-label dataset.
-
IterativeTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
+
IterativeTrainTest(int, MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
Constructor.
-
IterativeTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
+
IterativeTrainTest(MultiLabelInstances) - Constructor for class miml.data.partitioning.iterative.IterativeTrainTest
Default constructor.
-A B C D E F G H I K L M N O P R S T U V W  +A B C D E F G H I K L M N O P R S T U V W 
All Classes All Packages +
+ diff --git a/documentation/apidoc/index.html b/documentation/apidoc/index.html old mode 100755 new mode 100644 index 7a91279..ad85ae3 --- a/documentation/apidoc/index.html +++ b/documentation/apidoc/index.html @@ -1,75 +1,259 @@ - + - -Generated Documentation (Untitled) - + + + + + + + + + +
+ +
+
+

MIML library 1.4

+
+
+ +
+
+ +
+ diff --git a/documentation/apidoc/jquery-ui.overrides.css b/documentation/apidoc/jquery-ui.overrides.css new file mode 100644 index 0000000..12fe619 --- /dev/null +++ b/documentation/apidoc/jquery-ui.overrides.css @@ -0,0 +1,35 @@ +/* + * Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +.ui-state-active, +.ui-widget-content .ui-state-active, +.ui-widget-header .ui-state-active, +a.ui-button:active, +.ui-button:active, +.ui-button.ui-state-active:hover { + /* Overrides the color of selection used in jQuery UI */ + background: #F8981D; + border: 1px solid #F8981D; +} diff --git a/documentation/apidoc/jquery/external/jquery/jquery.js b/documentation/apidoc/jquery/external/jquery/jquery.js new file mode 100644 index 0000000..5093733 --- /dev/null +++ b/documentation/apidoc/jquery/external/jquery/jquery.js @@ -0,0 +1,10872 @@ +/*! + * jQuery JavaScript Library v3.5.1 + * https://jquery.com/ + * + * Includes Sizzle.js + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://jquery.org/license + * + * Date: 2020-05-04T22:49Z + */ +( function( global, factory ) { + + "use strict"; + + if ( typeof module === "object" && typeof module.exports === "object" ) { + + // For CommonJS and CommonJS-like environments where a proper `window` + // is present, execute the factory and get jQuery. + // For environments that do not have a `window` with a `document` + // (such as Node.js), expose a factory as module.exports. + // This accentuates the need for the creation of a real `window`. + // e.g. var jQuery = require("jquery")(window); + // See ticket #14549 for more info. + module.exports = global.document ? + factory( global, true ) : + function( w ) { + if ( !w.document ) { + throw new Error( "jQuery requires a window with a document" ); + } + return factory( w ); + }; + } else { + factory( global ); + } + +// Pass this if window is not defined yet +} )( typeof window !== "undefined" ? window : this, function( window, noGlobal ) { + +// Edge <= 12 - 13+, Firefox <=18 - 45+, IE 10 - 11, Safari 5.1 - 9+, iOS 6 - 9.1 +// throw exceptions when non-strict code (e.g., ASP.NET 4.5) accesses strict mode +// arguments.callee.caller (trac-13335). But as of jQuery 3.0 (2016), strict mode should be common +// enough that all such attempts are guarded in a try block. +"use strict"; + +var arr = []; + +var getProto = Object.getPrototypeOf; + +var slice = arr.slice; + +var flat = arr.flat ? function( array ) { + return arr.flat.call( array ); +} : function( array ) { + return arr.concat.apply( [], array ); +}; + + +var push = arr.push; + +var indexOf = arr.indexOf; + +var class2type = {}; + +var toString = class2type.toString; + +var hasOwn = class2type.hasOwnProperty; + +var fnToString = hasOwn.toString; + +var ObjectFunctionString = fnToString.call( Object ); + +var support = {}; + +var isFunction = function isFunction( obj ) { + + // Support: Chrome <=57, Firefox <=52 + // In some browsers, typeof returns "function" for HTML elements + // (i.e., `typeof document.createElement( "object" ) === "function"`). + // We don't want to classify *any* DOM node as a function. + return typeof obj === "function" && typeof obj.nodeType !== "number"; + }; + + +var isWindow = function isWindow( obj ) { + return obj != null && obj === obj.window; + }; + + +var document = window.document; + + + + var preservedScriptAttributes = { + type: true, + src: true, + nonce: true, + noModule: true + }; + + function DOMEval( code, node, doc ) { + doc = doc || document; + + var i, val, + script = doc.createElement( "script" ); + + script.text = code; + if ( node ) { + for ( i in preservedScriptAttributes ) { + + // Support: Firefox 64+, Edge 18+ + // Some browsers don't support the "nonce" property on scripts. + // On the other hand, just using `getAttribute` is not enough as + // the `nonce` attribute is reset to an empty string whenever it + // becomes browsing-context connected. + // See https://github.com/whatwg/html/issues/2369 + // See https://html.spec.whatwg.org/#nonce-attributes + // The `node.getAttribute` check was added for the sake of + // `jQuery.globalEval` so that it can fake a nonce-containing node + // via an object. + val = node[ i ] || node.getAttribute && node.getAttribute( i ); + if ( val ) { + script.setAttribute( i, val ); + } + } + } + doc.head.appendChild( script ).parentNode.removeChild( script ); + } + + +function toType( obj ) { + if ( obj == null ) { + return obj + ""; + } + + // Support: Android <=2.3 only (functionish RegExp) + return typeof obj === "object" || typeof obj === "function" ? + class2type[ toString.call( obj ) ] || "object" : + typeof obj; +} +/* global Symbol */ +// Defining this global in .eslintrc.json would create a danger of using the global +// unguarded in another place, it seems safer to define global only for this module + + + +var + version = "3.5.1", + + // Define a local copy of jQuery + jQuery = function( selector, context ) { + + // The jQuery object is actually just the init constructor 'enhanced' + // Need init if jQuery is called (just allow error to be thrown if not included) + return new jQuery.fn.init( selector, context ); + }; + +jQuery.fn = jQuery.prototype = { + + // The current version of jQuery being used + jquery: version, + + constructor: jQuery, + + // The default length of a jQuery object is 0 + length: 0, + + toArray: function() { + return slice.call( this ); + }, + + // Get the Nth element in the matched element set OR + // Get the whole matched element set as a clean array + get: function( num ) { + + // Return all the elements in a clean array + if ( num == null ) { + return slice.call( this ); + } + + // Return just the one element from the set + return num < 0 ? this[ num + this.length ] : this[ num ]; + }, + + // Take an array of elements and push it onto the stack + // (returning the new matched element set) + pushStack: function( elems ) { + + // Build a new jQuery matched element set + var ret = jQuery.merge( this.constructor(), elems ); + + // Add the old object onto the stack (as a reference) + ret.prevObject = this; + + // Return the newly-formed element set + return ret; + }, + + // Execute a callback for every element in the matched set. + each: function( callback ) { + return jQuery.each( this, callback ); + }, + + map: function( callback ) { + return this.pushStack( jQuery.map( this, function( elem, i ) { + return callback.call( elem, i, elem ); + } ) ); + }, + + slice: function() { + return this.pushStack( slice.apply( this, arguments ) ); + }, + + first: function() { + return this.eq( 0 ); + }, + + last: function() { + return this.eq( -1 ); + }, + + even: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return ( i + 1 ) % 2; + } ) ); + }, + + odd: function() { + return this.pushStack( jQuery.grep( this, function( _elem, i ) { + return i % 2; + } ) ); + }, + + eq: function( i ) { + var len = this.length, + j = +i + ( i < 0 ? len : 0 ); + return this.pushStack( j >= 0 && j < len ? [ this[ j ] ] : [] ); + }, + + end: function() { + return this.prevObject || this.constructor(); + }, + + // For internal use only. + // Behaves like an Array's method, not like a jQuery method. + push: push, + sort: arr.sort, + splice: arr.splice +}; + +jQuery.extend = jQuery.fn.extend = function() { + var options, name, src, copy, copyIsArray, clone, + target = arguments[ 0 ] || {}, + i = 1, + length = arguments.length, + deep = false; + + // Handle a deep copy situation + if ( typeof target === "boolean" ) { + deep = target; + + // Skip the boolean and the target + target = arguments[ i ] || {}; + i++; + } + + // Handle case when target is a string or something (possible in deep copy) + if ( typeof target !== "object" && !isFunction( target ) ) { + target = {}; + } + + // Extend jQuery itself if only one argument is passed + if ( i === length ) { + target = this; + i--; + } + + for ( ; i < length; i++ ) { + + // Only deal with non-null/undefined values + if ( ( options = arguments[ i ] ) != null ) { + + // Extend the base object + for ( name in options ) { + copy = options[ name ]; + + // Prevent Object.prototype pollution + // Prevent never-ending loop + if ( name === "__proto__" || target === copy ) { + continue; + } + + // Recurse if we're merging plain objects or arrays + if ( deep && copy && ( jQuery.isPlainObject( copy ) || + ( copyIsArray = Array.isArray( copy ) ) ) ) { + src = target[ name ]; + + // Ensure proper type for the source value + if ( copyIsArray && !Array.isArray( src ) ) { + clone = []; + } else if ( !copyIsArray && !jQuery.isPlainObject( src ) ) { + clone = {}; + } else { + clone = src; + } + copyIsArray = false; + + // Never move original objects, clone them + target[ name ] = jQuery.extend( deep, clone, copy ); + + // Don't bring in undefined values + } else if ( copy !== undefined ) { + target[ name ] = copy; + } + } + } + } + + // Return the modified object + return target; +}; + +jQuery.extend( { + + // Unique for each copy of jQuery on the page + expando: "jQuery" + ( version + Math.random() ).replace( /\D/g, "" ), + + // Assume jQuery is ready without the ready module + isReady: true, + + error: function( msg ) { + throw new Error( msg ); + }, + + noop: function() {}, + + isPlainObject: function( obj ) { + var proto, Ctor; + + // Detect obvious negatives + // Use toString instead of jQuery.type to catch host objects + if ( !obj || toString.call( obj ) !== "[object Object]" ) { + return false; + } + + proto = getProto( obj ); + + // Objects with no prototype (e.g., `Object.create( null )`) are plain + if ( !proto ) { + return true; + } + + // Objects with prototype are plain iff they were constructed by a global Object function + Ctor = hasOwn.call( proto, "constructor" ) && proto.constructor; + return typeof Ctor === "function" && fnToString.call( Ctor ) === ObjectFunctionString; + }, + + isEmptyObject: function( obj ) { + var name; + + for ( name in obj ) { + return false; + } + return true; + }, + + // Evaluates a script in a provided context; falls back to the global one + // if not specified. + globalEval: function( code, options, doc ) { + DOMEval( code, { nonce: options && options.nonce }, doc ); + }, + + each: function( obj, callback ) { + var length, i = 0; + + if ( isArrayLike( obj ) ) { + length = obj.length; + for ( ; i < length; i++ ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } else { + for ( i in obj ) { + if ( callback.call( obj[ i ], i, obj[ i ] ) === false ) { + break; + } + } + } + + return obj; + }, + + // results is for internal usage only + makeArray: function( arr, results ) { + var ret = results || []; + + if ( arr != null ) { + if ( isArrayLike( Object( arr ) ) ) { + jQuery.merge( ret, + typeof arr === "string" ? + [ arr ] : arr + ); + } else { + push.call( ret, arr ); + } + } + + return ret; + }, + + inArray: function( elem, arr, i ) { + return arr == null ? -1 : indexOf.call( arr, elem, i ); + }, + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + merge: function( first, second ) { + var len = +second.length, + j = 0, + i = first.length; + + for ( ; j < len; j++ ) { + first[ i++ ] = second[ j ]; + } + + first.length = i; + + return first; + }, + + grep: function( elems, callback, invert ) { + var callbackInverse, + matches = [], + i = 0, + length = elems.length, + callbackExpect = !invert; + + // Go through the array, only saving the items + // that pass the validator function + for ( ; i < length; i++ ) { + callbackInverse = !callback( elems[ i ], i ); + if ( callbackInverse !== callbackExpect ) { + matches.push( elems[ i ] ); + } + } + + return matches; + }, + + // arg is for internal usage only + map: function( elems, callback, arg ) { + var length, value, + i = 0, + ret = []; + + // Go through the array, translating each of the items to their new values + if ( isArrayLike( elems ) ) { + length = elems.length; + for ( ; i < length; i++ ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + + // Go through every key on the object, + } else { + for ( i in elems ) { + value = callback( elems[ i ], i, arg ); + + if ( value != null ) { + ret.push( value ); + } + } + } + + // Flatten any nested arrays + return flat( ret ); + }, + + // A global GUID counter for objects + guid: 1, + + // jQuery.support is not used in Core but other projects attach their + // properties to it so it needs to exist. + support: support +} ); + +if ( typeof Symbol === "function" ) { + jQuery.fn[ Symbol.iterator ] = arr[ Symbol.iterator ]; +} + +// Populate the class2type map +jQuery.each( "Boolean Number String Function Array Date RegExp Object Error Symbol".split( " " ), +function( _i, name ) { + class2type[ "[object " + name + "]" ] = name.toLowerCase(); +} ); + +function isArrayLike( obj ) { + + // Support: real iOS 8.2 only (not reproducible in simulator) + // `in` check used to prevent JIT error (gh-2145) + // hasOwn isn't used here due to false negatives + // regarding Nodelist length in IE + var length = !!obj && "length" in obj && obj.length, + type = toType( obj ); + + if ( isFunction( obj ) || isWindow( obj ) ) { + return false; + } + + return type === "array" || length === 0 || + typeof length === "number" && length > 0 && ( length - 1 ) in obj; +} +var Sizzle = +/*! + * Sizzle CSS Selector Engine v2.3.5 + * https://sizzlejs.com/ + * + * Copyright JS Foundation and other contributors + * Released under the MIT license + * https://js.foundation/ + * + * Date: 2020-03-14 + */ +( function( window ) { +var i, + support, + Expr, + getText, + isXML, + tokenize, + compile, + select, + outermostContext, + sortInput, + hasDuplicate, + + // Local document vars + setDocument, + document, + docElem, + documentIsHTML, + rbuggyQSA, + rbuggyMatches, + matches, + contains, + + // Instance-specific data + expando = "sizzle" + 1 * new Date(), + preferredDoc = window.document, + dirruns = 0, + done = 0, + classCache = createCache(), + tokenCache = createCache(), + compilerCache = createCache(), + nonnativeSelectorCache = createCache(), + sortOrder = function( a, b ) { + if ( a === b ) { + hasDuplicate = true; + } + return 0; + }, + + // Instance methods + hasOwn = ( {} ).hasOwnProperty, + arr = [], + pop = arr.pop, + pushNative = arr.push, + push = arr.push, + slice = arr.slice, + + // Use a stripped-down indexOf as it's faster than native + // https://jsperf.com/thor-indexof-vs-for/5 + indexOf = function( list, elem ) { + var i = 0, + len = list.length; + for ( ; i < len; i++ ) { + if ( list[ i ] === elem ) { + return i; + } + } + return -1; + }, + + booleans = "checked|selected|async|autofocus|autoplay|controls|defer|disabled|hidden|" + + "ismap|loop|multiple|open|readonly|required|scoped", + + // Regular expressions + + // http://www.w3.org/TR/css3-selectors/#whitespace + whitespace = "[\\x20\\t\\r\\n\\f]", + + // https://www.w3.org/TR/css-syntax-3/#ident-token-diagram + identifier = "(?:\\\\[\\da-fA-F]{1,6}" + whitespace + + "?|\\\\[^\\r\\n\\f]|[\\w-]|[^\0-\\x7f])+", + + // Attribute selectors: http://www.w3.org/TR/selectors/#attribute-selectors + attributes = "\\[" + whitespace + "*(" + identifier + ")(?:" + whitespace + + + // Operator (capture 2) + "*([*^$|!~]?=)" + whitespace + + + // "Attribute values must be CSS identifiers [capture 5] + // or strings [capture 3 or capture 4]" + "*(?:'((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\"|(" + identifier + "))|)" + + whitespace + "*\\]", + + pseudos = ":(" + identifier + ")(?:\\((" + + + // To reduce the number of selectors needing tokenize in the preFilter, prefer arguments: + // 1. quoted (capture 3; capture 4 or capture 5) + "('((?:\\\\.|[^\\\\'])*)'|\"((?:\\\\.|[^\\\\\"])*)\")|" + + + // 2. simple (capture 6) + "((?:\\\\.|[^\\\\()[\\]]|" + attributes + ")*)|" + + + // 3. anything else (capture 2) + ".*" + + ")\\)|)", + + // Leading and non-escaped trailing whitespace, capturing some non-whitespace characters preceding the latter + rwhitespace = new RegExp( whitespace + "+", "g" ), + rtrim = new RegExp( "^" + whitespace + "+|((?:^|[^\\\\])(?:\\\\.)*)" + + whitespace + "+$", "g" ), + + rcomma = new RegExp( "^" + whitespace + "*," + whitespace + "*" ), + rcombinators = new RegExp( "^" + whitespace + "*([>+~]|" + whitespace + ")" + whitespace + + "*" ), + rdescend = new RegExp( whitespace + "|>" ), + + rpseudo = new RegExp( pseudos ), + ridentifier = new RegExp( "^" + identifier + "$" ), + + matchExpr = { + "ID": new RegExp( "^#(" + identifier + ")" ), + "CLASS": new RegExp( "^\\.(" + identifier + ")" ), + "TAG": new RegExp( "^(" + identifier + "|[*])" ), + "ATTR": new RegExp( "^" + attributes ), + "PSEUDO": new RegExp( "^" + pseudos ), + "CHILD": new RegExp( "^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\(" + + whitespace + "*(even|odd|(([+-]|)(\\d*)n|)" + whitespace + "*(?:([+-]|)" + + whitespace + "*(\\d+)|))" + whitespace + "*\\)|)", "i" ), + "bool": new RegExp( "^(?:" + booleans + ")$", "i" ), + + // For use in libraries implementing .is() + // We use this for POS matching in `select` + "needsContext": new RegExp( "^" + whitespace + + "*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\(" + whitespace + + "*((?:-\\d)?\\d*)" + whitespace + "*\\)|)(?=[^-]|$)", "i" ) + }, + + rhtml = /HTML$/i, + rinputs = /^(?:input|select|textarea|button)$/i, + rheader = /^h\d$/i, + + rnative = /^[^{]+\{\s*\[native \w/, + + // Easily-parseable/retrievable ID or TAG or CLASS selectors + rquickExpr = /^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/, + + rsibling = /[+~]/, + + // CSS escapes + // http://www.w3.org/TR/CSS21/syndata.html#escaped-characters + runescape = new RegExp( "\\\\[\\da-fA-F]{1,6}" + whitespace + "?|\\\\([^\\r\\n\\f])", "g" ), + funescape = function( escape, nonHex ) { + var high = "0x" + escape.slice( 1 ) - 0x10000; + + return nonHex ? + + // Strip the backslash prefix from a non-hex escape sequence + nonHex : + + // Replace a hexadecimal escape sequence with the encoded Unicode code point + // Support: IE <=11+ + // For values outside the Basic Multilingual Plane (BMP), manually construct a + // surrogate pair + high < 0 ? + String.fromCharCode( high + 0x10000 ) : + String.fromCharCode( high >> 10 | 0xD800, high & 0x3FF | 0xDC00 ); + }, + + // CSS string/identifier serialization + // https://drafts.csswg.org/cssom/#common-serializing-idioms + rcssescape = /([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g, + fcssescape = function( ch, asCodePoint ) { + if ( asCodePoint ) { + + // U+0000 NULL becomes U+FFFD REPLACEMENT CHARACTER + if ( ch === "\0" ) { + return "\uFFFD"; + } + + // Control characters and (dependent upon position) numbers get escaped as code points + return ch.slice( 0, -1 ) + "\\" + + ch.charCodeAt( ch.length - 1 ).toString( 16 ) + " "; + } + + // Other potentially-special ASCII characters get backslash-escaped + return "\\" + ch; + }, + + // Used for iframes + // See setDocument() + // Removing the function wrapper causes a "Permission Denied" + // error in IE + unloadHandler = function() { + setDocument(); + }, + + inDisabledFieldset = addCombinator( + function( elem ) { + return elem.disabled === true && elem.nodeName.toLowerCase() === "fieldset"; + }, + { dir: "parentNode", next: "legend" } + ); + +// Optimize for push.apply( _, NodeList ) +try { + push.apply( + ( arr = slice.call( preferredDoc.childNodes ) ), + preferredDoc.childNodes + ); + + // Support: Android<4.0 + // Detect silently failing push.apply + // eslint-disable-next-line no-unused-expressions + arr[ preferredDoc.childNodes.length ].nodeType; +} catch ( e ) { + push = { apply: arr.length ? + + // Leverage slice if possible + function( target, els ) { + pushNative.apply( target, slice.call( els ) ); + } : + + // Support: IE<9 + // Otherwise append directly + function( target, els ) { + var j = target.length, + i = 0; + + // Can't trust NodeList.length + while ( ( target[ j++ ] = els[ i++ ] ) ) {} + target.length = j - 1; + } + }; +} + +function Sizzle( selector, context, results, seed ) { + var m, i, elem, nid, match, groups, newSelector, + newContext = context && context.ownerDocument, + + // nodeType defaults to 9, since context defaults to document + nodeType = context ? context.nodeType : 9; + + results = results || []; + + // Return early from calls with invalid selector or context + if ( typeof selector !== "string" || !selector || + nodeType !== 1 && nodeType !== 9 && nodeType !== 11 ) { + + return results; + } + + // Try to shortcut find operations (as opposed to filters) in HTML documents + if ( !seed ) { + setDocument( context ); + context = context || document; + + if ( documentIsHTML ) { + + // If the selector is sufficiently simple, try using a "get*By*" DOM method + // (excepting DocumentFragment context, where the methods don't exist) + if ( nodeType !== 11 && ( match = rquickExpr.exec( selector ) ) ) { + + // ID selector + if ( ( m = match[ 1 ] ) ) { + + // Document context + if ( nodeType === 9 ) { + if ( ( elem = context.getElementById( m ) ) ) { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( elem.id === m ) { + results.push( elem ); + return results; + } + } else { + return results; + } + + // Element context + } else { + + // Support: IE, Opera, Webkit + // TODO: identify versions + // getElementById can match elements by name instead of ID + if ( newContext && ( elem = newContext.getElementById( m ) ) && + contains( context, elem ) && + elem.id === m ) { + + results.push( elem ); + return results; + } + } + + // Type selector + } else if ( match[ 2 ] ) { + push.apply( results, context.getElementsByTagName( selector ) ); + return results; + + // Class selector + } else if ( ( m = match[ 3 ] ) && support.getElementsByClassName && + context.getElementsByClassName ) { + + push.apply( results, context.getElementsByClassName( m ) ); + return results; + } + } + + // Take advantage of querySelectorAll + if ( support.qsa && + !nonnativeSelectorCache[ selector + " " ] && + ( !rbuggyQSA || !rbuggyQSA.test( selector ) ) && + + // Support: IE 8 only + // Exclude object elements + ( nodeType !== 1 || context.nodeName.toLowerCase() !== "object" ) ) { + + newSelector = selector; + newContext = context; + + // qSA considers elements outside a scoping root when evaluating child or + // descendant combinators, which is not what we want. + // In such cases, we work around the behavior by prefixing every selector in the + // list with an ID selector referencing the scope context. + // The technique has to be used as well when a leading combinator is used + // as such selectors are not recognized by querySelectorAll. + // Thanks to Andrew Dupont for this technique. + if ( nodeType === 1 && + ( rdescend.test( selector ) || rcombinators.test( selector ) ) ) { + + // Expand context for sibling selectors + newContext = rsibling.test( selector ) && testContext( context.parentNode ) || + context; + + // We can use :scope instead of the ID hack if the browser + // supports it & if we're not changing the context. + if ( newContext !== context || !support.scope ) { + + // Capture the context ID, setting it first if necessary + if ( ( nid = context.getAttribute( "id" ) ) ) { + nid = nid.replace( rcssescape, fcssescape ); + } else { + context.setAttribute( "id", ( nid = expando ) ); + } + } + + // Prefix every selector in the list + groups = tokenize( selector ); + i = groups.length; + while ( i-- ) { + groups[ i ] = ( nid ? "#" + nid : ":scope" ) + " " + + toSelector( groups[ i ] ); + } + newSelector = groups.join( "," ); + } + + try { + push.apply( results, + newContext.querySelectorAll( newSelector ) + ); + return results; + } catch ( qsaError ) { + nonnativeSelectorCache( selector, true ); + } finally { + if ( nid === expando ) { + context.removeAttribute( "id" ); + } + } + } + } + } + + // All others + return select( selector.replace( rtrim, "$1" ), context, results, seed ); +} + +/** + * Create key-value caches of limited size + * @returns {function(string, object)} Returns the Object data after storing it on itself with + * property name the (space-suffixed) string and (if the cache is larger than Expr.cacheLength) + * deleting the oldest entry + */ +function createCache() { + var keys = []; + + function cache( key, value ) { + + // Use (key + " ") to avoid collision with native prototype properties (see Issue #157) + if ( keys.push( key + " " ) > Expr.cacheLength ) { + + // Only keep the most recent entries + delete cache[ keys.shift() ]; + } + return ( cache[ key + " " ] = value ); + } + return cache; +} + +/** + * Mark a function for special use by Sizzle + * @param {Function} fn The function to mark + */ +function markFunction( fn ) { + fn[ expando ] = true; + return fn; +} + +/** + * Support testing using an element + * @param {Function} fn Passed the created element and returns a boolean result + */ +function assert( fn ) { + var el = document.createElement( "fieldset" ); + + try { + return !!fn( el ); + } catch ( e ) { + return false; + } finally { + + // Remove from its parent by default + if ( el.parentNode ) { + el.parentNode.removeChild( el ); + } + + // release memory in IE + el = null; + } +} + +/** + * Adds the same handler for all of the specified attrs + * @param {String} attrs Pipe-separated list of attributes + * @param {Function} handler The method that will be applied + */ +function addHandle( attrs, handler ) { + var arr = attrs.split( "|" ), + i = arr.length; + + while ( i-- ) { + Expr.attrHandle[ arr[ i ] ] = handler; + } +} + +/** + * Checks document order of two siblings + * @param {Element} a + * @param {Element} b + * @returns {Number} Returns less than 0 if a precedes b, greater than 0 if a follows b + */ +function siblingCheck( a, b ) { + var cur = b && a, + diff = cur && a.nodeType === 1 && b.nodeType === 1 && + a.sourceIndex - b.sourceIndex; + + // Use IE sourceIndex if available on both nodes + if ( diff ) { + return diff; + } + + // Check if b follows a + if ( cur ) { + while ( ( cur = cur.nextSibling ) ) { + if ( cur === b ) { + return -1; + } + } + } + + return a ? 1 : -1; +} + +/** + * Returns a function to use in pseudos for input types + * @param {String} type + */ +function createInputPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for buttons + * @param {String} type + */ +function createButtonPseudo( type ) { + return function( elem ) { + var name = elem.nodeName.toLowerCase(); + return ( name === "input" || name === "button" ) && elem.type === type; + }; +} + +/** + * Returns a function to use in pseudos for :enabled/:disabled + * @param {Boolean} disabled true for :disabled; false for :enabled + */ +function createDisabledPseudo( disabled ) { + + // Known :disabled false positives: fieldset[disabled] > legend:nth-of-type(n+2) :can-disable + return function( elem ) { + + // Only certain elements can match :enabled or :disabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-enabled + // https://html.spec.whatwg.org/multipage/scripting.html#selector-disabled + if ( "form" in elem ) { + + // Check for inherited disabledness on relevant non-disabled elements: + // * listed form-associated elements in a disabled fieldset + // https://html.spec.whatwg.org/multipage/forms.html#category-listed + // https://html.spec.whatwg.org/multipage/forms.html#concept-fe-disabled + // * option elements in a disabled optgroup + // https://html.spec.whatwg.org/multipage/forms.html#concept-option-disabled + // All such elements have a "form" property. + if ( elem.parentNode && elem.disabled === false ) { + + // Option elements defer to a parent optgroup if present + if ( "label" in elem ) { + if ( "label" in elem.parentNode ) { + return elem.parentNode.disabled === disabled; + } else { + return elem.disabled === disabled; + } + } + + // Support: IE 6 - 11 + // Use the isDisabled shortcut property to check for disabled fieldset ancestors + return elem.isDisabled === disabled || + + // Where there is no isDisabled, check manually + /* jshint -W018 */ + elem.isDisabled !== !disabled && + inDisabledFieldset( elem ) === disabled; + } + + return elem.disabled === disabled; + + // Try to winnow out elements that can't be disabled before trusting the disabled property. + // Some victims get caught in our net (label, legend, menu, track), but it shouldn't + // even exist on them, let alone have a boolean value. + } else if ( "label" in elem ) { + return elem.disabled === disabled; + } + + // Remaining elements are neither :enabled nor :disabled + return false; + }; +} + +/** + * Returns a function to use in pseudos for positionals + * @param {Function} fn + */ +function createPositionalPseudo( fn ) { + return markFunction( function( argument ) { + argument = +argument; + return markFunction( function( seed, matches ) { + var j, + matchIndexes = fn( [], seed.length, argument ), + i = matchIndexes.length; + + // Match elements found at the specified indexes + while ( i-- ) { + if ( seed[ ( j = matchIndexes[ i ] ) ] ) { + seed[ j ] = !( matches[ j ] = seed[ j ] ); + } + } + } ); + } ); +} + +/** + * Checks a node for validity as a Sizzle context + * @param {Element|Object=} context + * @returns {Element|Object|Boolean} The input node if acceptable, otherwise a falsy value + */ +function testContext( context ) { + return context && typeof context.getElementsByTagName !== "undefined" && context; +} + +// Expose support vars for convenience +support = Sizzle.support = {}; + +/** + * Detects XML nodes + * @param {Element|Object} elem An element or a document + * @returns {Boolean} True iff elem is a non-HTML XML node + */ +isXML = Sizzle.isXML = function( elem ) { + var namespace = elem.namespaceURI, + docElem = ( elem.ownerDocument || elem ).documentElement; + + // Support: IE <=8 + // Assume HTML when documentElement doesn't yet exist, such as inside loading iframes + // https://bugs.jquery.com/ticket/4833 + return !rhtml.test( namespace || docElem && docElem.nodeName || "HTML" ); +}; + +/** + * Sets document-related variables once based on the current document + * @param {Element|Object} [doc] An element or document object to use to set the document + * @returns {Object} Returns the current document + */ +setDocument = Sizzle.setDocument = function( node ) { + var hasCompare, subWindow, + doc = node ? node.ownerDocument || node : preferredDoc; + + // Return early if doc is invalid or already selected + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( doc == document || doc.nodeType !== 9 || !doc.documentElement ) { + return document; + } + + // Update global variables + document = doc; + docElem = document.documentElement; + documentIsHTML = !isXML( document ); + + // Support: IE 9 - 11+, Edge 12 - 18+ + // Accessing iframe documents after unload throws "permission denied" errors (jQuery #13936) + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( preferredDoc != document && + ( subWindow = document.defaultView ) && subWindow.top !== subWindow ) { + + // Support: IE 11, Edge + if ( subWindow.addEventListener ) { + subWindow.addEventListener( "unload", unloadHandler, false ); + + // Support: IE 9 - 10 only + } else if ( subWindow.attachEvent ) { + subWindow.attachEvent( "onunload", unloadHandler ); + } + } + + // Support: IE 8 - 11+, Edge 12 - 18+, Chrome <=16 - 25 only, Firefox <=3.6 - 31 only, + // Safari 4 - 5 only, Opera <=11.6 - 12.x only + // IE/Edge & older browsers don't support the :scope pseudo-class. + // Support: Safari 6.0 only + // Safari 6.0 supports :scope but it's an alias of :root there. + support.scope = assert( function( el ) { + docElem.appendChild( el ).appendChild( document.createElement( "div" ) ); + return typeof el.querySelectorAll !== "undefined" && + !el.querySelectorAll( ":scope fieldset div" ).length; + } ); + + /* Attributes + ---------------------------------------------------------------------- */ + + // Support: IE<8 + // Verify that getAttribute really returns attributes and not properties + // (excepting IE8 booleans) + support.attributes = assert( function( el ) { + el.className = "i"; + return !el.getAttribute( "className" ); + } ); + + /* getElement(s)By* + ---------------------------------------------------------------------- */ + + // Check if getElementsByTagName("*") returns only elements + support.getElementsByTagName = assert( function( el ) { + el.appendChild( document.createComment( "" ) ); + return !el.getElementsByTagName( "*" ).length; + } ); + + // Support: IE<9 + support.getElementsByClassName = rnative.test( document.getElementsByClassName ); + + // Support: IE<10 + // Check if getElementById returns elements by name + // The broken getElementById methods don't pick up programmatically-set names, + // so use a roundabout getElementsByName test + support.getById = assert( function( el ) { + docElem.appendChild( el ).id = expando; + return !document.getElementsByName || !document.getElementsByName( expando ).length; + } ); + + // ID filter and find + if ( support.getById ) { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + return elem.getAttribute( "id" ) === attrId; + }; + }; + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var elem = context.getElementById( id ); + return elem ? [ elem ] : []; + } + }; + } else { + Expr.filter[ "ID" ] = function( id ) { + var attrId = id.replace( runescape, funescape ); + return function( elem ) { + var node = typeof elem.getAttributeNode !== "undefined" && + elem.getAttributeNode( "id" ); + return node && node.value === attrId; + }; + }; + + // Support: IE 6 - 7 only + // getElementById is not reliable as a find shortcut + Expr.find[ "ID" ] = function( id, context ) { + if ( typeof context.getElementById !== "undefined" && documentIsHTML ) { + var node, i, elems, + elem = context.getElementById( id ); + + if ( elem ) { + + // Verify the id attribute + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + + // Fall back on getElementsByName + elems = context.getElementsByName( id ); + i = 0; + while ( ( elem = elems[ i++ ] ) ) { + node = elem.getAttributeNode( "id" ); + if ( node && node.value === id ) { + return [ elem ]; + } + } + } + + return []; + } + }; + } + + // Tag + Expr.find[ "TAG" ] = support.getElementsByTagName ? + function( tag, context ) { + if ( typeof context.getElementsByTagName !== "undefined" ) { + return context.getElementsByTagName( tag ); + + // DocumentFragment nodes don't have gEBTN + } else if ( support.qsa ) { + return context.querySelectorAll( tag ); + } + } : + + function( tag, context ) { + var elem, + tmp = [], + i = 0, + + // By happy coincidence, a (broken) gEBTN appears on DocumentFragment nodes too + results = context.getElementsByTagName( tag ); + + // Filter out possible comments + if ( tag === "*" ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem.nodeType === 1 ) { + tmp.push( elem ); + } + } + + return tmp; + } + return results; + }; + + // Class + Expr.find[ "CLASS" ] = support.getElementsByClassName && function( className, context ) { + if ( typeof context.getElementsByClassName !== "undefined" && documentIsHTML ) { + return context.getElementsByClassName( className ); + } + }; + + /* QSA/matchesSelector + ---------------------------------------------------------------------- */ + + // QSA and matchesSelector support + + // matchesSelector(:active) reports false when true (IE9/Opera 11.5) + rbuggyMatches = []; + + // qSa(:focus) reports false when true (Chrome 21) + // We allow this because of a bug in IE8/9 that throws an error + // whenever `document.activeElement` is accessed on an iframe + // So, we allow :focus to pass through QSA all the time to avoid the IE error + // See https://bugs.jquery.com/ticket/13378 + rbuggyQSA = []; + + if ( ( support.qsa = rnative.test( document.querySelectorAll ) ) ) { + + // Build QSA regex + // Regex strategy adopted from Diego Perini + assert( function( el ) { + + var input; + + // Select is set to empty string on purpose + // This is to test IE's treatment of not explicitly + // setting a boolean content attribute, + // since its presence should be enough + // https://bugs.jquery.com/ticket/12359 + docElem.appendChild( el ).innerHTML = "" + + ""; + + // Support: IE8, Opera 11-12.16 + // Nothing should be selected when empty strings follow ^= or $= or *= + // The test attribute must be unknown in Opera but "safe" for WinRT + // https://msdn.microsoft.com/en-us/library/ie/hh465388.aspx#attribute_section + if ( el.querySelectorAll( "[msallowcapture^='']" ).length ) { + rbuggyQSA.push( "[*^$]=" + whitespace + "*(?:''|\"\")" ); + } + + // Support: IE8 + // Boolean attributes and "value" are not treated correctly + if ( !el.querySelectorAll( "[selected]" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*(?:value|" + booleans + ")" ); + } + + // Support: Chrome<29, Android<4.4, Safari<7.0+, iOS<7.0+, PhantomJS<1.9.8+ + if ( !el.querySelectorAll( "[id~=" + expando + "-]" ).length ) { + rbuggyQSA.push( "~=" ); + } + + // Support: IE 11+, Edge 15 - 18+ + // IE 11/Edge don't find elements on a `[name='']` query in some cases. + // Adding a temporary attribute to the document before the selection works + // around the issue. + // Interestingly, IE 10 & older don't seem to have the issue. + input = document.createElement( "input" ); + input.setAttribute( "name", "" ); + el.appendChild( input ); + if ( !el.querySelectorAll( "[name='']" ).length ) { + rbuggyQSA.push( "\\[" + whitespace + "*name" + whitespace + "*=" + + whitespace + "*(?:''|\"\")" ); + } + + // Webkit/Opera - :checked should return selected option elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + // IE8 throws error here and will not see later tests + if ( !el.querySelectorAll( ":checked" ).length ) { + rbuggyQSA.push( ":checked" ); + } + + // Support: Safari 8+, iOS 8+ + // https://bugs.webkit.org/show_bug.cgi?id=136851 + // In-page `selector#id sibling-combinator selector` fails + if ( !el.querySelectorAll( "a#" + expando + "+*" ).length ) { + rbuggyQSA.push( ".#.+[+~]" ); + } + + // Support: Firefox <=3.6 - 5 only + // Old Firefox doesn't throw on a badly-escaped identifier. + el.querySelectorAll( "\\\f" ); + rbuggyQSA.push( "[\\r\\n\\f]" ); + } ); + + assert( function( el ) { + el.innerHTML = "" + + ""; + + // Support: Windows 8 Native Apps + // The type and name attributes are restricted during .innerHTML assignment + var input = document.createElement( "input" ); + input.setAttribute( "type", "hidden" ); + el.appendChild( input ).setAttribute( "name", "D" ); + + // Support: IE8 + // Enforce case-sensitivity of name attribute + if ( el.querySelectorAll( "[name=d]" ).length ) { + rbuggyQSA.push( "name" + whitespace + "*[*^$|!~]?=" ); + } + + // FF 3.5 - :enabled/:disabled and hidden elements (hidden elements are still enabled) + // IE8 throws error here and will not see later tests + if ( el.querySelectorAll( ":enabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: IE9-11+ + // IE's :disabled selector does not pick up the children of disabled fieldsets + docElem.appendChild( el ).disabled = true; + if ( el.querySelectorAll( ":disabled" ).length !== 2 ) { + rbuggyQSA.push( ":enabled", ":disabled" ); + } + + // Support: Opera 10 - 11 only + // Opera 10-11 does not throw on post-comma invalid pseudos + el.querySelectorAll( "*,:x" ); + rbuggyQSA.push( ",.*:" ); + } ); + } + + if ( ( support.matchesSelector = rnative.test( ( matches = docElem.matches || + docElem.webkitMatchesSelector || + docElem.mozMatchesSelector || + docElem.oMatchesSelector || + docElem.msMatchesSelector ) ) ) ) { + + assert( function( el ) { + + // Check to see if it's possible to do matchesSelector + // on a disconnected node (IE 9) + support.disconnectedMatch = matches.call( el, "*" ); + + // This should fail with an exception + // Gecko does not error, returns false instead + matches.call( el, "[s!='']:x" ); + rbuggyMatches.push( "!=", pseudos ); + } ); + } + + rbuggyQSA = rbuggyQSA.length && new RegExp( rbuggyQSA.join( "|" ) ); + rbuggyMatches = rbuggyMatches.length && new RegExp( rbuggyMatches.join( "|" ) ); + + /* Contains + ---------------------------------------------------------------------- */ + hasCompare = rnative.test( docElem.compareDocumentPosition ); + + // Element contains another + // Purposefully self-exclusive + // As in, an element does not contain itself + contains = hasCompare || rnative.test( docElem.contains ) ? + function( a, b ) { + var adown = a.nodeType === 9 ? a.documentElement : a, + bup = b && b.parentNode; + return a === bup || !!( bup && bup.nodeType === 1 && ( + adown.contains ? + adown.contains( bup ) : + a.compareDocumentPosition && a.compareDocumentPosition( bup ) & 16 + ) ); + } : + function( a, b ) { + if ( b ) { + while ( ( b = b.parentNode ) ) { + if ( b === a ) { + return true; + } + } + } + return false; + }; + + /* Sorting + ---------------------------------------------------------------------- */ + + // Document order sorting + sortOrder = hasCompare ? + function( a, b ) { + + // Flag for duplicate removal + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + // Sort on method existence if only one input has compareDocumentPosition + var compare = !a.compareDocumentPosition - !b.compareDocumentPosition; + if ( compare ) { + return compare; + } + + // Calculate position if both inputs belong to the same document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + compare = ( a.ownerDocument || a ) == ( b.ownerDocument || b ) ? + a.compareDocumentPosition( b ) : + + // Otherwise we know they are disconnected + 1; + + // Disconnected nodes + if ( compare & 1 || + ( !support.sortDetached && b.compareDocumentPosition( a ) === compare ) ) { + + // Choose the first element that is related to our preferred document + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( a == document || a.ownerDocument == preferredDoc && + contains( preferredDoc, a ) ) { + return -1; + } + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( b == document || b.ownerDocument == preferredDoc && + contains( preferredDoc, b ) ) { + return 1; + } + + // Maintain original order + return sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + } + + return compare & 4 ? -1 : 1; + } : + function( a, b ) { + + // Exit early if the nodes are identical + if ( a === b ) { + hasDuplicate = true; + return 0; + } + + var cur, + i = 0, + aup = a.parentNode, + bup = b.parentNode, + ap = [ a ], + bp = [ b ]; + + // Parentless nodes are either documents or disconnected + if ( !aup || !bup ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + return a == document ? -1 : + b == document ? 1 : + /* eslint-enable eqeqeq */ + aup ? -1 : + bup ? 1 : + sortInput ? + ( indexOf( sortInput, a ) - indexOf( sortInput, b ) ) : + 0; + + // If the nodes are siblings, we can do a quick check + } else if ( aup === bup ) { + return siblingCheck( a, b ); + } + + // Otherwise we need full lists of their ancestors for comparison + cur = a; + while ( ( cur = cur.parentNode ) ) { + ap.unshift( cur ); + } + cur = b; + while ( ( cur = cur.parentNode ) ) { + bp.unshift( cur ); + } + + // Walk down the tree looking for a discrepancy + while ( ap[ i ] === bp[ i ] ) { + i++; + } + + return i ? + + // Do a sibling check if the nodes have a common ancestor + siblingCheck( ap[ i ], bp[ i ] ) : + + // Otherwise nodes in our document sort first + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + /* eslint-disable eqeqeq */ + ap[ i ] == preferredDoc ? -1 : + bp[ i ] == preferredDoc ? 1 : + /* eslint-enable eqeqeq */ + 0; + }; + + return document; +}; + +Sizzle.matches = function( expr, elements ) { + return Sizzle( expr, null, null, elements ); +}; + +Sizzle.matchesSelector = function( elem, expr ) { + setDocument( elem ); + + if ( support.matchesSelector && documentIsHTML && + !nonnativeSelectorCache[ expr + " " ] && + ( !rbuggyMatches || !rbuggyMatches.test( expr ) ) && + ( !rbuggyQSA || !rbuggyQSA.test( expr ) ) ) { + + try { + var ret = matches.call( elem, expr ); + + // IE 9's matchesSelector returns false on disconnected nodes + if ( ret || support.disconnectedMatch || + + // As well, disconnected nodes are said to be in a document + // fragment in IE 9 + elem.document && elem.document.nodeType !== 11 ) { + return ret; + } + } catch ( e ) { + nonnativeSelectorCache( expr, true ); + } + } + + return Sizzle( expr, document, null, [ elem ] ).length > 0; +}; + +Sizzle.contains = function( context, elem ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( context.ownerDocument || context ) != document ) { + setDocument( context ); + } + return contains( context, elem ); +}; + +Sizzle.attr = function( elem, name ) { + + // Set document vars if needed + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( ( elem.ownerDocument || elem ) != document ) { + setDocument( elem ); + } + + var fn = Expr.attrHandle[ name.toLowerCase() ], + + // Don't get fooled by Object.prototype properties (jQuery #13807) + val = fn && hasOwn.call( Expr.attrHandle, name.toLowerCase() ) ? + fn( elem, name, !documentIsHTML ) : + undefined; + + return val !== undefined ? + val : + support.attributes || !documentIsHTML ? + elem.getAttribute( name ) : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; +}; + +Sizzle.escape = function( sel ) { + return ( sel + "" ).replace( rcssescape, fcssescape ); +}; + +Sizzle.error = function( msg ) { + throw new Error( "Syntax error, unrecognized expression: " + msg ); +}; + +/** + * Document sorting and removing duplicates + * @param {ArrayLike} results + */ +Sizzle.uniqueSort = function( results ) { + var elem, + duplicates = [], + j = 0, + i = 0; + + // Unless we *know* we can detect duplicates, assume their presence + hasDuplicate = !support.detectDuplicates; + sortInput = !support.sortStable && results.slice( 0 ); + results.sort( sortOrder ); + + if ( hasDuplicate ) { + while ( ( elem = results[ i++ ] ) ) { + if ( elem === results[ i ] ) { + j = duplicates.push( i ); + } + } + while ( j-- ) { + results.splice( duplicates[ j ], 1 ); + } + } + + // Clear input after sorting to release objects + // See https://github.com/jquery/sizzle/pull/225 + sortInput = null; + + return results; +}; + +/** + * Utility function for retrieving the text value of an array of DOM nodes + * @param {Array|Element} elem + */ +getText = Sizzle.getText = function( elem ) { + var node, + ret = "", + i = 0, + nodeType = elem.nodeType; + + if ( !nodeType ) { + + // If no nodeType, this is expected to be an array + while ( ( node = elem[ i++ ] ) ) { + + // Do not traverse comment nodes + ret += getText( node ); + } + } else if ( nodeType === 1 || nodeType === 9 || nodeType === 11 ) { + + // Use textContent for elements + // innerText usage removed for consistency of new lines (jQuery #11153) + if ( typeof elem.textContent === "string" ) { + return elem.textContent; + } else { + + // Traverse its children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + ret += getText( elem ); + } + } + } else if ( nodeType === 3 || nodeType === 4 ) { + return elem.nodeValue; + } + + // Do not include comment or processing instruction nodes + + return ret; +}; + +Expr = Sizzle.selectors = { + + // Can be adjusted by the user + cacheLength: 50, + + createPseudo: markFunction, + + match: matchExpr, + + attrHandle: {}, + + find: {}, + + relative: { + ">": { dir: "parentNode", first: true }, + " ": { dir: "parentNode" }, + "+": { dir: "previousSibling", first: true }, + "~": { dir: "previousSibling" } + }, + + preFilter: { + "ATTR": function( match ) { + match[ 1 ] = match[ 1 ].replace( runescape, funescape ); + + // Move the given value to match[3] whether quoted or unquoted + match[ 3 ] = ( match[ 3 ] || match[ 4 ] || + match[ 5 ] || "" ).replace( runescape, funescape ); + + if ( match[ 2 ] === "~=" ) { + match[ 3 ] = " " + match[ 3 ] + " "; + } + + return match.slice( 0, 4 ); + }, + + "CHILD": function( match ) { + + /* matches from matchExpr["CHILD"] + 1 type (only|nth|...) + 2 what (child|of-type) + 3 argument (even|odd|\d*|\d*n([+-]\d+)?|...) + 4 xn-component of xn+y argument ([+-]?\d*n|) + 5 sign of xn-component + 6 x of xn-component + 7 sign of y-component + 8 y of y-component + */ + match[ 1 ] = match[ 1 ].toLowerCase(); + + if ( match[ 1 ].slice( 0, 3 ) === "nth" ) { + + // nth-* requires argument + if ( !match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + // numeric x and y parameters for Expr.filter.CHILD + // remember that false/true cast respectively to 0/1 + match[ 4 ] = +( match[ 4 ] ? + match[ 5 ] + ( match[ 6 ] || 1 ) : + 2 * ( match[ 3 ] === "even" || match[ 3 ] === "odd" ) ); + match[ 5 ] = +( ( match[ 7 ] + match[ 8 ] ) || match[ 3 ] === "odd" ); + + // other types prohibit arguments + } else if ( match[ 3 ] ) { + Sizzle.error( match[ 0 ] ); + } + + return match; + }, + + "PSEUDO": function( match ) { + var excess, + unquoted = !match[ 6 ] && match[ 2 ]; + + if ( matchExpr[ "CHILD" ].test( match[ 0 ] ) ) { + return null; + } + + // Accept quoted arguments as-is + if ( match[ 3 ] ) { + match[ 2 ] = match[ 4 ] || match[ 5 ] || ""; + + // Strip excess characters from unquoted arguments + } else if ( unquoted && rpseudo.test( unquoted ) && + + // Get excess from tokenize (recursively) + ( excess = tokenize( unquoted, true ) ) && + + // advance to the next closing parenthesis + ( excess = unquoted.indexOf( ")", unquoted.length - excess ) - unquoted.length ) ) { + + // excess is a negative index + match[ 0 ] = match[ 0 ].slice( 0, excess ); + match[ 2 ] = unquoted.slice( 0, excess ); + } + + // Return only captures needed by the pseudo filter method (type and argument) + return match.slice( 0, 3 ); + } + }, + + filter: { + + "TAG": function( nodeNameSelector ) { + var nodeName = nodeNameSelector.replace( runescape, funescape ).toLowerCase(); + return nodeNameSelector === "*" ? + function() { + return true; + } : + function( elem ) { + return elem.nodeName && elem.nodeName.toLowerCase() === nodeName; + }; + }, + + "CLASS": function( className ) { + var pattern = classCache[ className + " " ]; + + return pattern || + ( pattern = new RegExp( "(^|" + whitespace + + ")" + className + "(" + whitespace + "|$)" ) ) && classCache( + className, function( elem ) { + return pattern.test( + typeof elem.className === "string" && elem.className || + typeof elem.getAttribute !== "undefined" && + elem.getAttribute( "class" ) || + "" + ); + } ); + }, + + "ATTR": function( name, operator, check ) { + return function( elem ) { + var result = Sizzle.attr( elem, name ); + + if ( result == null ) { + return operator === "!="; + } + if ( !operator ) { + return true; + } + + result += ""; + + /* eslint-disable max-len */ + + return operator === "=" ? result === check : + operator === "!=" ? result !== check : + operator === "^=" ? check && result.indexOf( check ) === 0 : + operator === "*=" ? check && result.indexOf( check ) > -1 : + operator === "$=" ? check && result.slice( -check.length ) === check : + operator === "~=" ? ( " " + result.replace( rwhitespace, " " ) + " " ).indexOf( check ) > -1 : + operator === "|=" ? result === check || result.slice( 0, check.length + 1 ) === check + "-" : + false; + /* eslint-enable max-len */ + + }; + }, + + "CHILD": function( type, what, _argument, first, last ) { + var simple = type.slice( 0, 3 ) !== "nth", + forward = type.slice( -4 ) !== "last", + ofType = what === "of-type"; + + return first === 1 && last === 0 ? + + // Shortcut for :nth-*(n) + function( elem ) { + return !!elem.parentNode; + } : + + function( elem, _context, xml ) { + var cache, uniqueCache, outerCache, node, nodeIndex, start, + dir = simple !== forward ? "nextSibling" : "previousSibling", + parent = elem.parentNode, + name = ofType && elem.nodeName.toLowerCase(), + useCache = !xml && !ofType, + diff = false; + + if ( parent ) { + + // :(first|last|only)-(child|of-type) + if ( simple ) { + while ( dir ) { + node = elem; + while ( ( node = node[ dir ] ) ) { + if ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) { + + return false; + } + } + + // Reverse direction for :only-* (if we haven't yet done so) + start = dir = type === "only" && !start && "nextSibling"; + } + return true; + } + + start = [ forward ? parent.firstChild : parent.lastChild ]; + + // non-xml :nth-child(...) stores cache data on `parent` + if ( forward && useCache ) { + + // Seek `elem` from a previously-cached index + + // ...in a gzip-friendly way + node = parent; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex && cache[ 2 ]; + node = nodeIndex && parent.childNodes[ nodeIndex ]; + + while ( ( node = ++nodeIndex && node && node[ dir ] || + + // Fallback to seeking `elem` from the start + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + // When found, cache indexes on `parent` and break + if ( node.nodeType === 1 && ++diff && node === elem ) { + uniqueCache[ type ] = [ dirruns, nodeIndex, diff ]; + break; + } + } + + } else { + + // Use previously-cached element index if available + if ( useCache ) { + + // ...in a gzip-friendly way + node = elem; + outerCache = node[ expando ] || ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + cache = uniqueCache[ type ] || []; + nodeIndex = cache[ 0 ] === dirruns && cache[ 1 ]; + diff = nodeIndex; + } + + // xml :nth-child(...) + // or :nth-last-child(...) or :nth(-last)?-of-type(...) + if ( diff === false ) { + + // Use the same loop as above to seek `elem` from the start + while ( ( node = ++nodeIndex && node && node[ dir ] || + ( diff = nodeIndex = 0 ) || start.pop() ) ) { + + if ( ( ofType ? + node.nodeName.toLowerCase() === name : + node.nodeType === 1 ) && + ++diff ) { + + // Cache the index of each encountered element + if ( useCache ) { + outerCache = node[ expando ] || + ( node[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ node.uniqueID ] || + ( outerCache[ node.uniqueID ] = {} ); + + uniqueCache[ type ] = [ dirruns, diff ]; + } + + if ( node === elem ) { + break; + } + } + } + } + } + + // Incorporate the offset, then check against cycle size + diff -= last; + return diff === first || ( diff % first === 0 && diff / first >= 0 ); + } + }; + }, + + "PSEUDO": function( pseudo, argument ) { + + // pseudo-class names are case-insensitive + // http://www.w3.org/TR/selectors/#pseudo-classes + // Prioritize by case sensitivity in case custom pseudos are added with uppercase letters + // Remember that setFilters inherits from pseudos + var args, + fn = Expr.pseudos[ pseudo ] || Expr.setFilters[ pseudo.toLowerCase() ] || + Sizzle.error( "unsupported pseudo: " + pseudo ); + + // The user may use createPseudo to indicate that + // arguments are needed to create the filter function + // just as Sizzle does + if ( fn[ expando ] ) { + return fn( argument ); + } + + // But maintain support for old signatures + if ( fn.length > 1 ) { + args = [ pseudo, pseudo, "", argument ]; + return Expr.setFilters.hasOwnProperty( pseudo.toLowerCase() ) ? + markFunction( function( seed, matches ) { + var idx, + matched = fn( seed, argument ), + i = matched.length; + while ( i-- ) { + idx = indexOf( seed, matched[ i ] ); + seed[ idx ] = !( matches[ idx ] = matched[ i ] ); + } + } ) : + function( elem ) { + return fn( elem, 0, args ); + }; + } + + return fn; + } + }, + + pseudos: { + + // Potentially complex pseudos + "not": markFunction( function( selector ) { + + // Trim the selector passed to compile + // to avoid treating leading and trailing + // spaces as combinators + var input = [], + results = [], + matcher = compile( selector.replace( rtrim, "$1" ) ); + + return matcher[ expando ] ? + markFunction( function( seed, matches, _context, xml ) { + var elem, + unmatched = matcher( seed, null, xml, [] ), + i = seed.length; + + // Match elements unmatched by `matcher` + while ( i-- ) { + if ( ( elem = unmatched[ i ] ) ) { + seed[ i ] = !( matches[ i ] = elem ); + } + } + } ) : + function( elem, _context, xml ) { + input[ 0 ] = elem; + matcher( input, null, xml, results ); + + // Don't keep the element (issue #299) + input[ 0 ] = null; + return !results.pop(); + }; + } ), + + "has": markFunction( function( selector ) { + return function( elem ) { + return Sizzle( selector, elem ).length > 0; + }; + } ), + + "contains": markFunction( function( text ) { + text = text.replace( runescape, funescape ); + return function( elem ) { + return ( elem.textContent || getText( elem ) ).indexOf( text ) > -1; + }; + } ), + + // "Whether an element is represented by a :lang() selector + // is based solely on the element's language value + // being equal to the identifier C, + // or beginning with the identifier C immediately followed by "-". + // The matching of C against the element's language value is performed case-insensitively. + // The identifier C does not have to be a valid language name." + // http://www.w3.org/TR/selectors/#lang-pseudo + "lang": markFunction( function( lang ) { + + // lang value must be a valid identifier + if ( !ridentifier.test( lang || "" ) ) { + Sizzle.error( "unsupported lang: " + lang ); + } + lang = lang.replace( runescape, funescape ).toLowerCase(); + return function( elem ) { + var elemLang; + do { + if ( ( elemLang = documentIsHTML ? + elem.lang : + elem.getAttribute( "xml:lang" ) || elem.getAttribute( "lang" ) ) ) { + + elemLang = elemLang.toLowerCase(); + return elemLang === lang || elemLang.indexOf( lang + "-" ) === 0; + } + } while ( ( elem = elem.parentNode ) && elem.nodeType === 1 ); + return false; + }; + } ), + + // Miscellaneous + "target": function( elem ) { + var hash = window.location && window.location.hash; + return hash && hash.slice( 1 ) === elem.id; + }, + + "root": function( elem ) { + return elem === docElem; + }, + + "focus": function( elem ) { + return elem === document.activeElement && + ( !document.hasFocus || document.hasFocus() ) && + !!( elem.type || elem.href || ~elem.tabIndex ); + }, + + // Boolean properties + "enabled": createDisabledPseudo( false ), + "disabled": createDisabledPseudo( true ), + + "checked": function( elem ) { + + // In CSS3, :checked should return both checked and selected elements + // http://www.w3.org/TR/2011/REC-css3-selectors-20110929/#checked + var nodeName = elem.nodeName.toLowerCase(); + return ( nodeName === "input" && !!elem.checked ) || + ( nodeName === "option" && !!elem.selected ); + }, + + "selected": function( elem ) { + + // Accessing this property makes selected-by-default + // options in Safari work properly + if ( elem.parentNode ) { + // eslint-disable-next-line no-unused-expressions + elem.parentNode.selectedIndex; + } + + return elem.selected === true; + }, + + // Contents + "empty": function( elem ) { + + // http://www.w3.org/TR/selectors/#empty-pseudo + // :empty is negated by element (1) or content nodes (text: 3; cdata: 4; entity ref: 5), + // but not by others (comment: 8; processing instruction: 7; etc.) + // nodeType < 6 works because attributes (2) do not appear as children + for ( elem = elem.firstChild; elem; elem = elem.nextSibling ) { + if ( elem.nodeType < 6 ) { + return false; + } + } + return true; + }, + + "parent": function( elem ) { + return !Expr.pseudos[ "empty" ]( elem ); + }, + + // Element/input types + "header": function( elem ) { + return rheader.test( elem.nodeName ); + }, + + "input": function( elem ) { + return rinputs.test( elem.nodeName ); + }, + + "button": function( elem ) { + var name = elem.nodeName.toLowerCase(); + return name === "input" && elem.type === "button" || name === "button"; + }, + + "text": function( elem ) { + var attr; + return elem.nodeName.toLowerCase() === "input" && + elem.type === "text" && + + // Support: IE<8 + // New HTML5 attribute values (e.g., "search") appear with elem.type === "text" + ( ( attr = elem.getAttribute( "type" ) ) == null || + attr.toLowerCase() === "text" ); + }, + + // Position-in-collection + "first": createPositionalPseudo( function() { + return [ 0 ]; + } ), + + "last": createPositionalPseudo( function( _matchIndexes, length ) { + return [ length - 1 ]; + } ), + + "eq": createPositionalPseudo( function( _matchIndexes, length, argument ) { + return [ argument < 0 ? argument + length : argument ]; + } ), + + "even": createPositionalPseudo( function( matchIndexes, length ) { + var i = 0; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "odd": createPositionalPseudo( function( matchIndexes, length ) { + var i = 1; + for ( ; i < length; i += 2 ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "lt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? + argument + length : + argument > length ? + length : + argument; + for ( ; --i >= 0; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ), + + "gt": createPositionalPseudo( function( matchIndexes, length, argument ) { + var i = argument < 0 ? argument + length : argument; + for ( ; ++i < length; ) { + matchIndexes.push( i ); + } + return matchIndexes; + } ) + } +}; + +Expr.pseudos[ "nth" ] = Expr.pseudos[ "eq" ]; + +// Add button/input type pseudos +for ( i in { radio: true, checkbox: true, file: true, password: true, image: true } ) { + Expr.pseudos[ i ] = createInputPseudo( i ); +} +for ( i in { submit: true, reset: true } ) { + Expr.pseudos[ i ] = createButtonPseudo( i ); +} + +// Easy API for creating new setFilters +function setFilters() {} +setFilters.prototype = Expr.filters = Expr.pseudos; +Expr.setFilters = new setFilters(); + +tokenize = Sizzle.tokenize = function( selector, parseOnly ) { + var matched, match, tokens, type, + soFar, groups, preFilters, + cached = tokenCache[ selector + " " ]; + + if ( cached ) { + return parseOnly ? 0 : cached.slice( 0 ); + } + + soFar = selector; + groups = []; + preFilters = Expr.preFilter; + + while ( soFar ) { + + // Comma and first run + if ( !matched || ( match = rcomma.exec( soFar ) ) ) { + if ( match ) { + + // Don't consume trailing commas as valid + soFar = soFar.slice( match[ 0 ].length ) || soFar; + } + groups.push( ( tokens = [] ) ); + } + + matched = false; + + // Combinators + if ( ( match = rcombinators.exec( soFar ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + + // Cast descendant combinators to space + type: match[ 0 ].replace( rtrim, " " ) + } ); + soFar = soFar.slice( matched.length ); + } + + // Filters + for ( type in Expr.filter ) { + if ( ( match = matchExpr[ type ].exec( soFar ) ) && ( !preFilters[ type ] || + ( match = preFilters[ type ]( match ) ) ) ) { + matched = match.shift(); + tokens.push( { + value: matched, + type: type, + matches: match + } ); + soFar = soFar.slice( matched.length ); + } + } + + if ( !matched ) { + break; + } + } + + // Return the length of the invalid excess + // if we're just parsing + // Otherwise, throw an error or return tokens + return parseOnly ? + soFar.length : + soFar ? + Sizzle.error( selector ) : + + // Cache the tokens + tokenCache( selector, groups ).slice( 0 ); +}; + +function toSelector( tokens ) { + var i = 0, + len = tokens.length, + selector = ""; + for ( ; i < len; i++ ) { + selector += tokens[ i ].value; + } + return selector; +} + +function addCombinator( matcher, combinator, base ) { + var dir = combinator.dir, + skip = combinator.next, + key = skip || dir, + checkNonElements = base && key === "parentNode", + doneName = done++; + + return combinator.first ? + + // Check against closest ancestor/preceding element + function( elem, context, xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + return matcher( elem, context, xml ); + } + } + return false; + } : + + // Check against all ancestor/preceding elements + function( elem, context, xml ) { + var oldCache, uniqueCache, outerCache, + newCache = [ dirruns, doneName ]; + + // We can't set arbitrary data on XML nodes, so they don't benefit from combinator caching + if ( xml ) { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + if ( matcher( elem, context, xml ) ) { + return true; + } + } + } + } else { + while ( ( elem = elem[ dir ] ) ) { + if ( elem.nodeType === 1 || checkNonElements ) { + outerCache = elem[ expando ] || ( elem[ expando ] = {} ); + + // Support: IE <9 only + // Defend against cloned attroperties (jQuery gh-1709) + uniqueCache = outerCache[ elem.uniqueID ] || + ( outerCache[ elem.uniqueID ] = {} ); + + if ( skip && skip === elem.nodeName.toLowerCase() ) { + elem = elem[ dir ] || elem; + } else if ( ( oldCache = uniqueCache[ key ] ) && + oldCache[ 0 ] === dirruns && oldCache[ 1 ] === doneName ) { + + // Assign to newCache so results back-propagate to previous elements + return ( newCache[ 2 ] = oldCache[ 2 ] ); + } else { + + // Reuse newcache so results back-propagate to previous elements + uniqueCache[ key ] = newCache; + + // A match means we're done; a fail means we have to keep checking + if ( ( newCache[ 2 ] = matcher( elem, context, xml ) ) ) { + return true; + } + } + } + } + } + return false; + }; +} + +function elementMatcher( matchers ) { + return matchers.length > 1 ? + function( elem, context, xml ) { + var i = matchers.length; + while ( i-- ) { + if ( !matchers[ i ]( elem, context, xml ) ) { + return false; + } + } + return true; + } : + matchers[ 0 ]; +} + +function multipleContexts( selector, contexts, results ) { + var i = 0, + len = contexts.length; + for ( ; i < len; i++ ) { + Sizzle( selector, contexts[ i ], results ); + } + return results; +} + +function condense( unmatched, map, filter, context, xml ) { + var elem, + newUnmatched = [], + i = 0, + len = unmatched.length, + mapped = map != null; + + for ( ; i < len; i++ ) { + if ( ( elem = unmatched[ i ] ) ) { + if ( !filter || filter( elem, context, xml ) ) { + newUnmatched.push( elem ); + if ( mapped ) { + map.push( i ); + } + } + } + } + + return newUnmatched; +} + +function setMatcher( preFilter, selector, matcher, postFilter, postFinder, postSelector ) { + if ( postFilter && !postFilter[ expando ] ) { + postFilter = setMatcher( postFilter ); + } + if ( postFinder && !postFinder[ expando ] ) { + postFinder = setMatcher( postFinder, postSelector ); + } + return markFunction( function( seed, results, context, xml ) { + var temp, i, elem, + preMap = [], + postMap = [], + preexisting = results.length, + + // Get initial elements from seed or context + elems = seed || multipleContexts( + selector || "*", + context.nodeType ? [ context ] : context, + [] + ), + + // Prefilter to get matcher input, preserving a map for seed-results synchronization + matcherIn = preFilter && ( seed || !selector ) ? + condense( elems, preMap, preFilter, context, xml ) : + elems, + + matcherOut = matcher ? + + // If we have a postFinder, or filtered seed, or non-seed postFilter or preexisting results, + postFinder || ( seed ? preFilter : preexisting || postFilter ) ? + + // ...intermediate processing is necessary + [] : + + // ...otherwise use results directly + results : + matcherIn; + + // Find primary matches + if ( matcher ) { + matcher( matcherIn, matcherOut, context, xml ); + } + + // Apply postFilter + if ( postFilter ) { + temp = condense( matcherOut, postMap ); + postFilter( temp, [], context, xml ); + + // Un-match failing elements by moving them back to matcherIn + i = temp.length; + while ( i-- ) { + if ( ( elem = temp[ i ] ) ) { + matcherOut[ postMap[ i ] ] = !( matcherIn[ postMap[ i ] ] = elem ); + } + } + } + + if ( seed ) { + if ( postFinder || preFilter ) { + if ( postFinder ) { + + // Get the final matcherOut by condensing this intermediate into postFinder contexts + temp = []; + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) ) { + + // Restore matcherIn since elem is not yet a final match + temp.push( ( matcherIn[ i ] = elem ) ); + } + } + postFinder( null, ( matcherOut = [] ), temp, xml ); + } + + // Move matched elements from seed to results to keep them synchronized + i = matcherOut.length; + while ( i-- ) { + if ( ( elem = matcherOut[ i ] ) && + ( temp = postFinder ? indexOf( seed, elem ) : preMap[ i ] ) > -1 ) { + + seed[ temp ] = !( results[ temp ] = elem ); + } + } + } + + // Add elements to results, through postFinder if defined + } else { + matcherOut = condense( + matcherOut === results ? + matcherOut.splice( preexisting, matcherOut.length ) : + matcherOut + ); + if ( postFinder ) { + postFinder( null, results, matcherOut, xml ); + } else { + push.apply( results, matcherOut ); + } + } + } ); +} + +function matcherFromTokens( tokens ) { + var checkContext, matcher, j, + len = tokens.length, + leadingRelative = Expr.relative[ tokens[ 0 ].type ], + implicitRelative = leadingRelative || Expr.relative[ " " ], + i = leadingRelative ? 1 : 0, + + // The foundational matcher ensures that elements are reachable from top-level context(s) + matchContext = addCombinator( function( elem ) { + return elem === checkContext; + }, implicitRelative, true ), + matchAnyContext = addCombinator( function( elem ) { + return indexOf( checkContext, elem ) > -1; + }, implicitRelative, true ), + matchers = [ function( elem, context, xml ) { + var ret = ( !leadingRelative && ( xml || context !== outermostContext ) ) || ( + ( checkContext = context ).nodeType ? + matchContext( elem, context, xml ) : + matchAnyContext( elem, context, xml ) ); + + // Avoid hanging onto element (issue #299) + checkContext = null; + return ret; + } ]; + + for ( ; i < len; i++ ) { + if ( ( matcher = Expr.relative[ tokens[ i ].type ] ) ) { + matchers = [ addCombinator( elementMatcher( matchers ), matcher ) ]; + } else { + matcher = Expr.filter[ tokens[ i ].type ].apply( null, tokens[ i ].matches ); + + // Return special upon seeing a positional matcher + if ( matcher[ expando ] ) { + + // Find the next relative operator (if any) for proper handling + j = ++i; + for ( ; j < len; j++ ) { + if ( Expr.relative[ tokens[ j ].type ] ) { + break; + } + } + return setMatcher( + i > 1 && elementMatcher( matchers ), + i > 1 && toSelector( + + // If the preceding token was a descendant combinator, insert an implicit any-element `*` + tokens + .slice( 0, i - 1 ) + .concat( { value: tokens[ i - 2 ].type === " " ? "*" : "" } ) + ).replace( rtrim, "$1" ), + matcher, + i < j && matcherFromTokens( tokens.slice( i, j ) ), + j < len && matcherFromTokens( ( tokens = tokens.slice( j ) ) ), + j < len && toSelector( tokens ) + ); + } + matchers.push( matcher ); + } + } + + return elementMatcher( matchers ); +} + +function matcherFromGroupMatchers( elementMatchers, setMatchers ) { + var bySet = setMatchers.length > 0, + byElement = elementMatchers.length > 0, + superMatcher = function( seed, context, xml, results, outermost ) { + var elem, j, matcher, + matchedCount = 0, + i = "0", + unmatched = seed && [], + setMatched = [], + contextBackup = outermostContext, + + // We must always have either seed elements or outermost context + elems = seed || byElement && Expr.find[ "TAG" ]( "*", outermost ), + + // Use integer dirruns iff this is the outermost matcher + dirrunsUnique = ( dirruns += contextBackup == null ? 1 : Math.random() || 0.1 ), + len = elems.length; + + if ( outermost ) { + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + outermostContext = context == document || context || outermost; + } + + // Add elements passing elementMatchers directly to results + // Support: IE<9, Safari + // Tolerate NodeList properties (IE: "length"; Safari: ) matching elements by id + for ( ; i !== len && ( elem = elems[ i ] ) != null; i++ ) { + if ( byElement && elem ) { + j = 0; + + // Support: IE 11+, Edge 17 - 18+ + // IE/Edge sometimes throw a "Permission denied" error when strict-comparing + // two documents; shallow comparisons work. + // eslint-disable-next-line eqeqeq + if ( !context && elem.ownerDocument != document ) { + setDocument( elem ); + xml = !documentIsHTML; + } + while ( ( matcher = elementMatchers[ j++ ] ) ) { + if ( matcher( elem, context || document, xml ) ) { + results.push( elem ); + break; + } + } + if ( outermost ) { + dirruns = dirrunsUnique; + } + } + + // Track unmatched elements for set filters + if ( bySet ) { + + // They will have gone through all possible matchers + if ( ( elem = !matcher && elem ) ) { + matchedCount--; + } + + // Lengthen the array for every element, matched or not + if ( seed ) { + unmatched.push( elem ); + } + } + } + + // `i` is now the count of elements visited above, and adding it to `matchedCount` + // makes the latter nonnegative. + matchedCount += i; + + // Apply set filters to unmatched elements + // NOTE: This can be skipped if there are no unmatched elements (i.e., `matchedCount` + // equals `i`), unless we didn't visit _any_ elements in the above loop because we have + // no element matchers and no seed. + // Incrementing an initially-string "0" `i` allows `i` to remain a string only in that + // case, which will result in a "00" `matchedCount` that differs from `i` but is also + // numerically zero. + if ( bySet && i !== matchedCount ) { + j = 0; + while ( ( matcher = setMatchers[ j++ ] ) ) { + matcher( unmatched, setMatched, context, xml ); + } + + if ( seed ) { + + // Reintegrate element matches to eliminate the need for sorting + if ( matchedCount > 0 ) { + while ( i-- ) { + if ( !( unmatched[ i ] || setMatched[ i ] ) ) { + setMatched[ i ] = pop.call( results ); + } + } + } + + // Discard index placeholder values to get only actual matches + setMatched = condense( setMatched ); + } + + // Add matches to results + push.apply( results, setMatched ); + + // Seedless set matches succeeding multiple successful matchers stipulate sorting + if ( outermost && !seed && setMatched.length > 0 && + ( matchedCount + setMatchers.length ) > 1 ) { + + Sizzle.uniqueSort( results ); + } + } + + // Override manipulation of globals by nested matchers + if ( outermost ) { + dirruns = dirrunsUnique; + outermostContext = contextBackup; + } + + return unmatched; + }; + + return bySet ? + markFunction( superMatcher ) : + superMatcher; +} + +compile = Sizzle.compile = function( selector, match /* Internal Use Only */ ) { + var i, + setMatchers = [], + elementMatchers = [], + cached = compilerCache[ selector + " " ]; + + if ( !cached ) { + + // Generate a function of recursive functions that can be used to check each element + if ( !match ) { + match = tokenize( selector ); + } + i = match.length; + while ( i-- ) { + cached = matcherFromTokens( match[ i ] ); + if ( cached[ expando ] ) { + setMatchers.push( cached ); + } else { + elementMatchers.push( cached ); + } + } + + // Cache the compiled function + cached = compilerCache( + selector, + matcherFromGroupMatchers( elementMatchers, setMatchers ) + ); + + // Save selector and tokenization + cached.selector = selector; + } + return cached; +}; + +/** + * A low-level selection function that works with Sizzle's compiled + * selector functions + * @param {String|Function} selector A selector or a pre-compiled + * selector function built with Sizzle.compile + * @param {Element} context + * @param {Array} [results] + * @param {Array} [seed] A set of elements to match against + */ +select = Sizzle.select = function( selector, context, results, seed ) { + var i, tokens, token, type, find, + compiled = typeof selector === "function" && selector, + match = !seed && tokenize( ( selector = compiled.selector || selector ) ); + + results = results || []; + + // Try to minimize operations if there is only one selector in the list and no seed + // (the latter of which guarantees us context) + if ( match.length === 1 ) { + + // Reduce context if the leading compound selector is an ID + tokens = match[ 0 ] = match[ 0 ].slice( 0 ); + if ( tokens.length > 2 && ( token = tokens[ 0 ] ).type === "ID" && + context.nodeType === 9 && documentIsHTML && Expr.relative[ tokens[ 1 ].type ] ) { + + context = ( Expr.find[ "ID" ]( token.matches[ 0 ] + .replace( runescape, funescape ), context ) || [] )[ 0 ]; + if ( !context ) { + return results; + + // Precompiled matchers will still verify ancestry, so step up a level + } else if ( compiled ) { + context = context.parentNode; + } + + selector = selector.slice( tokens.shift().value.length ); + } + + // Fetch a seed set for right-to-left matching + i = matchExpr[ "needsContext" ].test( selector ) ? 0 : tokens.length; + while ( i-- ) { + token = tokens[ i ]; + + // Abort if we hit a combinator + if ( Expr.relative[ ( type = token.type ) ] ) { + break; + } + if ( ( find = Expr.find[ type ] ) ) { + + // Search, expanding context for leading sibling combinators + if ( ( seed = find( + token.matches[ 0 ].replace( runescape, funescape ), + rsibling.test( tokens[ 0 ].type ) && testContext( context.parentNode ) || + context + ) ) ) { + + // If seed is empty or no tokens remain, we can return early + tokens.splice( i, 1 ); + selector = seed.length && toSelector( tokens ); + if ( !selector ) { + push.apply( results, seed ); + return results; + } + + break; + } + } + } + } + + // Compile and execute a filtering function if one is not provided + // Provide `match` to avoid retokenization if we modified the selector above + ( compiled || compile( selector, match ) )( + seed, + context, + !documentIsHTML, + results, + !context || rsibling.test( selector ) && testContext( context.parentNode ) || context + ); + return results; +}; + +// One-time assignments + +// Sort stability +support.sortStable = expando.split( "" ).sort( sortOrder ).join( "" ) === expando; + +// Support: Chrome 14-35+ +// Always assume duplicates if they aren't passed to the comparison function +support.detectDuplicates = !!hasDuplicate; + +// Initialize against the default document +setDocument(); + +// Support: Webkit<537.32 - Safari 6.0.3/Chrome 25 (fixed in Chrome 27) +// Detached nodes confoundingly follow *each other* +support.sortDetached = assert( function( el ) { + + // Should return 1, but returns 4 (following) + return el.compareDocumentPosition( document.createElement( "fieldset" ) ) & 1; +} ); + +// Support: IE<8 +// Prevent attribute/property "interpolation" +// https://msdn.microsoft.com/en-us/library/ms536429%28VS.85%29.aspx +if ( !assert( function( el ) { + el.innerHTML = ""; + return el.firstChild.getAttribute( "href" ) === "#"; +} ) ) { + addHandle( "type|href|height|width", function( elem, name, isXML ) { + if ( !isXML ) { + return elem.getAttribute( name, name.toLowerCase() === "type" ? 1 : 2 ); + } + } ); +} + +// Support: IE<9 +// Use defaultValue in place of getAttribute("value") +if ( !support.attributes || !assert( function( el ) { + el.innerHTML = ""; + el.firstChild.setAttribute( "value", "" ); + return el.firstChild.getAttribute( "value" ) === ""; +} ) ) { + addHandle( "value", function( elem, _name, isXML ) { + if ( !isXML && elem.nodeName.toLowerCase() === "input" ) { + return elem.defaultValue; + } + } ); +} + +// Support: IE<9 +// Use getAttributeNode to fetch booleans when getAttribute lies +if ( !assert( function( el ) { + return el.getAttribute( "disabled" ) == null; +} ) ) { + addHandle( booleans, function( elem, name, isXML ) { + var val; + if ( !isXML ) { + return elem[ name ] === true ? name.toLowerCase() : + ( val = elem.getAttributeNode( name ) ) && val.specified ? + val.value : + null; + } + } ); +} + +return Sizzle; + +} )( window ); + + + +jQuery.find = Sizzle; +jQuery.expr = Sizzle.selectors; + +// Deprecated +jQuery.expr[ ":" ] = jQuery.expr.pseudos; +jQuery.uniqueSort = jQuery.unique = Sizzle.uniqueSort; +jQuery.text = Sizzle.getText; +jQuery.isXMLDoc = Sizzle.isXML; +jQuery.contains = Sizzle.contains; +jQuery.escapeSelector = Sizzle.escape; + + + + +var dir = function( elem, dir, until ) { + var matched = [], + truncate = until !== undefined; + + while ( ( elem = elem[ dir ] ) && elem.nodeType !== 9 ) { + if ( elem.nodeType === 1 ) { + if ( truncate && jQuery( elem ).is( until ) ) { + break; + } + matched.push( elem ); + } + } + return matched; +}; + + +var siblings = function( n, elem ) { + var matched = []; + + for ( ; n; n = n.nextSibling ) { + if ( n.nodeType === 1 && n !== elem ) { + matched.push( n ); + } + } + + return matched; +}; + + +var rneedsContext = jQuery.expr.match.needsContext; + + + +function nodeName( elem, name ) { + + return elem.nodeName && elem.nodeName.toLowerCase() === name.toLowerCase(); + +}; +var rsingleTag = ( /^<([a-z][^\/\0>:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i ); + + + +// Implement the identical functionality for filter and not +function winnow( elements, qualifier, not ) { + if ( isFunction( qualifier ) ) { + return jQuery.grep( elements, function( elem, i ) { + return !!qualifier.call( elem, i, elem ) !== not; + } ); + } + + // Single element + if ( qualifier.nodeType ) { + return jQuery.grep( elements, function( elem ) { + return ( elem === qualifier ) !== not; + } ); + } + + // Arraylike of elements (jQuery, arguments, Array) + if ( typeof qualifier !== "string" ) { + return jQuery.grep( elements, function( elem ) { + return ( indexOf.call( qualifier, elem ) > -1 ) !== not; + } ); + } + + // Filtered directly for both simple and complex selectors + return jQuery.filter( qualifier, elements, not ); +} + +jQuery.filter = function( expr, elems, not ) { + var elem = elems[ 0 ]; + + if ( not ) { + expr = ":not(" + expr + ")"; + } + + if ( elems.length === 1 && elem.nodeType === 1 ) { + return jQuery.find.matchesSelector( elem, expr ) ? [ elem ] : []; + } + + return jQuery.find.matches( expr, jQuery.grep( elems, function( elem ) { + return elem.nodeType === 1; + } ) ); +}; + +jQuery.fn.extend( { + find: function( selector ) { + var i, ret, + len = this.length, + self = this; + + if ( typeof selector !== "string" ) { + return this.pushStack( jQuery( selector ).filter( function() { + for ( i = 0; i < len; i++ ) { + if ( jQuery.contains( self[ i ], this ) ) { + return true; + } + } + } ) ); + } + + ret = this.pushStack( [] ); + + for ( i = 0; i < len; i++ ) { + jQuery.find( selector, self[ i ], ret ); + } + + return len > 1 ? jQuery.uniqueSort( ret ) : ret; + }, + filter: function( selector ) { + return this.pushStack( winnow( this, selector || [], false ) ); + }, + not: function( selector ) { + return this.pushStack( winnow( this, selector || [], true ) ); + }, + is: function( selector ) { + return !!winnow( + this, + + // If this is a positional/relative selector, check membership in the returned set + // so $("p:first").is("p:last") won't return true for a doc with two "p". + typeof selector === "string" && rneedsContext.test( selector ) ? + jQuery( selector ) : + selector || [], + false + ).length; + } +} ); + + +// Initialize a jQuery object + + +// A central reference to the root jQuery(document) +var rootjQuery, + + // A simple way to check for HTML strings + // Prioritize #id over to avoid XSS via location.hash (#9521) + // Strict HTML recognition (#11290: must start with <) + // Shortcut simple #id case for speed + rquickExpr = /^(?:\s*(<[\w\W]+>)[^>]*|#([\w-]+))$/, + + init = jQuery.fn.init = function( selector, context, root ) { + var match, elem; + + // HANDLE: $(""), $(null), $(undefined), $(false) + if ( !selector ) { + return this; + } + + // Method init() accepts an alternate rootjQuery + // so migrate can support jQuery.sub (gh-2101) + root = root || rootjQuery; + + // Handle HTML strings + if ( typeof selector === "string" ) { + if ( selector[ 0 ] === "<" && + selector[ selector.length - 1 ] === ">" && + selector.length >= 3 ) { + + // Assume that strings that start and end with <> are HTML and skip the regex check + match = [ null, selector, null ]; + + } else { + match = rquickExpr.exec( selector ); + } + + // Match html or make sure no context is specified for #id + if ( match && ( match[ 1 ] || !context ) ) { + + // HANDLE: $(html) -> $(array) + if ( match[ 1 ] ) { + context = context instanceof jQuery ? context[ 0 ] : context; + + // Option to run scripts is true for back-compat + // Intentionally let the error be thrown if parseHTML is not present + jQuery.merge( this, jQuery.parseHTML( + match[ 1 ], + context && context.nodeType ? context.ownerDocument || context : document, + true + ) ); + + // HANDLE: $(html, props) + if ( rsingleTag.test( match[ 1 ] ) && jQuery.isPlainObject( context ) ) { + for ( match in context ) { + + // Properties of context are called as methods if possible + if ( isFunction( this[ match ] ) ) { + this[ match ]( context[ match ] ); + + // ...and otherwise set as attributes + } else { + this.attr( match, context[ match ] ); + } + } + } + + return this; + + // HANDLE: $(#id) + } else { + elem = document.getElementById( match[ 2 ] ); + + if ( elem ) { + + // Inject the element directly into the jQuery object + this[ 0 ] = elem; + this.length = 1; + } + return this; + } + + // HANDLE: $(expr, $(...)) + } else if ( !context || context.jquery ) { + return ( context || root ).find( selector ); + + // HANDLE: $(expr, context) + // (which is just equivalent to: $(context).find(expr) + } else { + return this.constructor( context ).find( selector ); + } + + // HANDLE: $(DOMElement) + } else if ( selector.nodeType ) { + this[ 0 ] = selector; + this.length = 1; + return this; + + // HANDLE: $(function) + // Shortcut for document ready + } else if ( isFunction( selector ) ) { + return root.ready !== undefined ? + root.ready( selector ) : + + // Execute immediately if ready is not present + selector( jQuery ); + } + + return jQuery.makeArray( selector, this ); + }; + +// Give the init function the jQuery prototype for later instantiation +init.prototype = jQuery.fn; + +// Initialize central reference +rootjQuery = jQuery( document ); + + +var rparentsprev = /^(?:parents|prev(?:Until|All))/, + + // Methods guaranteed to produce a unique set when starting from a unique set + guaranteedUnique = { + children: true, + contents: true, + next: true, + prev: true + }; + +jQuery.fn.extend( { + has: function( target ) { + var targets = jQuery( target, this ), + l = targets.length; + + return this.filter( function() { + var i = 0; + for ( ; i < l; i++ ) { + if ( jQuery.contains( this, targets[ i ] ) ) { + return true; + } + } + } ); + }, + + closest: function( selectors, context ) { + var cur, + i = 0, + l = this.length, + matched = [], + targets = typeof selectors !== "string" && jQuery( selectors ); + + // Positional selectors never match, since there's no _selection_ context + if ( !rneedsContext.test( selectors ) ) { + for ( ; i < l; i++ ) { + for ( cur = this[ i ]; cur && cur !== context; cur = cur.parentNode ) { + + // Always skip document fragments + if ( cur.nodeType < 11 && ( targets ? + targets.index( cur ) > -1 : + + // Don't pass non-elements to Sizzle + cur.nodeType === 1 && + jQuery.find.matchesSelector( cur, selectors ) ) ) { + + matched.push( cur ); + break; + } + } + } + } + + return this.pushStack( matched.length > 1 ? jQuery.uniqueSort( matched ) : matched ); + }, + + // Determine the position of an element within the set + index: function( elem ) { + + // No argument, return index in parent + if ( !elem ) { + return ( this[ 0 ] && this[ 0 ].parentNode ) ? this.first().prevAll().length : -1; + } + + // Index in selector + if ( typeof elem === "string" ) { + return indexOf.call( jQuery( elem ), this[ 0 ] ); + } + + // Locate the position of the desired element + return indexOf.call( this, + + // If it receives a jQuery object, the first element is used + elem.jquery ? elem[ 0 ] : elem + ); + }, + + add: function( selector, context ) { + return this.pushStack( + jQuery.uniqueSort( + jQuery.merge( this.get(), jQuery( selector, context ) ) + ) + ); + }, + + addBack: function( selector ) { + return this.add( selector == null ? + this.prevObject : this.prevObject.filter( selector ) + ); + } +} ); + +function sibling( cur, dir ) { + while ( ( cur = cur[ dir ] ) && cur.nodeType !== 1 ) {} + return cur; +} + +jQuery.each( { + parent: function( elem ) { + var parent = elem.parentNode; + return parent && parent.nodeType !== 11 ? parent : null; + }, + parents: function( elem ) { + return dir( elem, "parentNode" ); + }, + parentsUntil: function( elem, _i, until ) { + return dir( elem, "parentNode", until ); + }, + next: function( elem ) { + return sibling( elem, "nextSibling" ); + }, + prev: function( elem ) { + return sibling( elem, "previousSibling" ); + }, + nextAll: function( elem ) { + return dir( elem, "nextSibling" ); + }, + prevAll: function( elem ) { + return dir( elem, "previousSibling" ); + }, + nextUntil: function( elem, _i, until ) { + return dir( elem, "nextSibling", until ); + }, + prevUntil: function( elem, _i, until ) { + return dir( elem, "previousSibling", until ); + }, + siblings: function( elem ) { + return siblings( ( elem.parentNode || {} ).firstChild, elem ); + }, + children: function( elem ) { + return siblings( elem.firstChild ); + }, + contents: function( elem ) { + if ( elem.contentDocument != null && + + // Support: IE 11+ + // elements with no `data` attribute has an object + // `contentDocument` with a `null` prototype. + getProto( elem.contentDocument ) ) { + + return elem.contentDocument; + } + + // Support: IE 9 - 11 only, iOS 7 only, Android Browser <=4.3 only + // Treat the template element as a regular one in browsers that + // don't support it. + if ( nodeName( elem, "template" ) ) { + elem = elem.content || elem; + } + + return jQuery.merge( [], elem.childNodes ); + } +}, function( name, fn ) { + jQuery.fn[ name ] = function( until, selector ) { + var matched = jQuery.map( this, fn, until ); + + if ( name.slice( -5 ) !== "Until" ) { + selector = until; + } + + if ( selector && typeof selector === "string" ) { + matched = jQuery.filter( selector, matched ); + } + + if ( this.length > 1 ) { + + // Remove duplicates + if ( !guaranteedUnique[ name ] ) { + jQuery.uniqueSort( matched ); + } + + // Reverse order for parents* and prev-derivatives + if ( rparentsprev.test( name ) ) { + matched.reverse(); + } + } + + return this.pushStack( matched ); + }; +} ); +var rnothtmlwhite = ( /[^\x20\t\r\n\f]+/g ); + + + +// Convert String-formatted options into Object-formatted ones +function createOptions( options ) { + var object = {}; + jQuery.each( options.match( rnothtmlwhite ) || [], function( _, flag ) { + object[ flag ] = true; + } ); + return object; +} + +/* + * Create a callback list using the following parameters: + * + * options: an optional list of space-separated options that will change how + * the callback list behaves or a more traditional option object + * + * By default a callback list will act like an event callback list and can be + * "fired" multiple times. + * + * Possible options: + * + * once: will ensure the callback list can only be fired once (like a Deferred) + * + * memory: will keep track of previous values and will call any callback added + * after the list has been fired right away with the latest "memorized" + * values (like a Deferred) + * + * unique: will ensure a callback can only be added once (no duplicate in the list) + * + * stopOnFalse: interrupt callings when a callback returns false + * + */ +jQuery.Callbacks = function( options ) { + + // Convert options from String-formatted to Object-formatted if needed + // (we check in cache first) + options = typeof options === "string" ? + createOptions( options ) : + jQuery.extend( {}, options ); + + var // Flag to know if list is currently firing + firing, + + // Last fire value for non-forgettable lists + memory, + + // Flag to know if list was already fired + fired, + + // Flag to prevent firing + locked, + + // Actual callback list + list = [], + + // Queue of execution data for repeatable lists + queue = [], + + // Index of currently firing callback (modified by add/remove as needed) + firingIndex = -1, + + // Fire callbacks + fire = function() { + + // Enforce single-firing + locked = locked || options.once; + + // Execute callbacks for all pending executions, + // respecting firingIndex overrides and runtime changes + fired = firing = true; + for ( ; queue.length; firingIndex = -1 ) { + memory = queue.shift(); + while ( ++firingIndex < list.length ) { + + // Run callback and check for early termination + if ( list[ firingIndex ].apply( memory[ 0 ], memory[ 1 ] ) === false && + options.stopOnFalse ) { + + // Jump to end and forget the data so .add doesn't re-fire + firingIndex = list.length; + memory = false; + } + } + } + + // Forget the data if we're done with it + if ( !options.memory ) { + memory = false; + } + + firing = false; + + // Clean up if we're done firing for good + if ( locked ) { + + // Keep an empty list if we have data for future add calls + if ( memory ) { + list = []; + + // Otherwise, this object is spent + } else { + list = ""; + } + } + }, + + // Actual Callbacks object + self = { + + // Add a callback or a collection of callbacks to the list + add: function() { + if ( list ) { + + // If we have memory from a past run, we should fire after adding + if ( memory && !firing ) { + firingIndex = list.length - 1; + queue.push( memory ); + } + + ( function add( args ) { + jQuery.each( args, function( _, arg ) { + if ( isFunction( arg ) ) { + if ( !options.unique || !self.has( arg ) ) { + list.push( arg ); + } + } else if ( arg && arg.length && toType( arg ) !== "string" ) { + + // Inspect recursively + add( arg ); + } + } ); + } )( arguments ); + + if ( memory && !firing ) { + fire(); + } + } + return this; + }, + + // Remove a callback from the list + remove: function() { + jQuery.each( arguments, function( _, arg ) { + var index; + while ( ( index = jQuery.inArray( arg, list, index ) ) > -1 ) { + list.splice( index, 1 ); + + // Handle firing indexes + if ( index <= firingIndex ) { + firingIndex--; + } + } + } ); + return this; + }, + + // Check if a given callback is in the list. + // If no argument is given, return whether or not list has callbacks attached. + has: function( fn ) { + return fn ? + jQuery.inArray( fn, list ) > -1 : + list.length > 0; + }, + + // Remove all callbacks from the list + empty: function() { + if ( list ) { + list = []; + } + return this; + }, + + // Disable .fire and .add + // Abort any current/pending executions + // Clear all callbacks and values + disable: function() { + locked = queue = []; + list = memory = ""; + return this; + }, + disabled: function() { + return !list; + }, + + // Disable .fire + // Also disable .add unless we have memory (since it would have no effect) + // Abort any pending executions + lock: function() { + locked = queue = []; + if ( !memory && !firing ) { + list = memory = ""; + } + return this; + }, + locked: function() { + return !!locked; + }, + + // Call all callbacks with the given context and arguments + fireWith: function( context, args ) { + if ( !locked ) { + args = args || []; + args = [ context, args.slice ? args.slice() : args ]; + queue.push( args ); + if ( !firing ) { + fire(); + } + } + return this; + }, + + // Call all the callbacks with the given arguments + fire: function() { + self.fireWith( this, arguments ); + return this; + }, + + // To know if the callbacks have already been called at least once + fired: function() { + return !!fired; + } + }; + + return self; +}; + + +function Identity( v ) { + return v; +} +function Thrower( ex ) { + throw ex; +} + +function adoptValue( value, resolve, reject, noValue ) { + var method; + + try { + + // Check for promise aspect first to privilege synchronous behavior + if ( value && isFunction( ( method = value.promise ) ) ) { + method.call( value ).done( resolve ).fail( reject ); + + // Other thenables + } else if ( value && isFunction( ( method = value.then ) ) ) { + method.call( value, resolve, reject ); + + // Other non-thenables + } else { + + // Control `resolve` arguments by letting Array#slice cast boolean `noValue` to integer: + // * false: [ value ].slice( 0 ) => resolve( value ) + // * true: [ value ].slice( 1 ) => resolve() + resolve.apply( undefined, [ value ].slice( noValue ) ); + } + + // For Promises/A+, convert exceptions into rejections + // Since jQuery.when doesn't unwrap thenables, we can skip the extra checks appearing in + // Deferred#then to conditionally suppress rejection. + } catch ( value ) { + + // Support: Android 4.0 only + // Strict mode functions invoked without .call/.apply get global-object context + reject.apply( undefined, [ value ] ); + } +} + +jQuery.extend( { + + Deferred: function( func ) { + var tuples = [ + + // action, add listener, callbacks, + // ... .then handlers, argument index, [final state] + [ "notify", "progress", jQuery.Callbacks( "memory" ), + jQuery.Callbacks( "memory" ), 2 ], + [ "resolve", "done", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 0, "resolved" ], + [ "reject", "fail", jQuery.Callbacks( "once memory" ), + jQuery.Callbacks( "once memory" ), 1, "rejected" ] + ], + state = "pending", + promise = { + state: function() { + return state; + }, + always: function() { + deferred.done( arguments ).fail( arguments ); + return this; + }, + "catch": function( fn ) { + return promise.then( null, fn ); + }, + + // Keep pipe for back-compat + pipe: function( /* fnDone, fnFail, fnProgress */ ) { + var fns = arguments; + + return jQuery.Deferred( function( newDefer ) { + jQuery.each( tuples, function( _i, tuple ) { + + // Map tuples (progress, done, fail) to arguments (done, fail, progress) + var fn = isFunction( fns[ tuple[ 4 ] ] ) && fns[ tuple[ 4 ] ]; + + // deferred.progress(function() { bind to newDefer or newDefer.notify }) + // deferred.done(function() { bind to newDefer or newDefer.resolve }) + // deferred.fail(function() { bind to newDefer or newDefer.reject }) + deferred[ tuple[ 1 ] ]( function() { + var returned = fn && fn.apply( this, arguments ); + if ( returned && isFunction( returned.promise ) ) { + returned.promise() + .progress( newDefer.notify ) + .done( newDefer.resolve ) + .fail( newDefer.reject ); + } else { + newDefer[ tuple[ 0 ] + "With" ]( + this, + fn ? [ returned ] : arguments + ); + } + } ); + } ); + fns = null; + } ).promise(); + }, + then: function( onFulfilled, onRejected, onProgress ) { + var maxDepth = 0; + function resolve( depth, deferred, handler, special ) { + return function() { + var that = this, + args = arguments, + mightThrow = function() { + var returned, then; + + // Support: Promises/A+ section 2.3.3.3.3 + // https://promisesaplus.com/#point-59 + // Ignore double-resolution attempts + if ( depth < maxDepth ) { + return; + } + + returned = handler.apply( that, args ); + + // Support: Promises/A+ section 2.3.1 + // https://promisesaplus.com/#point-48 + if ( returned === deferred.promise() ) { + throw new TypeError( "Thenable self-resolution" ); + } + + // Support: Promises/A+ sections 2.3.3.1, 3.5 + // https://promisesaplus.com/#point-54 + // https://promisesaplus.com/#point-75 + // Retrieve `then` only once + then = returned && + + // Support: Promises/A+ section 2.3.4 + // https://promisesaplus.com/#point-64 + // Only check objects and functions for thenability + ( typeof returned === "object" || + typeof returned === "function" ) && + returned.then; + + // Handle a returned thenable + if ( isFunction( then ) ) { + + // Special processors (notify) just wait for resolution + if ( special ) { + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ) + ); + + // Normal processors (resolve) also hook into progress + } else { + + // ...and disregard older resolution values + maxDepth++; + + then.call( + returned, + resolve( maxDepth, deferred, Identity, special ), + resolve( maxDepth, deferred, Thrower, special ), + resolve( maxDepth, deferred, Identity, + deferred.notifyWith ) + ); + } + + // Handle all other returned values + } else { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Identity ) { + that = undefined; + args = [ returned ]; + } + + // Process the value(s) + // Default process is resolve + ( special || deferred.resolveWith )( that, args ); + } + }, + + // Only normal processors (resolve) catch and reject exceptions + process = special ? + mightThrow : + function() { + try { + mightThrow(); + } catch ( e ) { + + if ( jQuery.Deferred.exceptionHook ) { + jQuery.Deferred.exceptionHook( e, + process.stackTrace ); + } + + // Support: Promises/A+ section 2.3.3.3.4.1 + // https://promisesaplus.com/#point-61 + // Ignore post-resolution exceptions + if ( depth + 1 >= maxDepth ) { + + // Only substitute handlers pass on context + // and multiple values (non-spec behavior) + if ( handler !== Thrower ) { + that = undefined; + args = [ e ]; + } + + deferred.rejectWith( that, args ); + } + } + }; + + // Support: Promises/A+ section 2.3.3.3.1 + // https://promisesaplus.com/#point-57 + // Re-resolve promises immediately to dodge false rejection from + // subsequent errors + if ( depth ) { + process(); + } else { + + // Call an optional hook to record the stack, in case of exception + // since it's otherwise lost when execution goes async + if ( jQuery.Deferred.getStackHook ) { + process.stackTrace = jQuery.Deferred.getStackHook(); + } + window.setTimeout( process ); + } + }; + } + + return jQuery.Deferred( function( newDefer ) { + + // progress_handlers.add( ... ) + tuples[ 0 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onProgress ) ? + onProgress : + Identity, + newDefer.notifyWith + ) + ); + + // fulfilled_handlers.add( ... ) + tuples[ 1 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onFulfilled ) ? + onFulfilled : + Identity + ) + ); + + // rejected_handlers.add( ... ) + tuples[ 2 ][ 3 ].add( + resolve( + 0, + newDefer, + isFunction( onRejected ) ? + onRejected : + Thrower + ) + ); + } ).promise(); + }, + + // Get a promise for this deferred + // If obj is provided, the promise aspect is added to the object + promise: function( obj ) { + return obj != null ? jQuery.extend( obj, promise ) : promise; + } + }, + deferred = {}; + + // Add list-specific methods + jQuery.each( tuples, function( i, tuple ) { + var list = tuple[ 2 ], + stateString = tuple[ 5 ]; + + // promise.progress = list.add + // promise.done = list.add + // promise.fail = list.add + promise[ tuple[ 1 ] ] = list.add; + + // Handle state + if ( stateString ) { + list.add( + function() { + + // state = "resolved" (i.e., fulfilled) + // state = "rejected" + state = stateString; + }, + + // rejected_callbacks.disable + // fulfilled_callbacks.disable + tuples[ 3 - i ][ 2 ].disable, + + // rejected_handlers.disable + // fulfilled_handlers.disable + tuples[ 3 - i ][ 3 ].disable, + + // progress_callbacks.lock + tuples[ 0 ][ 2 ].lock, + + // progress_handlers.lock + tuples[ 0 ][ 3 ].lock + ); + } + + // progress_handlers.fire + // fulfilled_handlers.fire + // rejected_handlers.fire + list.add( tuple[ 3 ].fire ); + + // deferred.notify = function() { deferred.notifyWith(...) } + // deferred.resolve = function() { deferred.resolveWith(...) } + // deferred.reject = function() { deferred.rejectWith(...) } + deferred[ tuple[ 0 ] ] = function() { + deferred[ tuple[ 0 ] + "With" ]( this === deferred ? undefined : this, arguments ); + return this; + }; + + // deferred.notifyWith = list.fireWith + // deferred.resolveWith = list.fireWith + // deferred.rejectWith = list.fireWith + deferred[ tuple[ 0 ] + "With" ] = list.fireWith; + } ); + + // Make the deferred a promise + promise.promise( deferred ); + + // Call given func if any + if ( func ) { + func.call( deferred, deferred ); + } + + // All done! + return deferred; + }, + + // Deferred helper + when: function( singleValue ) { + var + + // count of uncompleted subordinates + remaining = arguments.length, + + // count of unprocessed arguments + i = remaining, + + // subordinate fulfillment data + resolveContexts = Array( i ), + resolveValues = slice.call( arguments ), + + // the master Deferred + master = jQuery.Deferred(), + + // subordinate callback factory + updateFunc = function( i ) { + return function( value ) { + resolveContexts[ i ] = this; + resolveValues[ i ] = arguments.length > 1 ? slice.call( arguments ) : value; + if ( !( --remaining ) ) { + master.resolveWith( resolveContexts, resolveValues ); + } + }; + }; + + // Single- and empty arguments are adopted like Promise.resolve + if ( remaining <= 1 ) { + adoptValue( singleValue, master.done( updateFunc( i ) ).resolve, master.reject, + !remaining ); + + // Use .then() to unwrap secondary thenables (cf. gh-3000) + if ( master.state() === "pending" || + isFunction( resolveValues[ i ] && resolveValues[ i ].then ) ) { + + return master.then(); + } + } + + // Multiple arguments are aggregated like Promise.all array elements + while ( i-- ) { + adoptValue( resolveValues[ i ], updateFunc( i ), master.reject ); + } + + return master.promise(); + } +} ); + + +// These usually indicate a programmer mistake during development, +// warn about them ASAP rather than swallowing them by default. +var rerrorNames = /^(Eval|Internal|Range|Reference|Syntax|Type|URI)Error$/; + +jQuery.Deferred.exceptionHook = function( error, stack ) { + + // Support: IE 8 - 9 only + // Console exists when dev tools are open, which can happen at any time + if ( window.console && window.console.warn && error && rerrorNames.test( error.name ) ) { + window.console.warn( "jQuery.Deferred exception: " + error.message, error.stack, stack ); + } +}; + + + + +jQuery.readyException = function( error ) { + window.setTimeout( function() { + throw error; + } ); +}; + + + + +// The deferred used on DOM ready +var readyList = jQuery.Deferred(); + +jQuery.fn.ready = function( fn ) { + + readyList + .then( fn ) + + // Wrap jQuery.readyException in a function so that the lookup + // happens at the time of error handling instead of callback + // registration. + .catch( function( error ) { + jQuery.readyException( error ); + } ); + + return this; +}; + +jQuery.extend( { + + // Is the DOM ready to be used? Set to true once it occurs. + isReady: false, + + // A counter to track how many items to wait for before + // the ready event fires. See #6781 + readyWait: 1, + + // Handle when the DOM is ready + ready: function( wait ) { + + // Abort if there are pending holds or we're already ready + if ( wait === true ? --jQuery.readyWait : jQuery.isReady ) { + return; + } + + // Remember that the DOM is ready + jQuery.isReady = true; + + // If a normal DOM Ready event fired, decrement, and wait if need be + if ( wait !== true && --jQuery.readyWait > 0 ) { + return; + } + + // If there are functions bound, to execute + readyList.resolveWith( document, [ jQuery ] ); + } +} ); + +jQuery.ready.then = readyList.then; + +// The ready event handler and self cleanup method +function completed() { + document.removeEventListener( "DOMContentLoaded", completed ); + window.removeEventListener( "load", completed ); + jQuery.ready(); +} + +// Catch cases where $(document).ready() is called +// after the browser event has already occurred. +// Support: IE <=9 - 10 only +// Older IE sometimes signals "interactive" too soon +if ( document.readyState === "complete" || + ( document.readyState !== "loading" && !document.documentElement.doScroll ) ) { + + // Handle it asynchronously to allow scripts the opportunity to delay ready + window.setTimeout( jQuery.ready ); + +} else { + + // Use the handy event callback + document.addEventListener( "DOMContentLoaded", completed ); + + // A fallback to window.onload, that will always work + window.addEventListener( "load", completed ); +} + + + + +// Multifunctional method to get and set values of a collection +// The value/s can optionally be executed if it's a function +var access = function( elems, fn, key, value, chainable, emptyGet, raw ) { + var i = 0, + len = elems.length, + bulk = key == null; + + // Sets many values + if ( toType( key ) === "object" ) { + chainable = true; + for ( i in key ) { + access( elems, fn, i, key[ i ], true, emptyGet, raw ); + } + + // Sets one value + } else if ( value !== undefined ) { + chainable = true; + + if ( !isFunction( value ) ) { + raw = true; + } + + if ( bulk ) { + + // Bulk operations run against the entire set + if ( raw ) { + fn.call( elems, value ); + fn = null; + + // ...except when executing function values + } else { + bulk = fn; + fn = function( elem, _key, value ) { + return bulk.call( jQuery( elem ), value ); + }; + } + } + + if ( fn ) { + for ( ; i < len; i++ ) { + fn( + elems[ i ], key, raw ? + value : + value.call( elems[ i ], i, fn( elems[ i ], key ) ) + ); + } + } + } + + if ( chainable ) { + return elems; + } + + // Gets + if ( bulk ) { + return fn.call( elems ); + } + + return len ? fn( elems[ 0 ], key ) : emptyGet; +}; + + +// Matches dashed string for camelizing +var rmsPrefix = /^-ms-/, + rdashAlpha = /-([a-z])/g; + +// Used by camelCase as callback to replace() +function fcamelCase( _all, letter ) { + return letter.toUpperCase(); +} + +// Convert dashed to camelCase; used by the css and data modules +// Support: IE <=9 - 11, Edge 12 - 15 +// Microsoft forgot to hump their vendor prefix (#9572) +function camelCase( string ) { + return string.replace( rmsPrefix, "ms-" ).replace( rdashAlpha, fcamelCase ); +} +var acceptData = function( owner ) { + + // Accepts only: + // - Node + // - Node.ELEMENT_NODE + // - Node.DOCUMENT_NODE + // - Object + // - Any + return owner.nodeType === 1 || owner.nodeType === 9 || !( +owner.nodeType ); +}; + + + + +function Data() { + this.expando = jQuery.expando + Data.uid++; +} + +Data.uid = 1; + +Data.prototype = { + + cache: function( owner ) { + + // Check if the owner object already has a cache + var value = owner[ this.expando ]; + + // If not, create one + if ( !value ) { + value = {}; + + // We can accept data for non-element nodes in modern browsers, + // but we should not, see #8335. + // Always return an empty object. + if ( acceptData( owner ) ) { + + // If it is a node unlikely to be stringify-ed or looped over + // use plain assignment + if ( owner.nodeType ) { + owner[ this.expando ] = value; + + // Otherwise secure it in a non-enumerable property + // configurable must be true to allow the property to be + // deleted when data is removed + } else { + Object.defineProperty( owner, this.expando, { + value: value, + configurable: true + } ); + } + } + } + + return value; + }, + set: function( owner, data, value ) { + var prop, + cache = this.cache( owner ); + + // Handle: [ owner, key, value ] args + // Always use camelCase key (gh-2257) + if ( typeof data === "string" ) { + cache[ camelCase( data ) ] = value; + + // Handle: [ owner, { properties } ] args + } else { + + // Copy the properties one-by-one to the cache object + for ( prop in data ) { + cache[ camelCase( prop ) ] = data[ prop ]; + } + } + return cache; + }, + get: function( owner, key ) { + return key === undefined ? + this.cache( owner ) : + + // Always use camelCase key (gh-2257) + owner[ this.expando ] && owner[ this.expando ][ camelCase( key ) ]; + }, + access: function( owner, key, value ) { + + // In cases where either: + // + // 1. No key was specified + // 2. A string key was specified, but no value provided + // + // Take the "read" path and allow the get method to determine + // which value to return, respectively either: + // + // 1. The entire cache object + // 2. The data stored at the key + // + if ( key === undefined || + ( ( key && typeof key === "string" ) && value === undefined ) ) { + + return this.get( owner, key ); + } + + // When the key is not a string, or both a key and value + // are specified, set or extend (existing objects) with either: + // + // 1. An object of properties + // 2. A key and value + // + this.set( owner, key, value ); + + // Since the "set" path can have two possible entry points + // return the expected data based on which path was taken[*] + return value !== undefined ? value : key; + }, + remove: function( owner, key ) { + var i, + cache = owner[ this.expando ]; + + if ( cache === undefined ) { + return; + } + + if ( key !== undefined ) { + + // Support array or space separated string of keys + if ( Array.isArray( key ) ) { + + // If key is an array of keys... + // We always set camelCase keys, so remove that. + key = key.map( camelCase ); + } else { + key = camelCase( key ); + + // If a key with the spaces exists, use it. + // Otherwise, create an array by matching non-whitespace + key = key in cache ? + [ key ] : + ( key.match( rnothtmlwhite ) || [] ); + } + + i = key.length; + + while ( i-- ) { + delete cache[ key[ i ] ]; + } + } + + // Remove the expando if there's no more data + if ( key === undefined || jQuery.isEmptyObject( cache ) ) { + + // Support: Chrome <=35 - 45 + // Webkit & Blink performance suffers when deleting properties + // from DOM nodes, so set to undefined instead + // https://bugs.chromium.org/p/chromium/issues/detail?id=378607 (bug restricted) + if ( owner.nodeType ) { + owner[ this.expando ] = undefined; + } else { + delete owner[ this.expando ]; + } + } + }, + hasData: function( owner ) { + var cache = owner[ this.expando ]; + return cache !== undefined && !jQuery.isEmptyObject( cache ); + } +}; +var dataPriv = new Data(); + +var dataUser = new Data(); + + + +// Implementation Summary +// +// 1. Enforce API surface and semantic compatibility with 1.9.x branch +// 2. Improve the module's maintainability by reducing the storage +// paths to a single mechanism. +// 3. Use the same single mechanism to support "private" and "user" data. +// 4. _Never_ expose "private" data to user code (TODO: Drop _data, _removeData) +// 5. Avoid exposing implementation details on user objects (eg. expando properties) +// 6. Provide a clear path for implementation upgrade to WeakMap in 2014 + +var rbrace = /^(?:\{[\w\W]*\}|\[[\w\W]*\])$/, + rmultiDash = /[A-Z]/g; + +function getData( data ) { + if ( data === "true" ) { + return true; + } + + if ( data === "false" ) { + return false; + } + + if ( data === "null" ) { + return null; + } + + // Only convert to a number if it doesn't change the string + if ( data === +data + "" ) { + return +data; + } + + if ( rbrace.test( data ) ) { + return JSON.parse( data ); + } + + return data; +} + +function dataAttr( elem, key, data ) { + var name; + + // If nothing was found internally, try to fetch any + // data from the HTML5 data-* attribute + if ( data === undefined && elem.nodeType === 1 ) { + name = "data-" + key.replace( rmultiDash, "-$&" ).toLowerCase(); + data = elem.getAttribute( name ); + + if ( typeof data === "string" ) { + try { + data = getData( data ); + } catch ( e ) {} + + // Make sure we set the data so it isn't changed later + dataUser.set( elem, key, data ); + } else { + data = undefined; + } + } + return data; +} + +jQuery.extend( { + hasData: function( elem ) { + return dataUser.hasData( elem ) || dataPriv.hasData( elem ); + }, + + data: function( elem, name, data ) { + return dataUser.access( elem, name, data ); + }, + + removeData: function( elem, name ) { + dataUser.remove( elem, name ); + }, + + // TODO: Now that all calls to _data and _removeData have been replaced + // with direct calls to dataPriv methods, these can be deprecated. + _data: function( elem, name, data ) { + return dataPriv.access( elem, name, data ); + }, + + _removeData: function( elem, name ) { + dataPriv.remove( elem, name ); + } +} ); + +jQuery.fn.extend( { + data: function( key, value ) { + var i, name, data, + elem = this[ 0 ], + attrs = elem && elem.attributes; + + // Gets all values + if ( key === undefined ) { + if ( this.length ) { + data = dataUser.get( elem ); + + if ( elem.nodeType === 1 && !dataPriv.get( elem, "hasDataAttrs" ) ) { + i = attrs.length; + while ( i-- ) { + + // Support: IE 11 only + // The attrs elements can be null (#14894) + if ( attrs[ i ] ) { + name = attrs[ i ].name; + if ( name.indexOf( "data-" ) === 0 ) { + name = camelCase( name.slice( 5 ) ); + dataAttr( elem, name, data[ name ] ); + } + } + } + dataPriv.set( elem, "hasDataAttrs", true ); + } + } + + return data; + } + + // Sets multiple values + if ( typeof key === "object" ) { + return this.each( function() { + dataUser.set( this, key ); + } ); + } + + return access( this, function( value ) { + var data; + + // The calling jQuery object (element matches) is not empty + // (and therefore has an element appears at this[ 0 ]) and the + // `value` parameter was not undefined. An empty jQuery object + // will result in `undefined` for elem = this[ 0 ] which will + // throw an exception if an attempt to read a data cache is made. + if ( elem && value === undefined ) { + + // Attempt to get data from the cache + // The key will always be camelCased in Data + data = dataUser.get( elem, key ); + if ( data !== undefined ) { + return data; + } + + // Attempt to "discover" the data in + // HTML5 custom data-* attrs + data = dataAttr( elem, key ); + if ( data !== undefined ) { + return data; + } + + // We tried really hard, but the data doesn't exist. + return; + } + + // Set the data... + this.each( function() { + + // We always store the camelCased key + dataUser.set( this, key, value ); + } ); + }, null, value, arguments.length > 1, null, true ); + }, + + removeData: function( key ) { + return this.each( function() { + dataUser.remove( this, key ); + } ); + } +} ); + + +jQuery.extend( { + queue: function( elem, type, data ) { + var queue; + + if ( elem ) { + type = ( type || "fx" ) + "queue"; + queue = dataPriv.get( elem, type ); + + // Speed up dequeue by getting out quickly if this is just a lookup + if ( data ) { + if ( !queue || Array.isArray( data ) ) { + queue = dataPriv.access( elem, type, jQuery.makeArray( data ) ); + } else { + queue.push( data ); + } + } + return queue || []; + } + }, + + dequeue: function( elem, type ) { + type = type || "fx"; + + var queue = jQuery.queue( elem, type ), + startLength = queue.length, + fn = queue.shift(), + hooks = jQuery._queueHooks( elem, type ), + next = function() { + jQuery.dequeue( elem, type ); + }; + + // If the fx queue is dequeued, always remove the progress sentinel + if ( fn === "inprogress" ) { + fn = queue.shift(); + startLength--; + } + + if ( fn ) { + + // Add a progress sentinel to prevent the fx queue from being + // automatically dequeued + if ( type === "fx" ) { + queue.unshift( "inprogress" ); + } + + // Clear up the last queue stop function + delete hooks.stop; + fn.call( elem, next, hooks ); + } + + if ( !startLength && hooks ) { + hooks.empty.fire(); + } + }, + + // Not public - generate a queueHooks object, or return the current one + _queueHooks: function( elem, type ) { + var key = type + "queueHooks"; + return dataPriv.get( elem, key ) || dataPriv.access( elem, key, { + empty: jQuery.Callbacks( "once memory" ).add( function() { + dataPriv.remove( elem, [ type + "queue", key ] ); + } ) + } ); + } +} ); + +jQuery.fn.extend( { + queue: function( type, data ) { + var setter = 2; + + if ( typeof type !== "string" ) { + data = type; + type = "fx"; + setter--; + } + + if ( arguments.length < setter ) { + return jQuery.queue( this[ 0 ], type ); + } + + return data === undefined ? + this : + this.each( function() { + var queue = jQuery.queue( this, type, data ); + + // Ensure a hooks for this queue + jQuery._queueHooks( this, type ); + + if ( type === "fx" && queue[ 0 ] !== "inprogress" ) { + jQuery.dequeue( this, type ); + } + } ); + }, + dequeue: function( type ) { + return this.each( function() { + jQuery.dequeue( this, type ); + } ); + }, + clearQueue: function( type ) { + return this.queue( type || "fx", [] ); + }, + + // Get a promise resolved when queues of a certain type + // are emptied (fx is the type by default) + promise: function( type, obj ) { + var tmp, + count = 1, + defer = jQuery.Deferred(), + elements = this, + i = this.length, + resolve = function() { + if ( !( --count ) ) { + defer.resolveWith( elements, [ elements ] ); + } + }; + + if ( typeof type !== "string" ) { + obj = type; + type = undefined; + } + type = type || "fx"; + + while ( i-- ) { + tmp = dataPriv.get( elements[ i ], type + "queueHooks" ); + if ( tmp && tmp.empty ) { + count++; + tmp.empty.add( resolve ); + } + } + resolve(); + return defer.promise( obj ); + } +} ); +var pnum = ( /[+-]?(?:\d*\.|)\d+(?:[eE][+-]?\d+|)/ ).source; + +var rcssNum = new RegExp( "^(?:([+-])=|)(" + pnum + ")([a-z%]*)$", "i" ); + + +var cssExpand = [ "Top", "Right", "Bottom", "Left" ]; + +var documentElement = document.documentElement; + + + + var isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ); + }, + composed = { composed: true }; + + // Support: IE 9 - 11+, Edge 12 - 18+, iOS 10.0 - 10.2 only + // Check attachment across shadow DOM boundaries when possible (gh-3504) + // Support: iOS 10.0-10.2 only + // Early iOS 10 versions support `attachShadow` but not `getRootNode`, + // leading to errors. We need to check for `getRootNode`. + if ( documentElement.getRootNode ) { + isAttached = function( elem ) { + return jQuery.contains( elem.ownerDocument, elem ) || + elem.getRootNode( composed ) === elem.ownerDocument; + }; + } +var isHiddenWithinTree = function( elem, el ) { + + // isHiddenWithinTree might be called from jQuery#filter function; + // in that case, element will be second argument + elem = el || elem; + + // Inline style trumps all + return elem.style.display === "none" || + elem.style.display === "" && + + // Otherwise, check computed style + // Support: Firefox <=43 - 45 + // Disconnected elements can have computed display: none, so first confirm that elem is + // in the document. + isAttached( elem ) && + + jQuery.css( elem, "display" ) === "none"; + }; + + + +function adjustCSS( elem, prop, valueParts, tween ) { + var adjusted, scale, + maxIterations = 20, + currentValue = tween ? + function() { + return tween.cur(); + } : + function() { + return jQuery.css( elem, prop, "" ); + }, + initial = currentValue(), + unit = valueParts && valueParts[ 3 ] || ( jQuery.cssNumber[ prop ] ? "" : "px" ), + + // Starting value computation is required for potential unit mismatches + initialInUnit = elem.nodeType && + ( jQuery.cssNumber[ prop ] || unit !== "px" && +initial ) && + rcssNum.exec( jQuery.css( elem, prop ) ); + + if ( initialInUnit && initialInUnit[ 3 ] !== unit ) { + + // Support: Firefox <=54 + // Halve the iteration target value to prevent interference from CSS upper bounds (gh-2144) + initial = initial / 2; + + // Trust units reported by jQuery.css + unit = unit || initialInUnit[ 3 ]; + + // Iteratively approximate from a nonzero starting point + initialInUnit = +initial || 1; + + while ( maxIterations-- ) { + + // Evaluate and update our best guess (doubling guesses that zero out). + // Finish if the scale equals or crosses 1 (making the old*new product non-positive). + jQuery.style( elem, prop, initialInUnit + unit ); + if ( ( 1 - scale ) * ( 1 - ( scale = currentValue() / initial || 0.5 ) ) <= 0 ) { + maxIterations = 0; + } + initialInUnit = initialInUnit / scale; + + } + + initialInUnit = initialInUnit * 2; + jQuery.style( elem, prop, initialInUnit + unit ); + + // Make sure we update the tween properties later on + valueParts = valueParts || []; + } + + if ( valueParts ) { + initialInUnit = +initialInUnit || +initial || 0; + + // Apply relative offset (+=/-=) if specified + adjusted = valueParts[ 1 ] ? + initialInUnit + ( valueParts[ 1 ] + 1 ) * valueParts[ 2 ] : + +valueParts[ 2 ]; + if ( tween ) { + tween.unit = unit; + tween.start = initialInUnit; + tween.end = adjusted; + } + } + return adjusted; +} + + +var defaultDisplayMap = {}; + +function getDefaultDisplay( elem ) { + var temp, + doc = elem.ownerDocument, + nodeName = elem.nodeName, + display = defaultDisplayMap[ nodeName ]; + + if ( display ) { + return display; + } + + temp = doc.body.appendChild( doc.createElement( nodeName ) ); + display = jQuery.css( temp, "display" ); + + temp.parentNode.removeChild( temp ); + + if ( display === "none" ) { + display = "block"; + } + defaultDisplayMap[ nodeName ] = display; + + return display; +} + +function showHide( elements, show ) { + var display, elem, + values = [], + index = 0, + length = elements.length; + + // Determine new display value for elements that need to change + for ( ; index < length; index++ ) { + elem = elements[ index ]; + if ( !elem.style ) { + continue; + } + + display = elem.style.display; + if ( show ) { + + // Since we force visibility upon cascade-hidden elements, an immediate (and slow) + // check is required in this first loop unless we have a nonempty display value (either + // inline or about-to-be-restored) + if ( display === "none" ) { + values[ index ] = dataPriv.get( elem, "display" ) || null; + if ( !values[ index ] ) { + elem.style.display = ""; + } + } + if ( elem.style.display === "" && isHiddenWithinTree( elem ) ) { + values[ index ] = getDefaultDisplay( elem ); + } + } else { + if ( display !== "none" ) { + values[ index ] = "none"; + + // Remember what we're overwriting + dataPriv.set( elem, "display", display ); + } + } + } + + // Set the display of the elements in a second loop to avoid constant reflow + for ( index = 0; index < length; index++ ) { + if ( values[ index ] != null ) { + elements[ index ].style.display = values[ index ]; + } + } + + return elements; +} + +jQuery.fn.extend( { + show: function() { + return showHide( this, true ); + }, + hide: function() { + return showHide( this ); + }, + toggle: function( state ) { + if ( typeof state === "boolean" ) { + return state ? this.show() : this.hide(); + } + + return this.each( function() { + if ( isHiddenWithinTree( this ) ) { + jQuery( this ).show(); + } else { + jQuery( this ).hide(); + } + } ); + } +} ); +var rcheckableType = ( /^(?:checkbox|radio)$/i ); + +var rtagName = ( /<([a-z][^\/\0>\x20\t\r\n\f]*)/i ); + +var rscriptType = ( /^$|^module$|\/(?:java|ecma)script/i ); + + + +( function() { + var fragment = document.createDocumentFragment(), + div = fragment.appendChild( document.createElement( "div" ) ), + input = document.createElement( "input" ); + + // Support: Android 4.0 - 4.3 only + // Check state lost if the name is set (#11217) + // Support: Windows Web Apps (WWA) + // `name` and `type` must use .setAttribute for WWA (#14901) + input.setAttribute( "type", "radio" ); + input.setAttribute( "checked", "checked" ); + input.setAttribute( "name", "t" ); + + div.appendChild( input ); + + // Support: Android <=4.1 only + // Older WebKit doesn't clone checked state correctly in fragments + support.checkClone = div.cloneNode( true ).cloneNode( true ).lastChild.checked; + + // Support: IE <=11 only + // Make sure textarea (and checkbox) defaultValue is properly cloned + div.innerHTML = ""; + support.noCloneChecked = !!div.cloneNode( true ).lastChild.defaultValue; + + // Support: IE <=9 only + // IE <=9 replaces "; + support.option = !!div.lastChild; +} )(); + + +// We have to close these tags to support XHTML (#13200) +var wrapMap = { + + // XHTML parsers do not magically insert elements in the + // same way that tag soup parsers do. So we cannot shorten + // this by omitting or other required elements. + thead: [ 1, "", "
" ], + col: [ 2, "", "
" ], + tr: [ 2, "", "
" ], + td: [ 3, "", "
" ], + + _default: [ 0, "", "" ] +}; + +wrapMap.tbody = wrapMap.tfoot = wrapMap.colgroup = wrapMap.caption = wrapMap.thead; +wrapMap.th = wrapMap.td; + +// Support: IE <=9 only +if ( !support.option ) { + wrapMap.optgroup = wrapMap.option = [ 1, "" ]; +} + + +function getAll( context, tag ) { + + // Support: IE <=9 - 11 only + // Use typeof to avoid zero-argument method invocation on host objects (#15151) + var ret; + + if ( typeof context.getElementsByTagName !== "undefined" ) { + ret = context.getElementsByTagName( tag || "*" ); + + } else if ( typeof context.querySelectorAll !== "undefined" ) { + ret = context.querySelectorAll( tag || "*" ); + + } else { + ret = []; + } + + if ( tag === undefined || tag && nodeName( context, tag ) ) { + return jQuery.merge( [ context ], ret ); + } + + return ret; +} + + +// Mark scripts as having already been evaluated +function setGlobalEval( elems, refElements ) { + var i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + dataPriv.set( + elems[ i ], + "globalEval", + !refElements || dataPriv.get( refElements[ i ], "globalEval" ) + ); + } +} + + +var rhtml = /<|&#?\w+;/; + +function buildFragment( elems, context, scripts, selection, ignored ) { + var elem, tmp, tag, wrap, attached, j, + fragment = context.createDocumentFragment(), + nodes = [], + i = 0, + l = elems.length; + + for ( ; i < l; i++ ) { + elem = elems[ i ]; + + if ( elem || elem === 0 ) { + + // Add nodes directly + if ( toType( elem ) === "object" ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, elem.nodeType ? [ elem ] : elem ); + + // Convert non-html into a text node + } else if ( !rhtml.test( elem ) ) { + nodes.push( context.createTextNode( elem ) ); + + // Convert html into DOM nodes + } else { + tmp = tmp || fragment.appendChild( context.createElement( "div" ) ); + + // Deserialize a standard representation + tag = ( rtagName.exec( elem ) || [ "", "" ] )[ 1 ].toLowerCase(); + wrap = wrapMap[ tag ] || wrapMap._default; + tmp.innerHTML = wrap[ 1 ] + jQuery.htmlPrefilter( elem ) + wrap[ 2 ]; + + // Descend through wrappers to the right content + j = wrap[ 0 ]; + while ( j-- ) { + tmp = tmp.lastChild; + } + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( nodes, tmp.childNodes ); + + // Remember the top-level container + tmp = fragment.firstChild; + + // Ensure the created nodes are orphaned (#12392) + tmp.textContent = ""; + } + } + } + + // Remove wrapper from fragment + fragment.textContent = ""; + + i = 0; + while ( ( elem = nodes[ i++ ] ) ) { + + // Skip elements already in the context collection (trac-4087) + if ( selection && jQuery.inArray( elem, selection ) > -1 ) { + if ( ignored ) { + ignored.push( elem ); + } + continue; + } + + attached = isAttached( elem ); + + // Append to fragment + tmp = getAll( fragment.appendChild( elem ), "script" ); + + // Preserve script evaluation history + if ( attached ) { + setGlobalEval( tmp ); + } + + // Capture executables + if ( scripts ) { + j = 0; + while ( ( elem = tmp[ j++ ] ) ) { + if ( rscriptType.test( elem.type || "" ) ) { + scripts.push( elem ); + } + } + } + } + + return fragment; +} + + +var + rkeyEvent = /^key/, + rmouseEvent = /^(?:mouse|pointer|contextmenu|drag|drop)|click/, + rtypenamespace = /^([^.]*)(?:\.(.+)|)/; + +function returnTrue() { + return true; +} + +function returnFalse() { + return false; +} + +// Support: IE <=9 - 11+ +// focus() and blur() are asynchronous, except when they are no-op. +// So expect focus to be synchronous when the element is already active, +// and blur to be synchronous when the element is not already active. +// (focus and blur are always synchronous in other supported browsers, +// this just defines when we can count on it). +function expectSync( elem, type ) { + return ( elem === safeActiveElement() ) === ( type === "focus" ); +} + +// Support: IE <=9 only +// Accessing document.activeElement can throw unexpectedly +// https://bugs.jquery.com/ticket/13393 +function safeActiveElement() { + try { + return document.activeElement; + } catch ( err ) { } +} + +function on( elem, types, selector, data, fn, one ) { + var origFn, type; + + // Types can be a map of types/handlers + if ( typeof types === "object" ) { + + // ( types-Object, selector, data ) + if ( typeof selector !== "string" ) { + + // ( types-Object, data ) + data = data || selector; + selector = undefined; + } + for ( type in types ) { + on( elem, type, selector, data, types[ type ], one ); + } + return elem; + } + + if ( data == null && fn == null ) { + + // ( types, fn ) + fn = selector; + data = selector = undefined; + } else if ( fn == null ) { + if ( typeof selector === "string" ) { + + // ( types, selector, fn ) + fn = data; + data = undefined; + } else { + + // ( types, data, fn ) + fn = data; + data = selector; + selector = undefined; + } + } + if ( fn === false ) { + fn = returnFalse; + } else if ( !fn ) { + return elem; + } + + if ( one === 1 ) { + origFn = fn; + fn = function( event ) { + + // Can use an empty set, since event contains the info + jQuery().off( event ); + return origFn.apply( this, arguments ); + }; + + // Use same guid so caller can remove using origFn + fn.guid = origFn.guid || ( origFn.guid = jQuery.guid++ ); + } + return elem.each( function() { + jQuery.event.add( this, types, fn, data, selector ); + } ); +} + +/* + * Helper functions for managing events -- not part of the public interface. + * Props to Dean Edwards' addEvent library for many of the ideas. + */ +jQuery.event = { + + global: {}, + + add: function( elem, types, handler, data, selector ) { + + var handleObjIn, eventHandle, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.get( elem ); + + // Only attach events to objects that accept data + if ( !acceptData( elem ) ) { + return; + } + + // Caller can pass in an object of custom data in lieu of the handler + if ( handler.handler ) { + handleObjIn = handler; + handler = handleObjIn.handler; + selector = handleObjIn.selector; + } + + // Ensure that invalid selectors throw exceptions at attach time + // Evaluate against documentElement in case elem is a non-element node (e.g., document) + if ( selector ) { + jQuery.find.matchesSelector( documentElement, selector ); + } + + // Make sure that the handler has a unique ID, used to find/remove it later + if ( !handler.guid ) { + handler.guid = jQuery.guid++; + } + + // Init the element's event structure and main handler, if this is the first + if ( !( events = elemData.events ) ) { + events = elemData.events = Object.create( null ); + } + if ( !( eventHandle = elemData.handle ) ) { + eventHandle = elemData.handle = function( e ) { + + // Discard the second event of a jQuery.event.trigger() and + // when an event is called after a page has unloaded + return typeof jQuery !== "undefined" && jQuery.event.triggered !== e.type ? + jQuery.event.dispatch.apply( elem, arguments ) : undefined; + }; + } + + // Handle multiple events separated by a space + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // There *must* be a type, no attaching namespace-only handlers + if ( !type ) { + continue; + } + + // If event changes its type, use the special event handlers for the changed type + special = jQuery.event.special[ type ] || {}; + + // If selector defined, determine special event api type, otherwise given type + type = ( selector ? special.delegateType : special.bindType ) || type; + + // Update special based on newly reset type + special = jQuery.event.special[ type ] || {}; + + // handleObj is passed to all event handlers + handleObj = jQuery.extend( { + type: type, + origType: origType, + data: data, + handler: handler, + guid: handler.guid, + selector: selector, + needsContext: selector && jQuery.expr.match.needsContext.test( selector ), + namespace: namespaces.join( "." ) + }, handleObjIn ); + + // Init the event handler queue if we're the first + if ( !( handlers = events[ type ] ) ) { + handlers = events[ type ] = []; + handlers.delegateCount = 0; + + // Only use addEventListener if the special events handler returns false + if ( !special.setup || + special.setup.call( elem, data, namespaces, eventHandle ) === false ) { + + if ( elem.addEventListener ) { + elem.addEventListener( type, eventHandle ); + } + } + } + + if ( special.add ) { + special.add.call( elem, handleObj ); + + if ( !handleObj.handler.guid ) { + handleObj.handler.guid = handler.guid; + } + } + + // Add to the element's handler list, delegates in front + if ( selector ) { + handlers.splice( handlers.delegateCount++, 0, handleObj ); + } else { + handlers.push( handleObj ); + } + + // Keep track of which events have ever been used, for event optimization + jQuery.event.global[ type ] = true; + } + + }, + + // Detach an event or set of events from an element + remove: function( elem, types, handler, selector, mappedTypes ) { + + var j, origCount, tmp, + events, t, handleObj, + special, handlers, type, namespaces, origType, + elemData = dataPriv.hasData( elem ) && dataPriv.get( elem ); + + if ( !elemData || !( events = elemData.events ) ) { + return; + } + + // Once for each type.namespace in types; type may be omitted + types = ( types || "" ).match( rnothtmlwhite ) || [ "" ]; + t = types.length; + while ( t-- ) { + tmp = rtypenamespace.exec( types[ t ] ) || []; + type = origType = tmp[ 1 ]; + namespaces = ( tmp[ 2 ] || "" ).split( "." ).sort(); + + // Unbind all events (on this namespace, if provided) for the element + if ( !type ) { + for ( type in events ) { + jQuery.event.remove( elem, type + types[ t ], handler, selector, true ); + } + continue; + } + + special = jQuery.event.special[ type ] || {}; + type = ( selector ? special.delegateType : special.bindType ) || type; + handlers = events[ type ] || []; + tmp = tmp[ 2 ] && + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ); + + // Remove matching events + origCount = j = handlers.length; + while ( j-- ) { + handleObj = handlers[ j ]; + + if ( ( mappedTypes || origType === handleObj.origType ) && + ( !handler || handler.guid === handleObj.guid ) && + ( !tmp || tmp.test( handleObj.namespace ) ) && + ( !selector || selector === handleObj.selector || + selector === "**" && handleObj.selector ) ) { + handlers.splice( j, 1 ); + + if ( handleObj.selector ) { + handlers.delegateCount--; + } + if ( special.remove ) { + special.remove.call( elem, handleObj ); + } + } + } + + // Remove generic event handler if we removed something and no more handlers exist + // (avoids potential for endless recursion during removal of special event handlers) + if ( origCount && !handlers.length ) { + if ( !special.teardown || + special.teardown.call( elem, namespaces, elemData.handle ) === false ) { + + jQuery.removeEvent( elem, type, elemData.handle ); + } + + delete events[ type ]; + } + } + + // Remove data and the expando if it's no longer used + if ( jQuery.isEmptyObject( events ) ) { + dataPriv.remove( elem, "handle events" ); + } + }, + + dispatch: function( nativeEvent ) { + + var i, j, ret, matched, handleObj, handlerQueue, + args = new Array( arguments.length ), + + // Make a writable jQuery.Event from the native event object + event = jQuery.event.fix( nativeEvent ), + + handlers = ( + dataPriv.get( this, "events" ) || Object.create( null ) + )[ event.type ] || [], + special = jQuery.event.special[ event.type ] || {}; + + // Use the fix-ed jQuery.Event rather than the (read-only) native event + args[ 0 ] = event; + + for ( i = 1; i < arguments.length; i++ ) { + args[ i ] = arguments[ i ]; + } + + event.delegateTarget = this; + + // Call the preDispatch hook for the mapped type, and let it bail if desired + if ( special.preDispatch && special.preDispatch.call( this, event ) === false ) { + return; + } + + // Determine handlers + handlerQueue = jQuery.event.handlers.call( this, event, handlers ); + + // Run delegates first; they may want to stop propagation beneath us + i = 0; + while ( ( matched = handlerQueue[ i++ ] ) && !event.isPropagationStopped() ) { + event.currentTarget = matched.elem; + + j = 0; + while ( ( handleObj = matched.handlers[ j++ ] ) && + !event.isImmediatePropagationStopped() ) { + + // If the event is namespaced, then each handler is only invoked if it is + // specially universal or its namespaces are a superset of the event's. + if ( !event.rnamespace || handleObj.namespace === false || + event.rnamespace.test( handleObj.namespace ) ) { + + event.handleObj = handleObj; + event.data = handleObj.data; + + ret = ( ( jQuery.event.special[ handleObj.origType ] || {} ).handle || + handleObj.handler ).apply( matched.elem, args ); + + if ( ret !== undefined ) { + if ( ( event.result = ret ) === false ) { + event.preventDefault(); + event.stopPropagation(); + } + } + } + } + } + + // Call the postDispatch hook for the mapped type + if ( special.postDispatch ) { + special.postDispatch.call( this, event ); + } + + return event.result; + }, + + handlers: function( event, handlers ) { + var i, handleObj, sel, matchedHandlers, matchedSelectors, + handlerQueue = [], + delegateCount = handlers.delegateCount, + cur = event.target; + + // Find delegate handlers + if ( delegateCount && + + // Support: IE <=9 + // Black-hole SVG instance trees (trac-13180) + cur.nodeType && + + // Support: Firefox <=42 + // Suppress spec-violating clicks indicating a non-primary pointer button (trac-3861) + // https://www.w3.org/TR/DOM-Level-3-Events/#event-type-click + // Support: IE 11 only + // ...but not arrow key "clicks" of radio inputs, which can have `button` -1 (gh-2343) + !( event.type === "click" && event.button >= 1 ) ) { + + for ( ; cur !== this; cur = cur.parentNode || this ) { + + // Don't check non-elements (#13208) + // Don't process clicks on disabled elements (#6911, #8165, #11382, #11764) + if ( cur.nodeType === 1 && !( event.type === "click" && cur.disabled === true ) ) { + matchedHandlers = []; + matchedSelectors = {}; + for ( i = 0; i < delegateCount; i++ ) { + handleObj = handlers[ i ]; + + // Don't conflict with Object.prototype properties (#13203) + sel = handleObj.selector + " "; + + if ( matchedSelectors[ sel ] === undefined ) { + matchedSelectors[ sel ] = handleObj.needsContext ? + jQuery( sel, this ).index( cur ) > -1 : + jQuery.find( sel, this, null, [ cur ] ).length; + } + if ( matchedSelectors[ sel ] ) { + matchedHandlers.push( handleObj ); + } + } + if ( matchedHandlers.length ) { + handlerQueue.push( { elem: cur, handlers: matchedHandlers } ); + } + } + } + } + + // Add the remaining (directly-bound) handlers + cur = this; + if ( delegateCount < handlers.length ) { + handlerQueue.push( { elem: cur, handlers: handlers.slice( delegateCount ) } ); + } + + return handlerQueue; + }, + + addProp: function( name, hook ) { + Object.defineProperty( jQuery.Event.prototype, name, { + enumerable: true, + configurable: true, + + get: isFunction( hook ) ? + function() { + if ( this.originalEvent ) { + return hook( this.originalEvent ); + } + } : + function() { + if ( this.originalEvent ) { + return this.originalEvent[ name ]; + } + }, + + set: function( value ) { + Object.defineProperty( this, name, { + enumerable: true, + configurable: true, + writable: true, + value: value + } ); + } + } ); + }, + + fix: function( originalEvent ) { + return originalEvent[ jQuery.expando ] ? + originalEvent : + new jQuery.Event( originalEvent ); + }, + + special: { + load: { + + // Prevent triggered image.load events from bubbling to window.load + noBubble: true + }, + click: { + + // Utilize native event to ensure correct state for checkable inputs + setup: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Claim the first handler + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + // dataPriv.set( el, "click", ... ) + leverageNative( el, "click", returnTrue ); + } + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function( data ) { + + // For mutual compressibility with _default, replace `this` access with a local var. + // `|| data` is dead code meant only to preserve the variable through minification. + var el = this || data; + + // Force setup before triggering a click + if ( rcheckableType.test( el.type ) && + el.click && nodeName( el, "input" ) ) { + + leverageNative( el, "click" ); + } + + // Return non-false to allow normal event-path propagation + return true; + }, + + // For cross-browser consistency, suppress native .click() on links + // Also prevent it if we're currently inside a leveraged native-event stack + _default: function( event ) { + var target = event.target; + return rcheckableType.test( target.type ) && + target.click && nodeName( target, "input" ) && + dataPriv.get( target, "click" ) || + nodeName( target, "a" ); + } + }, + + beforeunload: { + postDispatch: function( event ) { + + // Support: Firefox 20+ + // Firefox doesn't alert if the returnValue field is not set. + if ( event.result !== undefined && event.originalEvent ) { + event.originalEvent.returnValue = event.result; + } + } + } + } +}; + +// Ensure the presence of an event listener that handles manually-triggered +// synthetic events by interrupting progress until reinvoked in response to +// *native* events that it fires directly, ensuring that state changes have +// already occurred before other listeners are invoked. +function leverageNative( el, type, expectSync ) { + + // Missing expectSync indicates a trigger call, which must force setup through jQuery.event.add + if ( !expectSync ) { + if ( dataPriv.get( el, type ) === undefined ) { + jQuery.event.add( el, type, returnTrue ); + } + return; + } + + // Register the controller as a special universal handler for all event namespaces + dataPriv.set( el, type, false ); + jQuery.event.add( el, type, { + namespace: false, + handler: function( event ) { + var notAsync, result, + saved = dataPriv.get( this, type ); + + if ( ( event.isTrigger & 1 ) && this[ type ] ) { + + // Interrupt processing of the outer synthetic .trigger()ed event + // Saved data should be false in such cases, but might be a leftover capture object + // from an async native handler (gh-4350) + if ( !saved.length ) { + + // Store arguments for use when handling the inner native event + // There will always be at least one argument (an event object), so this array + // will not be confused with a leftover capture object. + saved = slice.call( arguments ); + dataPriv.set( this, type, saved ); + + // Trigger the native event and capture its result + // Support: IE <=9 - 11+ + // focus() and blur() are asynchronous + notAsync = expectSync( this, type ); + this[ type ](); + result = dataPriv.get( this, type ); + if ( saved !== result || notAsync ) { + dataPriv.set( this, type, false ); + } else { + result = {}; + } + if ( saved !== result ) { + + // Cancel the outer synthetic event + event.stopImmediatePropagation(); + event.preventDefault(); + return result.value; + } + + // If this is an inner synthetic event for an event with a bubbling surrogate + // (focus or blur), assume that the surrogate already propagated from triggering the + // native event and prevent that from happening again here. + // This technically gets the ordering wrong w.r.t. to `.trigger()` (in which the + // bubbling surrogate propagates *after* the non-bubbling base), but that seems + // less bad than duplication. + } else if ( ( jQuery.event.special[ type ] || {} ).delegateType ) { + event.stopPropagation(); + } + + // If this is a native event triggered above, everything is now in order + // Fire an inner synthetic event with the original arguments + } else if ( saved.length ) { + + // ...and capture the result + dataPriv.set( this, type, { + value: jQuery.event.trigger( + + // Support: IE <=9 - 11+ + // Extend with the prototype to reset the above stopImmediatePropagation() + jQuery.extend( saved[ 0 ], jQuery.Event.prototype ), + saved.slice( 1 ), + this + ) + } ); + + // Abort handling of the native event + event.stopImmediatePropagation(); + } + } + } ); +} + +jQuery.removeEvent = function( elem, type, handle ) { + + // This "if" is needed for plain objects + if ( elem.removeEventListener ) { + elem.removeEventListener( type, handle ); + } +}; + +jQuery.Event = function( src, props ) { + + // Allow instantiation without the 'new' keyword + if ( !( this instanceof jQuery.Event ) ) { + return new jQuery.Event( src, props ); + } + + // Event object + if ( src && src.type ) { + this.originalEvent = src; + this.type = src.type; + + // Events bubbling up the document may have been marked as prevented + // by a handler lower down the tree; reflect the correct value. + this.isDefaultPrevented = src.defaultPrevented || + src.defaultPrevented === undefined && + + // Support: Android <=2.3 only + src.returnValue === false ? + returnTrue : + returnFalse; + + // Create target properties + // Support: Safari <=6 - 7 only + // Target should not be a text node (#504, #13143) + this.target = ( src.target && src.target.nodeType === 3 ) ? + src.target.parentNode : + src.target; + + this.currentTarget = src.currentTarget; + this.relatedTarget = src.relatedTarget; + + // Event type + } else { + this.type = src; + } + + // Put explicitly provided properties onto the event object + if ( props ) { + jQuery.extend( this, props ); + } + + // Create a timestamp if incoming event doesn't have one + this.timeStamp = src && src.timeStamp || Date.now(); + + // Mark it as fixed + this[ jQuery.expando ] = true; +}; + +// jQuery.Event is based on DOM3 Events as specified by the ECMAScript Language Binding +// https://www.w3.org/TR/2003/WD-DOM-Level-3-Events-20030331/ecma-script-binding.html +jQuery.Event.prototype = { + constructor: jQuery.Event, + isDefaultPrevented: returnFalse, + isPropagationStopped: returnFalse, + isImmediatePropagationStopped: returnFalse, + isSimulated: false, + + preventDefault: function() { + var e = this.originalEvent; + + this.isDefaultPrevented = returnTrue; + + if ( e && !this.isSimulated ) { + e.preventDefault(); + } + }, + stopPropagation: function() { + var e = this.originalEvent; + + this.isPropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopPropagation(); + } + }, + stopImmediatePropagation: function() { + var e = this.originalEvent; + + this.isImmediatePropagationStopped = returnTrue; + + if ( e && !this.isSimulated ) { + e.stopImmediatePropagation(); + } + + this.stopPropagation(); + } +}; + +// Includes all common event props including KeyEvent and MouseEvent specific props +jQuery.each( { + altKey: true, + bubbles: true, + cancelable: true, + changedTouches: true, + ctrlKey: true, + detail: true, + eventPhase: true, + metaKey: true, + pageX: true, + pageY: true, + shiftKey: true, + view: true, + "char": true, + code: true, + charCode: true, + key: true, + keyCode: true, + button: true, + buttons: true, + clientX: true, + clientY: true, + offsetX: true, + offsetY: true, + pointerId: true, + pointerType: true, + screenX: true, + screenY: true, + targetTouches: true, + toElement: true, + touches: true, + + which: function( event ) { + var button = event.button; + + // Add which for key events + if ( event.which == null && rkeyEvent.test( event.type ) ) { + return event.charCode != null ? event.charCode : event.keyCode; + } + + // Add which for click: 1 === left; 2 === middle; 3 === right + if ( !event.which && button !== undefined && rmouseEvent.test( event.type ) ) { + if ( button & 1 ) { + return 1; + } + + if ( button & 2 ) { + return 3; + } + + if ( button & 4 ) { + return 2; + } + + return 0; + } + + return event.which; + } +}, jQuery.event.addProp ); + +jQuery.each( { focus: "focusin", blur: "focusout" }, function( type, delegateType ) { + jQuery.event.special[ type ] = { + + // Utilize native event if possible so blur/focus sequence is correct + setup: function() { + + // Claim the first handler + // dataPriv.set( this, "focus", ... ) + // dataPriv.set( this, "blur", ... ) + leverageNative( this, type, expectSync ); + + // Return false to allow normal processing in the caller + return false; + }, + trigger: function() { + + // Force setup before trigger + leverageNative( this, type ); + + // Return non-false to allow normal event-path propagation + return true; + }, + + delegateType: delegateType + }; +} ); + +// Create mouseenter/leave events using mouseover/out and event-time checks +// so that event delegation works in jQuery. +// Do the same for pointerenter/pointerleave and pointerover/pointerout +// +// Support: Safari 7 only +// Safari sends mouseenter too often; see: +// https://bugs.chromium.org/p/chromium/issues/detail?id=470258 +// for the description of the bug (it existed in older Chrome versions as well). +jQuery.each( { + mouseenter: "mouseover", + mouseleave: "mouseout", + pointerenter: "pointerover", + pointerleave: "pointerout" +}, function( orig, fix ) { + jQuery.event.special[ orig ] = { + delegateType: fix, + bindType: fix, + + handle: function( event ) { + var ret, + target = this, + related = event.relatedTarget, + handleObj = event.handleObj; + + // For mouseenter/leave call the handler if related is outside the target. + // NB: No relatedTarget if the mouse left/entered the browser window + if ( !related || ( related !== target && !jQuery.contains( target, related ) ) ) { + event.type = handleObj.origType; + ret = handleObj.handler.apply( this, arguments ); + event.type = fix; + } + return ret; + } + }; +} ); + +jQuery.fn.extend( { + + on: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn ); + }, + one: function( types, selector, data, fn ) { + return on( this, types, selector, data, fn, 1 ); + }, + off: function( types, selector, fn ) { + var handleObj, type; + if ( types && types.preventDefault && types.handleObj ) { + + // ( event ) dispatched jQuery.Event + handleObj = types.handleObj; + jQuery( types.delegateTarget ).off( + handleObj.namespace ? + handleObj.origType + "." + handleObj.namespace : + handleObj.origType, + handleObj.selector, + handleObj.handler + ); + return this; + } + if ( typeof types === "object" ) { + + // ( types-object [, selector] ) + for ( type in types ) { + this.off( type, selector, types[ type ] ); + } + return this; + } + if ( selector === false || typeof selector === "function" ) { + + // ( types [, fn] ) + fn = selector; + selector = undefined; + } + if ( fn === false ) { + fn = returnFalse; + } + return this.each( function() { + jQuery.event.remove( this, types, fn, selector ); + } ); + } +} ); + + +var + + // Support: IE <=10 - 11, Edge 12 - 13 only + // In IE/Edge using regex groups here causes severe slowdowns. + // See https://connect.microsoft.com/IE/feedback/details/1736512/ + rnoInnerhtml = /\s*$/g; + +// Prefer a tbody over its parent table for containing new rows +function manipulationTarget( elem, content ) { + if ( nodeName( elem, "table" ) && + nodeName( content.nodeType !== 11 ? content : content.firstChild, "tr" ) ) { + + return jQuery( elem ).children( "tbody" )[ 0 ] || elem; + } + + return elem; +} + +// Replace/restore the type attribute of script elements for safe DOM manipulation +function disableScript( elem ) { + elem.type = ( elem.getAttribute( "type" ) !== null ) + "/" + elem.type; + return elem; +} +function restoreScript( elem ) { + if ( ( elem.type || "" ).slice( 0, 5 ) === "true/" ) { + elem.type = elem.type.slice( 5 ); + } else { + elem.removeAttribute( "type" ); + } + + return elem; +} + +function cloneCopyEvent( src, dest ) { + var i, l, type, pdataOld, udataOld, udataCur, events; + + if ( dest.nodeType !== 1 ) { + return; + } + + // 1. Copy private data: events, handlers, etc. + if ( dataPriv.hasData( src ) ) { + pdataOld = dataPriv.get( src ); + events = pdataOld.events; + + if ( events ) { + dataPriv.remove( dest, "handle events" ); + + for ( type in events ) { + for ( i = 0, l = events[ type ].length; i < l; i++ ) { + jQuery.event.add( dest, type, events[ type ][ i ] ); + } + } + } + } + + // 2. Copy user data + if ( dataUser.hasData( src ) ) { + udataOld = dataUser.access( src ); + udataCur = jQuery.extend( {}, udataOld ); + + dataUser.set( dest, udataCur ); + } +} + +// Fix IE bugs, see support tests +function fixInput( src, dest ) { + var nodeName = dest.nodeName.toLowerCase(); + + // Fails to persist the checked state of a cloned checkbox or radio button. + if ( nodeName === "input" && rcheckableType.test( src.type ) ) { + dest.checked = src.checked; + + // Fails to return the selected option to the default selected state when cloning options + } else if ( nodeName === "input" || nodeName === "textarea" ) { + dest.defaultValue = src.defaultValue; + } +} + +function domManip( collection, args, callback, ignored ) { + + // Flatten any nested arrays + args = flat( args ); + + var fragment, first, scripts, hasScripts, node, doc, + i = 0, + l = collection.length, + iNoClone = l - 1, + value = args[ 0 ], + valueIsFunction = isFunction( value ); + + // We can't cloneNode fragments that contain checked, in WebKit + if ( valueIsFunction || + ( l > 1 && typeof value === "string" && + !support.checkClone && rchecked.test( value ) ) ) { + return collection.each( function( index ) { + var self = collection.eq( index ); + if ( valueIsFunction ) { + args[ 0 ] = value.call( this, index, self.html() ); + } + domManip( self, args, callback, ignored ); + } ); + } + + if ( l ) { + fragment = buildFragment( args, collection[ 0 ].ownerDocument, false, collection, ignored ); + first = fragment.firstChild; + + if ( fragment.childNodes.length === 1 ) { + fragment = first; + } + + // Require either new content or an interest in ignored elements to invoke the callback + if ( first || ignored ) { + scripts = jQuery.map( getAll( fragment, "script" ), disableScript ); + hasScripts = scripts.length; + + // Use the original fragment for the last item + // instead of the first because it can end up + // being emptied incorrectly in certain situations (#8070). + for ( ; i < l; i++ ) { + node = fragment; + + if ( i !== iNoClone ) { + node = jQuery.clone( node, true, true ); + + // Keep references to cloned scripts for later restoration + if ( hasScripts ) { + + // Support: Android <=4.0 only, PhantomJS 1 only + // push.apply(_, arraylike) throws on ancient WebKit + jQuery.merge( scripts, getAll( node, "script" ) ); + } + } + + callback.call( collection[ i ], node, i ); + } + + if ( hasScripts ) { + doc = scripts[ scripts.length - 1 ].ownerDocument; + + // Reenable scripts + jQuery.map( scripts, restoreScript ); + + // Evaluate executable scripts on first document insertion + for ( i = 0; i < hasScripts; i++ ) { + node = scripts[ i ]; + if ( rscriptType.test( node.type || "" ) && + !dataPriv.access( node, "globalEval" ) && + jQuery.contains( doc, node ) ) { + + if ( node.src && ( node.type || "" ).toLowerCase() !== "module" ) { + + // Optional AJAX dependency, but won't run scripts if not present + if ( jQuery._evalUrl && !node.noModule ) { + jQuery._evalUrl( node.src, { + nonce: node.nonce || node.getAttribute( "nonce" ) + }, doc ); + } + } else { + DOMEval( node.textContent.replace( rcleanScript, "" ), node, doc ); + } + } + } + } + } + } + + return collection; +} + +function remove( elem, selector, keepData ) { + var node, + nodes = selector ? jQuery.filter( selector, elem ) : elem, + i = 0; + + for ( ; ( node = nodes[ i ] ) != null; i++ ) { + if ( !keepData && node.nodeType === 1 ) { + jQuery.cleanData( getAll( node ) ); + } + + if ( node.parentNode ) { + if ( keepData && isAttached( node ) ) { + setGlobalEval( getAll( node, "script" ) ); + } + node.parentNode.removeChild( node ); + } + } + + return elem; +} + +jQuery.extend( { + htmlPrefilter: function( html ) { + return html; + }, + + clone: function( elem, dataAndEvents, deepDataAndEvents ) { + var i, l, srcElements, destElements, + clone = elem.cloneNode( true ), + inPage = isAttached( elem ); + + // Fix IE cloning issues + if ( !support.noCloneChecked && ( elem.nodeType === 1 || elem.nodeType === 11 ) && + !jQuery.isXMLDoc( elem ) ) { + + // We eschew Sizzle here for performance reasons: https://jsperf.com/getall-vs-sizzle/2 + destElements = getAll( clone ); + srcElements = getAll( elem ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + fixInput( srcElements[ i ], destElements[ i ] ); + } + } + + // Copy the events from the original to the clone + if ( dataAndEvents ) { + if ( deepDataAndEvents ) { + srcElements = srcElements || getAll( elem ); + destElements = destElements || getAll( clone ); + + for ( i = 0, l = srcElements.length; i < l; i++ ) { + cloneCopyEvent( srcElements[ i ], destElements[ i ] ); + } + } else { + cloneCopyEvent( elem, clone ); + } + } + + // Preserve script evaluation history + destElements = getAll( clone, "script" ); + if ( destElements.length > 0 ) { + setGlobalEval( destElements, !inPage && getAll( elem, "script" ) ); + } + + // Return the cloned set + return clone; + }, + + cleanData: function( elems ) { + var data, elem, type, + special = jQuery.event.special, + i = 0; + + for ( ; ( elem = elems[ i ] ) !== undefined; i++ ) { + if ( acceptData( elem ) ) { + if ( ( data = elem[ dataPriv.expando ] ) ) { + if ( data.events ) { + for ( type in data.events ) { + if ( special[ type ] ) { + jQuery.event.remove( elem, type ); + + // This is a shortcut to avoid jQuery.event.remove's overhead + } else { + jQuery.removeEvent( elem, type, data.handle ); + } + } + } + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataPriv.expando ] = undefined; + } + if ( elem[ dataUser.expando ] ) { + + // Support: Chrome <=35 - 45+ + // Assign undefined instead of using delete, see Data#remove + elem[ dataUser.expando ] = undefined; + } + } + } + } +} ); + +jQuery.fn.extend( { + detach: function( selector ) { + return remove( this, selector, true ); + }, + + remove: function( selector ) { + return remove( this, selector ); + }, + + text: function( value ) { + return access( this, function( value ) { + return value === undefined ? + jQuery.text( this ) : + this.empty().each( function() { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + this.textContent = value; + } + } ); + }, null, value, arguments.length ); + }, + + append: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.appendChild( elem ); + } + } ); + }, + + prepend: function() { + return domManip( this, arguments, function( elem ) { + if ( this.nodeType === 1 || this.nodeType === 11 || this.nodeType === 9 ) { + var target = manipulationTarget( this, elem ); + target.insertBefore( elem, target.firstChild ); + } + } ); + }, + + before: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this ); + } + } ); + }, + + after: function() { + return domManip( this, arguments, function( elem ) { + if ( this.parentNode ) { + this.parentNode.insertBefore( elem, this.nextSibling ); + } + } ); + }, + + empty: function() { + var elem, + i = 0; + + for ( ; ( elem = this[ i ] ) != null; i++ ) { + if ( elem.nodeType === 1 ) { + + // Prevent memory leaks + jQuery.cleanData( getAll( elem, false ) ); + + // Remove any remaining nodes + elem.textContent = ""; + } + } + + return this; + }, + + clone: function( dataAndEvents, deepDataAndEvents ) { + dataAndEvents = dataAndEvents == null ? false : dataAndEvents; + deepDataAndEvents = deepDataAndEvents == null ? dataAndEvents : deepDataAndEvents; + + return this.map( function() { + return jQuery.clone( this, dataAndEvents, deepDataAndEvents ); + } ); + }, + + html: function( value ) { + return access( this, function( value ) { + var elem = this[ 0 ] || {}, + i = 0, + l = this.length; + + if ( value === undefined && elem.nodeType === 1 ) { + return elem.innerHTML; + } + + // See if we can take a shortcut and just use innerHTML + if ( typeof value === "string" && !rnoInnerhtml.test( value ) && + !wrapMap[ ( rtagName.exec( value ) || [ "", "" ] )[ 1 ].toLowerCase() ] ) { + + value = jQuery.htmlPrefilter( value ); + + try { + for ( ; i < l; i++ ) { + elem = this[ i ] || {}; + + // Remove element nodes and prevent memory leaks + if ( elem.nodeType === 1 ) { + jQuery.cleanData( getAll( elem, false ) ); + elem.innerHTML = value; + } + } + + elem = 0; + + // If using innerHTML throws an exception, use the fallback method + } catch ( e ) {} + } + + if ( elem ) { + this.empty().append( value ); + } + }, null, value, arguments.length ); + }, + + replaceWith: function() { + var ignored = []; + + // Make the changes, replacing each non-ignored context element with the new content + return domManip( this, arguments, function( elem ) { + var parent = this.parentNode; + + if ( jQuery.inArray( this, ignored ) < 0 ) { + jQuery.cleanData( getAll( this ) ); + if ( parent ) { + parent.replaceChild( elem, this ); + } + } + + // Force callback invocation + }, ignored ); + } +} ); + +jQuery.each( { + appendTo: "append", + prependTo: "prepend", + insertBefore: "before", + insertAfter: "after", + replaceAll: "replaceWith" +}, function( name, original ) { + jQuery.fn[ name ] = function( selector ) { + var elems, + ret = [], + insert = jQuery( selector ), + last = insert.length - 1, + i = 0; + + for ( ; i <= last; i++ ) { + elems = i === last ? this : this.clone( true ); + jQuery( insert[ i ] )[ original ]( elems ); + + // Support: Android <=4.0 only, PhantomJS 1 only + // .get() because push.apply(_, arraylike) throws on ancient WebKit + push.apply( ret, elems.get() ); + } + + return this.pushStack( ret ); + }; +} ); +var rnumnonpx = new RegExp( "^(" + pnum + ")(?!px)[a-z%]+$", "i" ); + +var getStyles = function( elem ) { + + // Support: IE <=11 only, Firefox <=30 (#15098, #14150) + // IE throws on elements created in popups + // FF meanwhile throws on frame elements through "defaultView.getComputedStyle" + var view = elem.ownerDocument.defaultView; + + if ( !view || !view.opener ) { + view = window; + } + + return view.getComputedStyle( elem ); + }; + +var swap = function( elem, options, callback ) { + var ret, name, + old = {}; + + // Remember the old values, and insert the new ones + for ( name in options ) { + old[ name ] = elem.style[ name ]; + elem.style[ name ] = options[ name ]; + } + + ret = callback.call( elem ); + + // Revert the old values + for ( name in options ) { + elem.style[ name ] = old[ name ]; + } + + return ret; +}; + + +var rboxStyle = new RegExp( cssExpand.join( "|" ), "i" ); + + + +( function() { + + // Executing both pixelPosition & boxSizingReliable tests require only one layout + // so they're executed at the same time to save the second computation. + function computeStyleTests() { + + // This is a singleton, we need to execute it only once + if ( !div ) { + return; + } + + container.style.cssText = "position:absolute;left:-11111px;width:60px;" + + "margin-top:1px;padding:0;border:0"; + div.style.cssText = + "position:relative;display:block;box-sizing:border-box;overflow:scroll;" + + "margin:auto;border:1px;padding:1px;" + + "width:60%;top:1%"; + documentElement.appendChild( container ).appendChild( div ); + + var divStyle = window.getComputedStyle( div ); + pixelPositionVal = divStyle.top !== "1%"; + + // Support: Android 4.0 - 4.3 only, Firefox <=3 - 44 + reliableMarginLeftVal = roundPixelMeasures( divStyle.marginLeft ) === 12; + + // Support: Android 4.0 - 4.3 only, Safari <=9.1 - 10.1, iOS <=7.0 - 9.3 + // Some styles come back with percentage values, even though they shouldn't + div.style.right = "60%"; + pixelBoxStylesVal = roundPixelMeasures( divStyle.right ) === 36; + + // Support: IE 9 - 11 only + // Detect misreporting of content dimensions for box-sizing:border-box elements + boxSizingReliableVal = roundPixelMeasures( divStyle.width ) === 36; + + // Support: IE 9 only + // Detect overflow:scroll screwiness (gh-3699) + // Support: Chrome <=64 + // Don't get tricked when zoom affects offsetWidth (gh-4029) + div.style.position = "absolute"; + scrollboxSizeVal = roundPixelMeasures( div.offsetWidth / 3 ) === 12; + + documentElement.removeChild( container ); + + // Nullify the div so it wouldn't be stored in the memory and + // it will also be a sign that checks already performed + div = null; + } + + function roundPixelMeasures( measure ) { + return Math.round( parseFloat( measure ) ); + } + + var pixelPositionVal, boxSizingReliableVal, scrollboxSizeVal, pixelBoxStylesVal, + reliableTrDimensionsVal, reliableMarginLeftVal, + container = document.createElement( "div" ), + div = document.createElement( "div" ); + + // Finish early in limited (non-browser) environments + if ( !div.style ) { + return; + } + + // Support: IE <=9 - 11 only + // Style of cloned element affects source element cloned (#8908) + div.style.backgroundClip = "content-box"; + div.cloneNode( true ).style.backgroundClip = ""; + support.clearCloneStyle = div.style.backgroundClip === "content-box"; + + jQuery.extend( support, { + boxSizingReliable: function() { + computeStyleTests(); + return boxSizingReliableVal; + }, + pixelBoxStyles: function() { + computeStyleTests(); + return pixelBoxStylesVal; + }, + pixelPosition: function() { + computeStyleTests(); + return pixelPositionVal; + }, + reliableMarginLeft: function() { + computeStyleTests(); + return reliableMarginLeftVal; + }, + scrollboxSize: function() { + computeStyleTests(); + return scrollboxSizeVal; + }, + + // Support: IE 9 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Behavior in IE 9 is more subtle than in newer versions & it passes + // some versions of this test; make sure not to make it pass there! + reliableTrDimensions: function() { + var table, tr, trChild, trStyle; + if ( reliableTrDimensionsVal == null ) { + table = document.createElement( "table" ); + tr = document.createElement( "tr" ); + trChild = document.createElement( "div" ); + + table.style.cssText = "position:absolute;left:-11111px"; + tr.style.height = "1px"; + trChild.style.height = "9px"; + + documentElement + .appendChild( table ) + .appendChild( tr ) + .appendChild( trChild ); + + trStyle = window.getComputedStyle( tr ); + reliableTrDimensionsVal = parseInt( trStyle.height ) > 3; + + documentElement.removeChild( table ); + } + return reliableTrDimensionsVal; + } + } ); +} )(); + + +function curCSS( elem, name, computed ) { + var width, minWidth, maxWidth, ret, + + // Support: Firefox 51+ + // Retrieving style before computed somehow + // fixes an issue with getting wrong values + // on detached elements + style = elem.style; + + computed = computed || getStyles( elem ); + + // getPropertyValue is needed for: + // .css('filter') (IE 9 only, #12537) + // .css('--customProperty) (#3144) + if ( computed ) { + ret = computed.getPropertyValue( name ) || computed[ name ]; + + if ( ret === "" && !isAttached( elem ) ) { + ret = jQuery.style( elem, name ); + } + + // A tribute to the "awesome hack by Dean Edwards" + // Android Browser returns percentage for some values, + // but width seems to be reliably pixels. + // This is against the CSSOM draft spec: + // https://drafts.csswg.org/cssom/#resolved-values + if ( !support.pixelBoxStyles() && rnumnonpx.test( ret ) && rboxStyle.test( name ) ) { + + // Remember the original values + width = style.width; + minWidth = style.minWidth; + maxWidth = style.maxWidth; + + // Put in the new values to get a computed value out + style.minWidth = style.maxWidth = style.width = ret; + ret = computed.width; + + // Revert the changed values + style.width = width; + style.minWidth = minWidth; + style.maxWidth = maxWidth; + } + } + + return ret !== undefined ? + + // Support: IE <=9 - 11 only + // IE returns zIndex value as an integer. + ret + "" : + ret; +} + + +function addGetHookIf( conditionFn, hookFn ) { + + // Define the hook, we'll check on the first run if it's really needed. + return { + get: function() { + if ( conditionFn() ) { + + // Hook not needed (or it's not possible to use it due + // to missing dependency), remove it. + delete this.get; + return; + } + + // Hook needed; redefine it so that the support test is not executed again. + return ( this.get = hookFn ).apply( this, arguments ); + } + }; +} + + +var cssPrefixes = [ "Webkit", "Moz", "ms" ], + emptyStyle = document.createElement( "div" ).style, + vendorProps = {}; + +// Return a vendor-prefixed property or undefined +function vendorPropName( name ) { + + // Check for vendor prefixed names + var capName = name[ 0 ].toUpperCase() + name.slice( 1 ), + i = cssPrefixes.length; + + while ( i-- ) { + name = cssPrefixes[ i ] + capName; + if ( name in emptyStyle ) { + return name; + } + } +} + +// Return a potentially-mapped jQuery.cssProps or vendor prefixed property +function finalPropName( name ) { + var final = jQuery.cssProps[ name ] || vendorProps[ name ]; + + if ( final ) { + return final; + } + if ( name in emptyStyle ) { + return name; + } + return vendorProps[ name ] = vendorPropName( name ) || name; +} + + +var + + // Swappable if display is none or starts with table + // except "table", "table-cell", or "table-caption" + // See here for display values: https://developer.mozilla.org/en-US/docs/CSS/display + rdisplayswap = /^(none|table(?!-c[ea]).+)/, + rcustomProp = /^--/, + cssShow = { position: "absolute", visibility: "hidden", display: "block" }, + cssNormalTransform = { + letterSpacing: "0", + fontWeight: "400" + }; + +function setPositiveNumber( _elem, value, subtract ) { + + // Any relative (+/-) values have already been + // normalized at this point + var matches = rcssNum.exec( value ); + return matches ? + + // Guard against undefined "subtract", e.g., when used as in cssHooks + Math.max( 0, matches[ 2 ] - ( subtract || 0 ) ) + ( matches[ 3 ] || "px" ) : + value; +} + +function boxModelAdjustment( elem, dimension, box, isBorderBox, styles, computedVal ) { + var i = dimension === "width" ? 1 : 0, + extra = 0, + delta = 0; + + // Adjustment may not be necessary + if ( box === ( isBorderBox ? "border" : "content" ) ) { + return 0; + } + + for ( ; i < 4; i += 2 ) { + + // Both box models exclude margin + if ( box === "margin" ) { + delta += jQuery.css( elem, box + cssExpand[ i ], true, styles ); + } + + // If we get here with a content-box, we're seeking "padding" or "border" or "margin" + if ( !isBorderBox ) { + + // Add padding + delta += jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + + // For "border" or "margin", add border + if ( box !== "padding" ) { + delta += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + + // But still keep track of it otherwise + } else { + extra += jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + + // If we get here with a border-box (content + padding + border), we're seeking "content" or + // "padding" or "margin" + } else { + + // For "content", subtract padding + if ( box === "content" ) { + delta -= jQuery.css( elem, "padding" + cssExpand[ i ], true, styles ); + } + + // For "content" or "padding", subtract border + if ( box !== "margin" ) { + delta -= jQuery.css( elem, "border" + cssExpand[ i ] + "Width", true, styles ); + } + } + } + + // Account for positive content-box scroll gutter when requested by providing computedVal + if ( !isBorderBox && computedVal >= 0 ) { + + // offsetWidth/offsetHeight is a rounded sum of content, padding, scroll gutter, and border + // Assuming integer scroll gutter, subtract the rest and round down + delta += Math.max( 0, Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + computedVal - + delta - + extra - + 0.5 + + // If offsetWidth/offsetHeight is unknown, then we can't determine content-box scroll gutter + // Use an explicit zero to avoid NaN (gh-3964) + ) ) || 0; + } + + return delta; +} + +function getWidthOrHeight( elem, dimension, extra ) { + + // Start with computed style + var styles = getStyles( elem ), + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-4322). + // Fake content-box until we know it's needed to know the true value. + boxSizingNeeded = !support.boxSizingReliable() || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + valueIsBorderBox = isBorderBox, + + val = curCSS( elem, dimension, styles ), + offsetProp = "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ); + + // Support: Firefox <=54 + // Return a confounding non-pixel value or feign ignorance, as appropriate. + if ( rnumnonpx.test( val ) ) { + if ( !extra ) { + return val; + } + val = "auto"; + } + + + // Support: IE 9 - 11 only + // Use offsetWidth/offsetHeight for when box sizing is unreliable. + // In those cases, the computed value can be trusted to be border-box. + if ( ( !support.boxSizingReliable() && isBorderBox || + + // Support: IE 10 - 11+, Edge 15 - 18+ + // IE/Edge misreport `getComputedStyle` of table rows with width/height + // set in CSS while `offset*` properties report correct values. + // Interestingly, in some cases IE 9 doesn't suffer from this issue. + !support.reliableTrDimensions() && nodeName( elem, "tr" ) || + + // Fall back to offsetWidth/offsetHeight when value is "auto" + // This happens for inline elements with no explicit setting (gh-3571) + val === "auto" || + + // Support: Android <=4.1 - 4.3 only + // Also use offsetWidth/offsetHeight for misreported inline dimensions (gh-3602) + !parseFloat( val ) && jQuery.css( elem, "display", false, styles ) === "inline" ) && + + // Make sure the element is visible & connected + elem.getClientRects().length ) { + + isBorderBox = jQuery.css( elem, "boxSizing", false, styles ) === "border-box"; + + // Where available, offsetWidth/offsetHeight approximate border box dimensions. + // Where not available (e.g., SVG), assume unreliable box-sizing and interpret the + // retrieved value as a content box dimension. + valueIsBorderBox = offsetProp in elem; + if ( valueIsBorderBox ) { + val = elem[ offsetProp ]; + } + } + + // Normalize "" and auto + val = parseFloat( val ) || 0; + + // Adjust for the element's box model + return ( val + + boxModelAdjustment( + elem, + dimension, + extra || ( isBorderBox ? "border" : "content" ), + valueIsBorderBox, + styles, + + // Provide the current computed size to request scroll gutter calculation (gh-3589) + val + ) + ) + "px"; +} + +jQuery.extend( { + + // Add in style property hooks for overriding the default + // behavior of getting and setting a style property + cssHooks: { + opacity: { + get: function( elem, computed ) { + if ( computed ) { + + // We should always get a number back from opacity + var ret = curCSS( elem, "opacity" ); + return ret === "" ? "1" : ret; + } + } + } + }, + + // Don't automatically add "px" to these possibly-unitless properties + cssNumber: { + "animationIterationCount": true, + "columnCount": true, + "fillOpacity": true, + "flexGrow": true, + "flexShrink": true, + "fontWeight": true, + "gridArea": true, + "gridColumn": true, + "gridColumnEnd": true, + "gridColumnStart": true, + "gridRow": true, + "gridRowEnd": true, + "gridRowStart": true, + "lineHeight": true, + "opacity": true, + "order": true, + "orphans": true, + "widows": true, + "zIndex": true, + "zoom": true + }, + + // Add in properties whose names you wish to fix before + // setting or getting the value + cssProps: {}, + + // Get and set the style property on a DOM Node + style: function( elem, name, value, extra ) { + + // Don't set styles on text and comment nodes + if ( !elem || elem.nodeType === 3 || elem.nodeType === 8 || !elem.style ) { + return; + } + + // Make sure that we're working with the right name + var ret, type, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ), + style = elem.style; + + // Make sure that we're working with the right name. We don't + // want to query the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Gets hook for the prefixed version, then unprefixed version + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // Check if we're setting a value + if ( value !== undefined ) { + type = typeof value; + + // Convert "+=" or "-=" to relative numbers (#7345) + if ( type === "string" && ( ret = rcssNum.exec( value ) ) && ret[ 1 ] ) { + value = adjustCSS( elem, name, ret ); + + // Fixes bug #9237 + type = "number"; + } + + // Make sure that null and NaN values aren't set (#7116) + if ( value == null || value !== value ) { + return; + } + + // If a number was passed in, add the unit (except for certain CSS properties) + // The isCustomProp check can be removed in jQuery 4.0 when we only auto-append + // "px" to a few hardcoded values. + if ( type === "number" && !isCustomProp ) { + value += ret && ret[ 3 ] || ( jQuery.cssNumber[ origName ] ? "" : "px" ); + } + + // background-* props affect original clone's values + if ( !support.clearCloneStyle && value === "" && name.indexOf( "background" ) === 0 ) { + style[ name ] = "inherit"; + } + + // If a hook was provided, use that value, otherwise just set the specified value + if ( !hooks || !( "set" in hooks ) || + ( value = hooks.set( elem, value, extra ) ) !== undefined ) { + + if ( isCustomProp ) { + style.setProperty( name, value ); + } else { + style[ name ] = value; + } + } + + } else { + + // If a hook was provided get the non-computed value from there + if ( hooks && "get" in hooks && + ( ret = hooks.get( elem, false, extra ) ) !== undefined ) { + + return ret; + } + + // Otherwise just get the value from the style object + return style[ name ]; + } + }, + + css: function( elem, name, extra, styles ) { + var val, num, hooks, + origName = camelCase( name ), + isCustomProp = rcustomProp.test( name ); + + // Make sure that we're working with the right name. We don't + // want to modify the value if it is a CSS custom property + // since they are user-defined. + if ( !isCustomProp ) { + name = finalPropName( origName ); + } + + // Try prefixed name followed by the unprefixed name + hooks = jQuery.cssHooks[ name ] || jQuery.cssHooks[ origName ]; + + // If a hook was provided get the computed value from there + if ( hooks && "get" in hooks ) { + val = hooks.get( elem, true, extra ); + } + + // Otherwise, if a way to get the computed value exists, use that + if ( val === undefined ) { + val = curCSS( elem, name, styles ); + } + + // Convert "normal" to computed value + if ( val === "normal" && name in cssNormalTransform ) { + val = cssNormalTransform[ name ]; + } + + // Make numeric if forced or a qualifier was provided and val looks numeric + if ( extra === "" || extra ) { + num = parseFloat( val ); + return extra === true || isFinite( num ) ? num || 0 : val; + } + + return val; + } +} ); + +jQuery.each( [ "height", "width" ], function( _i, dimension ) { + jQuery.cssHooks[ dimension ] = { + get: function( elem, computed, extra ) { + if ( computed ) { + + // Certain elements can have dimension info if we invisibly show them + // but it must have a current display style that would benefit + return rdisplayswap.test( jQuery.css( elem, "display" ) ) && + + // Support: Safari 8+ + // Table columns in Safari have non-zero offsetWidth & zero + // getBoundingClientRect().width unless display is changed. + // Support: IE <=11 only + // Running getBoundingClientRect on a disconnected node + // in IE throws an error. + ( !elem.getClientRects().length || !elem.getBoundingClientRect().width ) ? + swap( elem, cssShow, function() { + return getWidthOrHeight( elem, dimension, extra ); + } ) : + getWidthOrHeight( elem, dimension, extra ); + } + }, + + set: function( elem, value, extra ) { + var matches, + styles = getStyles( elem ), + + // Only read styles.position if the test has a chance to fail + // to avoid forcing a reflow. + scrollboxSizeBuggy = !support.scrollboxSize() && + styles.position === "absolute", + + // To avoid forcing a reflow, only fetch boxSizing if we need it (gh-3991) + boxSizingNeeded = scrollboxSizeBuggy || extra, + isBorderBox = boxSizingNeeded && + jQuery.css( elem, "boxSizing", false, styles ) === "border-box", + subtract = extra ? + boxModelAdjustment( + elem, + dimension, + extra, + isBorderBox, + styles + ) : + 0; + + // Account for unreliable border-box dimensions by comparing offset* to computed and + // faking a content-box to get border and padding (gh-3699) + if ( isBorderBox && scrollboxSizeBuggy ) { + subtract -= Math.ceil( + elem[ "offset" + dimension[ 0 ].toUpperCase() + dimension.slice( 1 ) ] - + parseFloat( styles[ dimension ] ) - + boxModelAdjustment( elem, dimension, "border", false, styles ) - + 0.5 + ); + } + + // Convert to pixels if value adjustment is needed + if ( subtract && ( matches = rcssNum.exec( value ) ) && + ( matches[ 3 ] || "px" ) !== "px" ) { + + elem.style[ dimension ] = value; + value = jQuery.css( elem, dimension ); + } + + return setPositiveNumber( elem, value, subtract ); + } + }; +} ); + +jQuery.cssHooks.marginLeft = addGetHookIf( support.reliableMarginLeft, + function( elem, computed ) { + if ( computed ) { + return ( parseFloat( curCSS( elem, "marginLeft" ) ) || + elem.getBoundingClientRect().left - + swap( elem, { marginLeft: 0 }, function() { + return elem.getBoundingClientRect().left; + } ) + ) + "px"; + } + } +); + +// These hooks are used by animate to expand properties +jQuery.each( { + margin: "", + padding: "", + border: "Width" +}, function( prefix, suffix ) { + jQuery.cssHooks[ prefix + suffix ] = { + expand: function( value ) { + var i = 0, + expanded = {}, + + // Assumes a single number if not a string + parts = typeof value === "string" ? value.split( " " ) : [ value ]; + + for ( ; i < 4; i++ ) { + expanded[ prefix + cssExpand[ i ] + suffix ] = + parts[ i ] || parts[ i - 2 ] || parts[ 0 ]; + } + + return expanded; + } + }; + + if ( prefix !== "margin" ) { + jQuery.cssHooks[ prefix + suffix ].set = setPositiveNumber; + } +} ); + +jQuery.fn.extend( { + css: function( name, value ) { + return access( this, function( elem, name, value ) { + var styles, len, + map = {}, + i = 0; + + if ( Array.isArray( name ) ) { + styles = getStyles( elem ); + len = name.length; + + for ( ; i < len; i++ ) { + map[ name[ i ] ] = jQuery.css( elem, name[ i ], false, styles ); + } + + return map; + } + + return value !== undefined ? + jQuery.style( elem, name, value ) : + jQuery.css( elem, name ); + }, name, value, arguments.length > 1 ); + } +} ); + + +function Tween( elem, options, prop, end, easing ) { + return new Tween.prototype.init( elem, options, prop, end, easing ); +} +jQuery.Tween = Tween; + +Tween.prototype = { + constructor: Tween, + init: function( elem, options, prop, end, easing, unit ) { + this.elem = elem; + this.prop = prop; + this.easing = easing || jQuery.easing._default; + this.options = options; + this.start = this.now = this.cur(); + this.end = end; + this.unit = unit || ( jQuery.cssNumber[ prop ] ? "" : "px" ); + }, + cur: function() { + var hooks = Tween.propHooks[ this.prop ]; + + return hooks && hooks.get ? + hooks.get( this ) : + Tween.propHooks._default.get( this ); + }, + run: function( percent ) { + var eased, + hooks = Tween.propHooks[ this.prop ]; + + if ( this.options.duration ) { + this.pos = eased = jQuery.easing[ this.easing ]( + percent, this.options.duration * percent, 0, 1, this.options.duration + ); + } else { + this.pos = eased = percent; + } + this.now = ( this.end - this.start ) * eased + this.start; + + if ( this.options.step ) { + this.options.step.call( this.elem, this.now, this ); + } + + if ( hooks && hooks.set ) { + hooks.set( this ); + } else { + Tween.propHooks._default.set( this ); + } + return this; + } +}; + +Tween.prototype.init.prototype = Tween.prototype; + +Tween.propHooks = { + _default: { + get: function( tween ) { + var result; + + // Use a property on the element directly when it is not a DOM element, + // or when there is no matching style property that exists. + if ( tween.elem.nodeType !== 1 || + tween.elem[ tween.prop ] != null && tween.elem.style[ tween.prop ] == null ) { + return tween.elem[ tween.prop ]; + } + + // Passing an empty string as a 3rd parameter to .css will automatically + // attempt a parseFloat and fallback to a string if the parse fails. + // Simple values such as "10px" are parsed to Float; + // complex values such as "rotate(1rad)" are returned as-is. + result = jQuery.css( tween.elem, tween.prop, "" ); + + // Empty strings, null, undefined and "auto" are converted to 0. + return !result || result === "auto" ? 0 : result; + }, + set: function( tween ) { + + // Use step hook for back compat. + // Use cssHook if its there. + // Use .style if available and use plain properties where available. + if ( jQuery.fx.step[ tween.prop ] ) { + jQuery.fx.step[ tween.prop ]( tween ); + } else if ( tween.elem.nodeType === 1 && ( + jQuery.cssHooks[ tween.prop ] || + tween.elem.style[ finalPropName( tween.prop ) ] != null ) ) { + jQuery.style( tween.elem, tween.prop, tween.now + tween.unit ); + } else { + tween.elem[ tween.prop ] = tween.now; + } + } + } +}; + +// Support: IE <=9 only +// Panic based approach to setting things on disconnected nodes +Tween.propHooks.scrollTop = Tween.propHooks.scrollLeft = { + set: function( tween ) { + if ( tween.elem.nodeType && tween.elem.parentNode ) { + tween.elem[ tween.prop ] = tween.now; + } + } +}; + +jQuery.easing = { + linear: function( p ) { + return p; + }, + swing: function( p ) { + return 0.5 - Math.cos( p * Math.PI ) / 2; + }, + _default: "swing" +}; + +jQuery.fx = Tween.prototype.init; + +// Back compat <1.8 extension point +jQuery.fx.step = {}; + + + + +var + fxNow, inProgress, + rfxtypes = /^(?:toggle|show|hide)$/, + rrun = /queueHooks$/; + +function schedule() { + if ( inProgress ) { + if ( document.hidden === false && window.requestAnimationFrame ) { + window.requestAnimationFrame( schedule ); + } else { + window.setTimeout( schedule, jQuery.fx.interval ); + } + + jQuery.fx.tick(); + } +} + +// Animations created synchronously will run synchronously +function createFxNow() { + window.setTimeout( function() { + fxNow = undefined; + } ); + return ( fxNow = Date.now() ); +} + +// Generate parameters to create a standard animation +function genFx( type, includeWidth ) { + var which, + i = 0, + attrs = { height: type }; + + // If we include width, step value is 1 to do all cssExpand values, + // otherwise step value is 2 to skip over Left and Right + includeWidth = includeWidth ? 1 : 0; + for ( ; i < 4; i += 2 - includeWidth ) { + which = cssExpand[ i ]; + attrs[ "margin" + which ] = attrs[ "padding" + which ] = type; + } + + if ( includeWidth ) { + attrs.opacity = attrs.width = type; + } + + return attrs; +} + +function createTween( value, prop, animation ) { + var tween, + collection = ( Animation.tweeners[ prop ] || [] ).concat( Animation.tweeners[ "*" ] ), + index = 0, + length = collection.length; + for ( ; index < length; index++ ) { + if ( ( tween = collection[ index ].call( animation, prop, value ) ) ) { + + // We're done with this property + return tween; + } + } +} + +function defaultPrefilter( elem, props, opts ) { + var prop, value, toggle, hooks, oldfire, propTween, restoreDisplay, display, + isBox = "width" in props || "height" in props, + anim = this, + orig = {}, + style = elem.style, + hidden = elem.nodeType && isHiddenWithinTree( elem ), + dataShow = dataPriv.get( elem, "fxshow" ); + + // Queue-skipping animations hijack the fx hooks + if ( !opts.queue ) { + hooks = jQuery._queueHooks( elem, "fx" ); + if ( hooks.unqueued == null ) { + hooks.unqueued = 0; + oldfire = hooks.empty.fire; + hooks.empty.fire = function() { + if ( !hooks.unqueued ) { + oldfire(); + } + }; + } + hooks.unqueued++; + + anim.always( function() { + + // Ensure the complete handler is called before this completes + anim.always( function() { + hooks.unqueued--; + if ( !jQuery.queue( elem, "fx" ).length ) { + hooks.empty.fire(); + } + } ); + } ); + } + + // Detect show/hide animations + for ( prop in props ) { + value = props[ prop ]; + if ( rfxtypes.test( value ) ) { + delete props[ prop ]; + toggle = toggle || value === "toggle"; + if ( value === ( hidden ? "hide" : "show" ) ) { + + // Pretend to be hidden if this is a "show" and + // there is still data from a stopped show/hide + if ( value === "show" && dataShow && dataShow[ prop ] !== undefined ) { + hidden = true; + + // Ignore all other no-op show/hide data + } else { + continue; + } + } + orig[ prop ] = dataShow && dataShow[ prop ] || jQuery.style( elem, prop ); + } + } + + // Bail out if this is a no-op like .hide().hide() + propTween = !jQuery.isEmptyObject( props ); + if ( !propTween && jQuery.isEmptyObject( orig ) ) { + return; + } + + // Restrict "overflow" and "display" styles during box animations + if ( isBox && elem.nodeType === 1 ) { + + // Support: IE <=9 - 11, Edge 12 - 15 + // Record all 3 overflow attributes because IE does not infer the shorthand + // from identically-valued overflowX and overflowY and Edge just mirrors + // the overflowX value there. + opts.overflow = [ style.overflow, style.overflowX, style.overflowY ]; + + // Identify a display type, preferring old show/hide data over the CSS cascade + restoreDisplay = dataShow && dataShow.display; + if ( restoreDisplay == null ) { + restoreDisplay = dataPriv.get( elem, "display" ); + } + display = jQuery.css( elem, "display" ); + if ( display === "none" ) { + if ( restoreDisplay ) { + display = restoreDisplay; + } else { + + // Get nonempty value(s) by temporarily forcing visibility + showHide( [ elem ], true ); + restoreDisplay = elem.style.display || restoreDisplay; + display = jQuery.css( elem, "display" ); + showHide( [ elem ] ); + } + } + + // Animate inline elements as inline-block + if ( display === "inline" || display === "inline-block" && restoreDisplay != null ) { + if ( jQuery.css( elem, "float" ) === "none" ) { + + // Restore the original display value at the end of pure show/hide animations + if ( !propTween ) { + anim.done( function() { + style.display = restoreDisplay; + } ); + if ( restoreDisplay == null ) { + display = style.display; + restoreDisplay = display === "none" ? "" : display; + } + } + style.display = "inline-block"; + } + } + } + + if ( opts.overflow ) { + style.overflow = "hidden"; + anim.always( function() { + style.overflow = opts.overflow[ 0 ]; + style.overflowX = opts.overflow[ 1 ]; + style.overflowY = opts.overflow[ 2 ]; + } ); + } + + // Implement show/hide animations + propTween = false; + for ( prop in orig ) { + + // General show/hide setup for this element animation + if ( !propTween ) { + if ( dataShow ) { + if ( "hidden" in dataShow ) { + hidden = dataShow.hidden; + } + } else { + dataShow = dataPriv.access( elem, "fxshow", { display: restoreDisplay } ); + } + + // Store hidden/visible for toggle so `.stop().toggle()` "reverses" + if ( toggle ) { + dataShow.hidden = !hidden; + } + + // Show elements before animating them + if ( hidden ) { + showHide( [ elem ], true ); + } + + /* eslint-disable no-loop-func */ + + anim.done( function() { + + /* eslint-enable no-loop-func */ + + // The final step of a "hide" animation is actually hiding the element + if ( !hidden ) { + showHide( [ elem ] ); + } + dataPriv.remove( elem, "fxshow" ); + for ( prop in orig ) { + jQuery.style( elem, prop, orig[ prop ] ); + } + } ); + } + + // Per-property setup + propTween = createTween( hidden ? dataShow[ prop ] : 0, prop, anim ); + if ( !( prop in dataShow ) ) { + dataShow[ prop ] = propTween.start; + if ( hidden ) { + propTween.end = propTween.start; + propTween.start = 0; + } + } + } +} + +function propFilter( props, specialEasing ) { + var index, name, easing, value, hooks; + + // camelCase, specialEasing and expand cssHook pass + for ( index in props ) { + name = camelCase( index ); + easing = specialEasing[ name ]; + value = props[ index ]; + if ( Array.isArray( value ) ) { + easing = value[ 1 ]; + value = props[ index ] = value[ 0 ]; + } + + if ( index !== name ) { + props[ name ] = value; + delete props[ index ]; + } + + hooks = jQuery.cssHooks[ name ]; + if ( hooks && "expand" in hooks ) { + value = hooks.expand( value ); + delete props[ name ]; + + // Not quite $.extend, this won't overwrite existing keys. + // Reusing 'index' because we have the correct "name" + for ( index in value ) { + if ( !( index in props ) ) { + props[ index ] = value[ index ]; + specialEasing[ index ] = easing; + } + } + } else { + specialEasing[ name ] = easing; + } + } +} + +function Animation( elem, properties, options ) { + var result, + stopped, + index = 0, + length = Animation.prefilters.length, + deferred = jQuery.Deferred().always( function() { + + // Don't match elem in the :animated selector + delete tick.elem; + } ), + tick = function() { + if ( stopped ) { + return false; + } + var currentTime = fxNow || createFxNow(), + remaining = Math.max( 0, animation.startTime + animation.duration - currentTime ), + + // Support: Android 2.3 only + // Archaic crash bug won't allow us to use `1 - ( 0.5 || 0 )` (#12497) + temp = remaining / animation.duration || 0, + percent = 1 - temp, + index = 0, + length = animation.tweens.length; + + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( percent ); + } + + deferred.notifyWith( elem, [ animation, percent, remaining ] ); + + // If there's more to do, yield + if ( percent < 1 && length ) { + return remaining; + } + + // If this was an empty animation, synthesize a final progress notification + if ( !length ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + } + + // Resolve the animation and report its conclusion + deferred.resolveWith( elem, [ animation ] ); + return false; + }, + animation = deferred.promise( { + elem: elem, + props: jQuery.extend( {}, properties ), + opts: jQuery.extend( true, { + specialEasing: {}, + easing: jQuery.easing._default + }, options ), + originalProperties: properties, + originalOptions: options, + startTime: fxNow || createFxNow(), + duration: options.duration, + tweens: [], + createTween: function( prop, end ) { + var tween = jQuery.Tween( elem, animation.opts, prop, end, + animation.opts.specialEasing[ prop ] || animation.opts.easing ); + animation.tweens.push( tween ); + return tween; + }, + stop: function( gotoEnd ) { + var index = 0, + + // If we are going to the end, we want to run all the tweens + // otherwise we skip this part + length = gotoEnd ? animation.tweens.length : 0; + if ( stopped ) { + return this; + } + stopped = true; + for ( ; index < length; index++ ) { + animation.tweens[ index ].run( 1 ); + } + + // Resolve when we played the last frame; otherwise, reject + if ( gotoEnd ) { + deferred.notifyWith( elem, [ animation, 1, 0 ] ); + deferred.resolveWith( elem, [ animation, gotoEnd ] ); + } else { + deferred.rejectWith( elem, [ animation, gotoEnd ] ); + } + return this; + } + } ), + props = animation.props; + + propFilter( props, animation.opts.specialEasing ); + + for ( ; index < length; index++ ) { + result = Animation.prefilters[ index ].call( animation, elem, props, animation.opts ); + if ( result ) { + if ( isFunction( result.stop ) ) { + jQuery._queueHooks( animation.elem, animation.opts.queue ).stop = + result.stop.bind( result ); + } + return result; + } + } + + jQuery.map( props, createTween, animation ); + + if ( isFunction( animation.opts.start ) ) { + animation.opts.start.call( elem, animation ); + } + + // Attach callbacks from options + animation + .progress( animation.opts.progress ) + .done( animation.opts.done, animation.opts.complete ) + .fail( animation.opts.fail ) + .always( animation.opts.always ); + + jQuery.fx.timer( + jQuery.extend( tick, { + elem: elem, + anim: animation, + queue: animation.opts.queue + } ) + ); + + return animation; +} + +jQuery.Animation = jQuery.extend( Animation, { + + tweeners: { + "*": [ function( prop, value ) { + var tween = this.createTween( prop, value ); + adjustCSS( tween.elem, prop, rcssNum.exec( value ), tween ); + return tween; + } ] + }, + + tweener: function( props, callback ) { + if ( isFunction( props ) ) { + callback = props; + props = [ "*" ]; + } else { + props = props.match( rnothtmlwhite ); + } + + var prop, + index = 0, + length = props.length; + + for ( ; index < length; index++ ) { + prop = props[ index ]; + Animation.tweeners[ prop ] = Animation.tweeners[ prop ] || []; + Animation.tweeners[ prop ].unshift( callback ); + } + }, + + prefilters: [ defaultPrefilter ], + + prefilter: function( callback, prepend ) { + if ( prepend ) { + Animation.prefilters.unshift( callback ); + } else { + Animation.prefilters.push( callback ); + } + } +} ); + +jQuery.speed = function( speed, easing, fn ) { + var opt = speed && typeof speed === "object" ? jQuery.extend( {}, speed ) : { + complete: fn || !fn && easing || + isFunction( speed ) && speed, + duration: speed, + easing: fn && easing || easing && !isFunction( easing ) && easing + }; + + // Go to the end state if fx are off + if ( jQuery.fx.off ) { + opt.duration = 0; + + } else { + if ( typeof opt.duration !== "number" ) { + if ( opt.duration in jQuery.fx.speeds ) { + opt.duration = jQuery.fx.speeds[ opt.duration ]; + + } else { + opt.duration = jQuery.fx.speeds._default; + } + } + } + + // Normalize opt.queue - true/undefined/null -> "fx" + if ( opt.queue == null || opt.queue === true ) { + opt.queue = "fx"; + } + + // Queueing + opt.old = opt.complete; + + opt.complete = function() { + if ( isFunction( opt.old ) ) { + opt.old.call( this ); + } + + if ( opt.queue ) { + jQuery.dequeue( this, opt.queue ); + } + }; + + return opt; +}; + +jQuery.fn.extend( { + fadeTo: function( speed, to, easing, callback ) { + + // Show any hidden elements after setting opacity to 0 + return this.filter( isHiddenWithinTree ).css( "opacity", 0 ).show() + + // Animate to the value specified + .end().animate( { opacity: to }, speed, easing, callback ); + }, + animate: function( prop, speed, easing, callback ) { + var empty = jQuery.isEmptyObject( prop ), + optall = jQuery.speed( speed, easing, callback ), + doAnimation = function() { + + // Operate on a copy of prop so per-property easing won't be lost + var anim = Animation( this, jQuery.extend( {}, prop ), optall ); + + // Empty animations, or finishing resolves immediately + if ( empty || dataPriv.get( this, "finish" ) ) { + anim.stop( true ); + } + }; + doAnimation.finish = doAnimation; + + return empty || optall.queue === false ? + this.each( doAnimation ) : + this.queue( optall.queue, doAnimation ); + }, + stop: function( type, clearQueue, gotoEnd ) { + var stopQueue = function( hooks ) { + var stop = hooks.stop; + delete hooks.stop; + stop( gotoEnd ); + }; + + if ( typeof type !== "string" ) { + gotoEnd = clearQueue; + clearQueue = type; + type = undefined; + } + if ( clearQueue ) { + this.queue( type || "fx", [] ); + } + + return this.each( function() { + var dequeue = true, + index = type != null && type + "queueHooks", + timers = jQuery.timers, + data = dataPriv.get( this ); + + if ( index ) { + if ( data[ index ] && data[ index ].stop ) { + stopQueue( data[ index ] ); + } + } else { + for ( index in data ) { + if ( data[ index ] && data[ index ].stop && rrun.test( index ) ) { + stopQueue( data[ index ] ); + } + } + } + + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && + ( type == null || timers[ index ].queue === type ) ) { + + timers[ index ].anim.stop( gotoEnd ); + dequeue = false; + timers.splice( index, 1 ); + } + } + + // Start the next in the queue if the last step wasn't forced. + // Timers currently will call their complete callbacks, which + // will dequeue but only if they were gotoEnd. + if ( dequeue || !gotoEnd ) { + jQuery.dequeue( this, type ); + } + } ); + }, + finish: function( type ) { + if ( type !== false ) { + type = type || "fx"; + } + return this.each( function() { + var index, + data = dataPriv.get( this ), + queue = data[ type + "queue" ], + hooks = data[ type + "queueHooks" ], + timers = jQuery.timers, + length = queue ? queue.length : 0; + + // Enable finishing flag on private data + data.finish = true; + + // Empty the queue first + jQuery.queue( this, type, [] ); + + if ( hooks && hooks.stop ) { + hooks.stop.call( this, true ); + } + + // Look for any active animations, and finish them + for ( index = timers.length; index--; ) { + if ( timers[ index ].elem === this && timers[ index ].queue === type ) { + timers[ index ].anim.stop( true ); + timers.splice( index, 1 ); + } + } + + // Look for any animations in the old queue and finish them + for ( index = 0; index < length; index++ ) { + if ( queue[ index ] && queue[ index ].finish ) { + queue[ index ].finish.call( this ); + } + } + + // Turn off finishing flag + delete data.finish; + } ); + } +} ); + +jQuery.each( [ "toggle", "show", "hide" ], function( _i, name ) { + var cssFn = jQuery.fn[ name ]; + jQuery.fn[ name ] = function( speed, easing, callback ) { + return speed == null || typeof speed === "boolean" ? + cssFn.apply( this, arguments ) : + this.animate( genFx( name, true ), speed, easing, callback ); + }; +} ); + +// Generate shortcuts for custom animations +jQuery.each( { + slideDown: genFx( "show" ), + slideUp: genFx( "hide" ), + slideToggle: genFx( "toggle" ), + fadeIn: { opacity: "show" }, + fadeOut: { opacity: "hide" }, + fadeToggle: { opacity: "toggle" } +}, function( name, props ) { + jQuery.fn[ name ] = function( speed, easing, callback ) { + return this.animate( props, speed, easing, callback ); + }; +} ); + +jQuery.timers = []; +jQuery.fx.tick = function() { + var timer, + i = 0, + timers = jQuery.timers; + + fxNow = Date.now(); + + for ( ; i < timers.length; i++ ) { + timer = timers[ i ]; + + // Run the timer and safely remove it when done (allowing for external removal) + if ( !timer() && timers[ i ] === timer ) { + timers.splice( i--, 1 ); + } + } + + if ( !timers.length ) { + jQuery.fx.stop(); + } + fxNow = undefined; +}; + +jQuery.fx.timer = function( timer ) { + jQuery.timers.push( timer ); + jQuery.fx.start(); +}; + +jQuery.fx.interval = 13; +jQuery.fx.start = function() { + if ( inProgress ) { + return; + } + + inProgress = true; + schedule(); +}; + +jQuery.fx.stop = function() { + inProgress = null; +}; + +jQuery.fx.speeds = { + slow: 600, + fast: 200, + + // Default speed + _default: 400 +}; + + +// Based off of the plugin by Clint Helfers, with permission. +// https://web.archive.org/web/20100324014747/http://blindsignals.com/index.php/2009/07/jquery-delay/ +jQuery.fn.delay = function( time, type ) { + time = jQuery.fx ? jQuery.fx.speeds[ time ] || time : time; + type = type || "fx"; + + return this.queue( type, function( next, hooks ) { + var timeout = window.setTimeout( next, time ); + hooks.stop = function() { + window.clearTimeout( timeout ); + }; + } ); +}; + + +( function() { + var input = document.createElement( "input" ), + select = document.createElement( "select" ), + opt = select.appendChild( document.createElement( "option" ) ); + + input.type = "checkbox"; + + // Support: Android <=4.3 only + // Default value for a checkbox should be "on" + support.checkOn = input.value !== ""; + + // Support: IE <=11 only + // Must access selectedIndex to make default options select + support.optSelected = opt.selected; + + // Support: IE <=11 only + // An input loses its value after becoming a radio + input = document.createElement( "input" ); + input.value = "t"; + input.type = "radio"; + support.radioValue = input.value === "t"; +} )(); + + +var boolHook, + attrHandle = jQuery.expr.attrHandle; + +jQuery.fn.extend( { + attr: function( name, value ) { + return access( this, jQuery.attr, name, value, arguments.length > 1 ); + }, + + removeAttr: function( name ) { + return this.each( function() { + jQuery.removeAttr( this, name ); + } ); + } +} ); + +jQuery.extend( { + attr: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set attributes on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + // Fallback to prop when attributes are not supported + if ( typeof elem.getAttribute === "undefined" ) { + return jQuery.prop( elem, name, value ); + } + + // Attribute hooks are determined by the lowercase version + // Grab necessary hook if one is defined + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + hooks = jQuery.attrHooks[ name.toLowerCase() ] || + ( jQuery.expr.match.bool.test( name ) ? boolHook : undefined ); + } + + if ( value !== undefined ) { + if ( value === null ) { + jQuery.removeAttr( elem, name ); + return; + } + + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + elem.setAttribute( name, value + "" ); + return value; + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + ret = jQuery.find.attr( elem, name ); + + // Non-existent attributes return null, we normalize to undefined + return ret == null ? undefined : ret; + }, + + attrHooks: { + type: { + set: function( elem, value ) { + if ( !support.radioValue && value === "radio" && + nodeName( elem, "input" ) ) { + var val = elem.value; + elem.setAttribute( "type", value ); + if ( val ) { + elem.value = val; + } + return value; + } + } + } + }, + + removeAttr: function( elem, value ) { + var name, + i = 0, + + // Attribute names can contain non-HTML whitespace characters + // https://html.spec.whatwg.org/multipage/syntax.html#attributes-2 + attrNames = value && value.match( rnothtmlwhite ); + + if ( attrNames && elem.nodeType === 1 ) { + while ( ( name = attrNames[ i++ ] ) ) { + elem.removeAttribute( name ); + } + } + } +} ); + +// Hooks for boolean attributes +boolHook = { + set: function( elem, value, name ) { + if ( value === false ) { + + // Remove boolean attributes when set to false + jQuery.removeAttr( elem, name ); + } else { + elem.setAttribute( name, name ); + } + return name; + } +}; + +jQuery.each( jQuery.expr.match.bool.source.match( /\w+/g ), function( _i, name ) { + var getter = attrHandle[ name ] || jQuery.find.attr; + + attrHandle[ name ] = function( elem, name, isXML ) { + var ret, handle, + lowercaseName = name.toLowerCase(); + + if ( !isXML ) { + + // Avoid an infinite loop by temporarily removing this function from the getter + handle = attrHandle[ lowercaseName ]; + attrHandle[ lowercaseName ] = ret; + ret = getter( elem, name, isXML ) != null ? + lowercaseName : + null; + attrHandle[ lowercaseName ] = handle; + } + return ret; + }; +} ); + + + + +var rfocusable = /^(?:input|select|textarea|button)$/i, + rclickable = /^(?:a|area)$/i; + +jQuery.fn.extend( { + prop: function( name, value ) { + return access( this, jQuery.prop, name, value, arguments.length > 1 ); + }, + + removeProp: function( name ) { + return this.each( function() { + delete this[ jQuery.propFix[ name ] || name ]; + } ); + } +} ); + +jQuery.extend( { + prop: function( elem, name, value ) { + var ret, hooks, + nType = elem.nodeType; + + // Don't get/set properties on text, comment and attribute nodes + if ( nType === 3 || nType === 8 || nType === 2 ) { + return; + } + + if ( nType !== 1 || !jQuery.isXMLDoc( elem ) ) { + + // Fix name and attach hooks + name = jQuery.propFix[ name ] || name; + hooks = jQuery.propHooks[ name ]; + } + + if ( value !== undefined ) { + if ( hooks && "set" in hooks && + ( ret = hooks.set( elem, value, name ) ) !== undefined ) { + return ret; + } + + return ( elem[ name ] = value ); + } + + if ( hooks && "get" in hooks && ( ret = hooks.get( elem, name ) ) !== null ) { + return ret; + } + + return elem[ name ]; + }, + + propHooks: { + tabIndex: { + get: function( elem ) { + + // Support: IE <=9 - 11 only + // elem.tabIndex doesn't always return the + // correct value when it hasn't been explicitly set + // https://web.archive.org/web/20141116233347/http://fluidproject.org/blog/2008/01/09/getting-setting-and-removing-tabindex-values-with-javascript/ + // Use proper attribute retrieval(#12072) + var tabindex = jQuery.find.attr( elem, "tabindex" ); + + if ( tabindex ) { + return parseInt( tabindex, 10 ); + } + + if ( + rfocusable.test( elem.nodeName ) || + rclickable.test( elem.nodeName ) && + elem.href + ) { + return 0; + } + + return -1; + } + } + }, + + propFix: { + "for": "htmlFor", + "class": "className" + } +} ); + +// Support: IE <=11 only +// Accessing the selectedIndex property +// forces the browser to respect setting selected +// on the option +// The getter ensures a default option is selected +// when in an optgroup +// eslint rule "no-unused-expressions" is disabled for this code +// since it considers such accessions noop +if ( !support.optSelected ) { + jQuery.propHooks.selected = { + get: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent && parent.parentNode ) { + parent.parentNode.selectedIndex; + } + return null; + }, + set: function( elem ) { + + /* eslint no-unused-expressions: "off" */ + + var parent = elem.parentNode; + if ( parent ) { + parent.selectedIndex; + + if ( parent.parentNode ) { + parent.parentNode.selectedIndex; + } + } + } + }; +} + +jQuery.each( [ + "tabIndex", + "readOnly", + "maxLength", + "cellSpacing", + "cellPadding", + "rowSpan", + "colSpan", + "useMap", + "frameBorder", + "contentEditable" +], function() { + jQuery.propFix[ this.toLowerCase() ] = this; +} ); + + + + + // Strip and collapse whitespace according to HTML spec + // https://infra.spec.whatwg.org/#strip-and-collapse-ascii-whitespace + function stripAndCollapse( value ) { + var tokens = value.match( rnothtmlwhite ) || []; + return tokens.join( " " ); + } + + +function getClass( elem ) { + return elem.getAttribute && elem.getAttribute( "class" ) || ""; +} + +function classesToArray( value ) { + if ( Array.isArray( value ) ) { + return value; + } + if ( typeof value === "string" ) { + return value.match( rnothtmlwhite ) || []; + } + return []; +} + +jQuery.fn.extend( { + addClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).addClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + if ( cur.indexOf( " " + clazz + " " ) < 0 ) { + cur += clazz + " "; + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + removeClass: function( value ) { + var classes, elem, cur, curValue, clazz, j, finalValue, + i = 0; + + if ( isFunction( value ) ) { + return this.each( function( j ) { + jQuery( this ).removeClass( value.call( this, j, getClass( this ) ) ); + } ); + } + + if ( !arguments.length ) { + return this.attr( "class", "" ); + } + + classes = classesToArray( value ); + + if ( classes.length ) { + while ( ( elem = this[ i++ ] ) ) { + curValue = getClass( elem ); + + // This expression is here for better compressibility (see addClass) + cur = elem.nodeType === 1 && ( " " + stripAndCollapse( curValue ) + " " ); + + if ( cur ) { + j = 0; + while ( ( clazz = classes[ j++ ] ) ) { + + // Remove *all* instances + while ( cur.indexOf( " " + clazz + " " ) > -1 ) { + cur = cur.replace( " " + clazz + " ", " " ); + } + } + + // Only assign if different to avoid unneeded rendering. + finalValue = stripAndCollapse( cur ); + if ( curValue !== finalValue ) { + elem.setAttribute( "class", finalValue ); + } + } + } + } + + return this; + }, + + toggleClass: function( value, stateVal ) { + var type = typeof value, + isValidValue = type === "string" || Array.isArray( value ); + + if ( typeof stateVal === "boolean" && isValidValue ) { + return stateVal ? this.addClass( value ) : this.removeClass( value ); + } + + if ( isFunction( value ) ) { + return this.each( function( i ) { + jQuery( this ).toggleClass( + value.call( this, i, getClass( this ), stateVal ), + stateVal + ); + } ); + } + + return this.each( function() { + var className, i, self, classNames; + + if ( isValidValue ) { + + // Toggle individual class names + i = 0; + self = jQuery( this ); + classNames = classesToArray( value ); + + while ( ( className = classNames[ i++ ] ) ) { + + // Check each className given, space separated list + if ( self.hasClass( className ) ) { + self.removeClass( className ); + } else { + self.addClass( className ); + } + } + + // Toggle whole class name + } else if ( value === undefined || type === "boolean" ) { + className = getClass( this ); + if ( className ) { + + // Store className if set + dataPriv.set( this, "__className__", className ); + } + + // If the element has a class name or if we're passed `false`, + // then remove the whole classname (if there was one, the above saved it). + // Otherwise bring back whatever was previously saved (if anything), + // falling back to the empty string if nothing was stored. + if ( this.setAttribute ) { + this.setAttribute( "class", + className || value === false ? + "" : + dataPriv.get( this, "__className__" ) || "" + ); + } + } + } ); + }, + + hasClass: function( selector ) { + var className, elem, + i = 0; + + className = " " + selector + " "; + while ( ( elem = this[ i++ ] ) ) { + if ( elem.nodeType === 1 && + ( " " + stripAndCollapse( getClass( elem ) ) + " " ).indexOf( className ) > -1 ) { + return true; + } + } + + return false; + } +} ); + + + + +var rreturn = /\r/g; + +jQuery.fn.extend( { + val: function( value ) { + var hooks, ret, valueIsFunction, + elem = this[ 0 ]; + + if ( !arguments.length ) { + if ( elem ) { + hooks = jQuery.valHooks[ elem.type ] || + jQuery.valHooks[ elem.nodeName.toLowerCase() ]; + + if ( hooks && + "get" in hooks && + ( ret = hooks.get( elem, "value" ) ) !== undefined + ) { + return ret; + } + + ret = elem.value; + + // Handle most common string cases + if ( typeof ret === "string" ) { + return ret.replace( rreturn, "" ); + } + + // Handle cases where value is null/undef or number + return ret == null ? "" : ret; + } + + return; + } + + valueIsFunction = isFunction( value ); + + return this.each( function( i ) { + var val; + + if ( this.nodeType !== 1 ) { + return; + } + + if ( valueIsFunction ) { + val = value.call( this, i, jQuery( this ).val() ); + } else { + val = value; + } + + // Treat null/undefined as ""; convert numbers to string + if ( val == null ) { + val = ""; + + } else if ( typeof val === "number" ) { + val += ""; + + } else if ( Array.isArray( val ) ) { + val = jQuery.map( val, function( value ) { + return value == null ? "" : value + ""; + } ); + } + + hooks = jQuery.valHooks[ this.type ] || jQuery.valHooks[ this.nodeName.toLowerCase() ]; + + // If set returns undefined, fall back to normal setting + if ( !hooks || !( "set" in hooks ) || hooks.set( this, val, "value" ) === undefined ) { + this.value = val; + } + } ); + } +} ); + +jQuery.extend( { + valHooks: { + option: { + get: function( elem ) { + + var val = jQuery.find.attr( elem, "value" ); + return val != null ? + val : + + // Support: IE <=10 - 11 only + // option.text throws exceptions (#14686, #14858) + // Strip and collapse whitespace + // https://html.spec.whatwg.org/#strip-and-collapse-whitespace + stripAndCollapse( jQuery.text( elem ) ); + } + }, + select: { + get: function( elem ) { + var value, option, i, + options = elem.options, + index = elem.selectedIndex, + one = elem.type === "select-one", + values = one ? null : [], + max = one ? index + 1 : options.length; + + if ( index < 0 ) { + i = max; + + } else { + i = one ? index : 0; + } + + // Loop through all the selected options + for ( ; i < max; i++ ) { + option = options[ i ]; + + // Support: IE <=9 only + // IE8-9 doesn't update selected after form reset (#2551) + if ( ( option.selected || i === index ) && + + // Don't return options that are disabled or in a disabled optgroup + !option.disabled && + ( !option.parentNode.disabled || + !nodeName( option.parentNode, "optgroup" ) ) ) { + + // Get the specific value for the option + value = jQuery( option ).val(); + + // We don't need an array for one selects + if ( one ) { + return value; + } + + // Multi-Selects return an array + values.push( value ); + } + } + + return values; + }, + + set: function( elem, value ) { + var optionSet, option, + options = elem.options, + values = jQuery.makeArray( value ), + i = options.length; + + while ( i-- ) { + option = options[ i ]; + + /* eslint-disable no-cond-assign */ + + if ( option.selected = + jQuery.inArray( jQuery.valHooks.option.get( option ), values ) > -1 + ) { + optionSet = true; + } + + /* eslint-enable no-cond-assign */ + } + + // Force browsers to behave consistently when non-matching value is set + if ( !optionSet ) { + elem.selectedIndex = -1; + } + return values; + } + } + } +} ); + +// Radios and checkboxes getter/setter +jQuery.each( [ "radio", "checkbox" ], function() { + jQuery.valHooks[ this ] = { + set: function( elem, value ) { + if ( Array.isArray( value ) ) { + return ( elem.checked = jQuery.inArray( jQuery( elem ).val(), value ) > -1 ); + } + } + }; + if ( !support.checkOn ) { + jQuery.valHooks[ this ].get = function( elem ) { + return elem.getAttribute( "value" ) === null ? "on" : elem.value; + }; + } +} ); + + + + +// Return jQuery for attributes-only inclusion + + +support.focusin = "onfocusin" in window; + + +var rfocusMorph = /^(?:focusinfocus|focusoutblur)$/, + stopPropagationCallback = function( e ) { + e.stopPropagation(); + }; + +jQuery.extend( jQuery.event, { + + trigger: function( event, data, elem, onlyHandlers ) { + + var i, cur, tmp, bubbleType, ontype, handle, special, lastElement, + eventPath = [ elem || document ], + type = hasOwn.call( event, "type" ) ? event.type : event, + namespaces = hasOwn.call( event, "namespace" ) ? event.namespace.split( "." ) : []; + + cur = lastElement = tmp = elem = elem || document; + + // Don't do events on text and comment nodes + if ( elem.nodeType === 3 || elem.nodeType === 8 ) { + return; + } + + // focus/blur morphs to focusin/out; ensure we're not firing them right now + if ( rfocusMorph.test( type + jQuery.event.triggered ) ) { + return; + } + + if ( type.indexOf( "." ) > -1 ) { + + // Namespaced trigger; create a regexp to match event type in handle() + namespaces = type.split( "." ); + type = namespaces.shift(); + namespaces.sort(); + } + ontype = type.indexOf( ":" ) < 0 && "on" + type; + + // Caller can pass in a jQuery.Event object, Object, or just an event type string + event = event[ jQuery.expando ] ? + event : + new jQuery.Event( type, typeof event === "object" && event ); + + // Trigger bitmask: & 1 for native handlers; & 2 for jQuery (always true) + event.isTrigger = onlyHandlers ? 2 : 3; + event.namespace = namespaces.join( "." ); + event.rnamespace = event.namespace ? + new RegExp( "(^|\\.)" + namespaces.join( "\\.(?:.*\\.|)" ) + "(\\.|$)" ) : + null; + + // Clean up the event in case it is being reused + event.result = undefined; + if ( !event.target ) { + event.target = elem; + } + + // Clone any incoming data and prepend the event, creating the handler arg list + data = data == null ? + [ event ] : + jQuery.makeArray( data, [ event ] ); + + // Allow special events to draw outside the lines + special = jQuery.event.special[ type ] || {}; + if ( !onlyHandlers && special.trigger && special.trigger.apply( elem, data ) === false ) { + return; + } + + // Determine event propagation path in advance, per W3C events spec (#9951) + // Bubble up to document, then to window; watch for a global ownerDocument var (#9724) + if ( !onlyHandlers && !special.noBubble && !isWindow( elem ) ) { + + bubbleType = special.delegateType || type; + if ( !rfocusMorph.test( bubbleType + type ) ) { + cur = cur.parentNode; + } + for ( ; cur; cur = cur.parentNode ) { + eventPath.push( cur ); + tmp = cur; + } + + // Only add window if we got to document (e.g., not plain obj or detached DOM) + if ( tmp === ( elem.ownerDocument || document ) ) { + eventPath.push( tmp.defaultView || tmp.parentWindow || window ); + } + } + + // Fire handlers on the event path + i = 0; + while ( ( cur = eventPath[ i++ ] ) && !event.isPropagationStopped() ) { + lastElement = cur; + event.type = i > 1 ? + bubbleType : + special.bindType || type; + + // jQuery handler + handle = ( + dataPriv.get( cur, "events" ) || Object.create( null ) + )[ event.type ] && + dataPriv.get( cur, "handle" ); + if ( handle ) { + handle.apply( cur, data ); + } + + // Native handler + handle = ontype && cur[ ontype ]; + if ( handle && handle.apply && acceptData( cur ) ) { + event.result = handle.apply( cur, data ); + if ( event.result === false ) { + event.preventDefault(); + } + } + } + event.type = type; + + // If nobody prevented the default action, do it now + if ( !onlyHandlers && !event.isDefaultPrevented() ) { + + if ( ( !special._default || + special._default.apply( eventPath.pop(), data ) === false ) && + acceptData( elem ) ) { + + // Call a native DOM method on the target with the same name as the event. + // Don't do default actions on window, that's where global variables be (#6170) + if ( ontype && isFunction( elem[ type ] ) && !isWindow( elem ) ) { + + // Don't re-trigger an onFOO event when we call its FOO() method + tmp = elem[ ontype ]; + + if ( tmp ) { + elem[ ontype ] = null; + } + + // Prevent re-triggering of the same event, since we already bubbled it above + jQuery.event.triggered = type; + + if ( event.isPropagationStopped() ) { + lastElement.addEventListener( type, stopPropagationCallback ); + } + + elem[ type ](); + + if ( event.isPropagationStopped() ) { + lastElement.removeEventListener( type, stopPropagationCallback ); + } + + jQuery.event.triggered = undefined; + + if ( tmp ) { + elem[ ontype ] = tmp; + } + } + } + } + + return event.result; + }, + + // Piggyback on a donor event to simulate a different one + // Used only for `focus(in | out)` events + simulate: function( type, elem, event ) { + var e = jQuery.extend( + new jQuery.Event(), + event, + { + type: type, + isSimulated: true + } + ); + + jQuery.event.trigger( e, null, elem ); + } + +} ); + +jQuery.fn.extend( { + + trigger: function( type, data ) { + return this.each( function() { + jQuery.event.trigger( type, data, this ); + } ); + }, + triggerHandler: function( type, data ) { + var elem = this[ 0 ]; + if ( elem ) { + return jQuery.event.trigger( type, data, elem, true ); + } + } +} ); + + +// Support: Firefox <=44 +// Firefox doesn't have focus(in | out) events +// Related ticket - https://bugzilla.mozilla.org/show_bug.cgi?id=687787 +// +// Support: Chrome <=48 - 49, Safari <=9.0 - 9.1 +// focus(in | out) events fire after focus & blur events, +// which is spec violation - http://www.w3.org/TR/DOM-Level-3-Events/#events-focusevent-event-order +// Related ticket - https://bugs.chromium.org/p/chromium/issues/detail?id=449857 +if ( !support.focusin ) { + jQuery.each( { focus: "focusin", blur: "focusout" }, function( orig, fix ) { + + // Attach a single capturing handler on the document while someone wants focusin/focusout + var handler = function( event ) { + jQuery.event.simulate( fix, event.target, jQuery.event.fix( event ) ); + }; + + jQuery.event.special[ fix ] = { + setup: function() { + + // Handle: regular nodes (via `this.ownerDocument`), window + // (via `this.document`) & document (via `this`). + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ); + + if ( !attaches ) { + doc.addEventListener( orig, handler, true ); + } + dataPriv.access( doc, fix, ( attaches || 0 ) + 1 ); + }, + teardown: function() { + var doc = this.ownerDocument || this.document || this, + attaches = dataPriv.access( doc, fix ) - 1; + + if ( !attaches ) { + doc.removeEventListener( orig, handler, true ); + dataPriv.remove( doc, fix ); + + } else { + dataPriv.access( doc, fix, attaches ); + } + } + }; + } ); +} +var location = window.location; + +var nonce = { guid: Date.now() }; + +var rquery = ( /\?/ ); + + + +// Cross-browser xml parsing +jQuery.parseXML = function( data ) { + var xml; + if ( !data || typeof data !== "string" ) { + return null; + } + + // Support: IE 9 - 11 only + // IE throws on parseFromString with invalid input. + try { + xml = ( new window.DOMParser() ).parseFromString( data, "text/xml" ); + } catch ( e ) { + xml = undefined; + } + + if ( !xml || xml.getElementsByTagName( "parsererror" ).length ) { + jQuery.error( "Invalid XML: " + data ); + } + return xml; +}; + + +var + rbracket = /\[\]$/, + rCRLF = /\r?\n/g, + rsubmitterTypes = /^(?:submit|button|image|reset|file)$/i, + rsubmittable = /^(?:input|select|textarea|keygen)/i; + +function buildParams( prefix, obj, traditional, add ) { + var name; + + if ( Array.isArray( obj ) ) { + + // Serialize array item. + jQuery.each( obj, function( i, v ) { + if ( traditional || rbracket.test( prefix ) ) { + + // Treat each array item as a scalar. + add( prefix, v ); + + } else { + + // Item is non-scalar (array or object), encode its numeric index. + buildParams( + prefix + "[" + ( typeof v === "object" && v != null ? i : "" ) + "]", + v, + traditional, + add + ); + } + } ); + + } else if ( !traditional && toType( obj ) === "object" ) { + + // Serialize object item. + for ( name in obj ) { + buildParams( prefix + "[" + name + "]", obj[ name ], traditional, add ); + } + + } else { + + // Serialize scalar item. + add( prefix, obj ); + } +} + +// Serialize an array of form elements or a set of +// key/values into a query string +jQuery.param = function( a, traditional ) { + var prefix, + s = [], + add = function( key, valueOrFunction ) { + + // If value is a function, invoke it and use its return value + var value = isFunction( valueOrFunction ) ? + valueOrFunction() : + valueOrFunction; + + s[ s.length ] = encodeURIComponent( key ) + "=" + + encodeURIComponent( value == null ? "" : value ); + }; + + if ( a == null ) { + return ""; + } + + // If an array was passed in, assume that it is an array of form elements. + if ( Array.isArray( a ) || ( a.jquery && !jQuery.isPlainObject( a ) ) ) { + + // Serialize the form elements + jQuery.each( a, function() { + add( this.name, this.value ); + } ); + + } else { + + // If traditional, encode the "old" way (the way 1.3.2 or older + // did it), otherwise encode params recursively. + for ( prefix in a ) { + buildParams( prefix, a[ prefix ], traditional, add ); + } + } + + // Return the resulting serialization + return s.join( "&" ); +}; + +jQuery.fn.extend( { + serialize: function() { + return jQuery.param( this.serializeArray() ); + }, + serializeArray: function() { + return this.map( function() { + + // Can add propHook for "elements" to filter or add form elements + var elements = jQuery.prop( this, "elements" ); + return elements ? jQuery.makeArray( elements ) : this; + } ) + .filter( function() { + var type = this.type; + + // Use .is( ":disabled" ) so that fieldset[disabled] works + return this.name && !jQuery( this ).is( ":disabled" ) && + rsubmittable.test( this.nodeName ) && !rsubmitterTypes.test( type ) && + ( this.checked || !rcheckableType.test( type ) ); + } ) + .map( function( _i, elem ) { + var val = jQuery( this ).val(); + + if ( val == null ) { + return null; + } + + if ( Array.isArray( val ) ) { + return jQuery.map( val, function( val ) { + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ); + } + + return { name: elem.name, value: val.replace( rCRLF, "\r\n" ) }; + } ).get(); + } +} ); + + +var + r20 = /%20/g, + rhash = /#.*$/, + rantiCache = /([?&])_=[^&]*/, + rheaders = /^(.*?):[ \t]*([^\r\n]*)$/mg, + + // #7653, #8125, #8152: local protocol detection + rlocalProtocol = /^(?:about|app|app-storage|.+-extension|file|res|widget):$/, + rnoContent = /^(?:GET|HEAD)$/, + rprotocol = /^\/\//, + + /* Prefilters + * 1) They are useful to introduce custom dataTypes (see ajax/jsonp.js for an example) + * 2) These are called: + * - BEFORE asking for a transport + * - AFTER param serialization (s.data is a string if s.processData is true) + * 3) key is the dataType + * 4) the catchall symbol "*" can be used + * 5) execution will start with transport dataType and THEN continue down to "*" if needed + */ + prefilters = {}, + + /* Transports bindings + * 1) key is the dataType + * 2) the catchall symbol "*" can be used + * 3) selection will start with transport dataType and THEN go to "*" if needed + */ + transports = {}, + + // Avoid comment-prolog char sequence (#10098); must appease lint and evade compression + allTypes = "*/".concat( "*" ), + + // Anchor tag for parsing the document origin + originAnchor = document.createElement( "a" ); + originAnchor.href = location.href; + +// Base "constructor" for jQuery.ajaxPrefilter and jQuery.ajaxTransport +function addToPrefiltersOrTransports( structure ) { + + // dataTypeExpression is optional and defaults to "*" + return function( dataTypeExpression, func ) { + + if ( typeof dataTypeExpression !== "string" ) { + func = dataTypeExpression; + dataTypeExpression = "*"; + } + + var dataType, + i = 0, + dataTypes = dataTypeExpression.toLowerCase().match( rnothtmlwhite ) || []; + + if ( isFunction( func ) ) { + + // For each dataType in the dataTypeExpression + while ( ( dataType = dataTypes[ i++ ] ) ) { + + // Prepend if requested + if ( dataType[ 0 ] === "+" ) { + dataType = dataType.slice( 1 ) || "*"; + ( structure[ dataType ] = structure[ dataType ] || [] ).unshift( func ); + + // Otherwise append + } else { + ( structure[ dataType ] = structure[ dataType ] || [] ).push( func ); + } + } + } + }; +} + +// Base inspection function for prefilters and transports +function inspectPrefiltersOrTransports( structure, options, originalOptions, jqXHR ) { + + var inspected = {}, + seekingTransport = ( structure === transports ); + + function inspect( dataType ) { + var selected; + inspected[ dataType ] = true; + jQuery.each( structure[ dataType ] || [], function( _, prefilterOrFactory ) { + var dataTypeOrTransport = prefilterOrFactory( options, originalOptions, jqXHR ); + if ( typeof dataTypeOrTransport === "string" && + !seekingTransport && !inspected[ dataTypeOrTransport ] ) { + + options.dataTypes.unshift( dataTypeOrTransport ); + inspect( dataTypeOrTransport ); + return false; + } else if ( seekingTransport ) { + return !( selected = dataTypeOrTransport ); + } + } ); + return selected; + } + + return inspect( options.dataTypes[ 0 ] ) || !inspected[ "*" ] && inspect( "*" ); +} + +// A special extend for ajax options +// that takes "flat" options (not to be deep extended) +// Fixes #9887 +function ajaxExtend( target, src ) { + var key, deep, + flatOptions = jQuery.ajaxSettings.flatOptions || {}; + + for ( key in src ) { + if ( src[ key ] !== undefined ) { + ( flatOptions[ key ] ? target : ( deep || ( deep = {} ) ) )[ key ] = src[ key ]; + } + } + if ( deep ) { + jQuery.extend( true, target, deep ); + } + + return target; +} + +/* Handles responses to an ajax request: + * - finds the right dataType (mediates between content-type and expected dataType) + * - returns the corresponding response + */ +function ajaxHandleResponses( s, jqXHR, responses ) { + + var ct, type, finalDataType, firstDataType, + contents = s.contents, + dataTypes = s.dataTypes; + + // Remove auto dataType and get content-type in the process + while ( dataTypes[ 0 ] === "*" ) { + dataTypes.shift(); + if ( ct === undefined ) { + ct = s.mimeType || jqXHR.getResponseHeader( "Content-Type" ); + } + } + + // Check if we're dealing with a known content-type + if ( ct ) { + for ( type in contents ) { + if ( contents[ type ] && contents[ type ].test( ct ) ) { + dataTypes.unshift( type ); + break; + } + } + } + + // Check to see if we have a response for the expected dataType + if ( dataTypes[ 0 ] in responses ) { + finalDataType = dataTypes[ 0 ]; + } else { + + // Try convertible dataTypes + for ( type in responses ) { + if ( !dataTypes[ 0 ] || s.converters[ type + " " + dataTypes[ 0 ] ] ) { + finalDataType = type; + break; + } + if ( !firstDataType ) { + firstDataType = type; + } + } + + // Or just use first one + finalDataType = finalDataType || firstDataType; + } + + // If we found a dataType + // We add the dataType to the list if needed + // and return the corresponding response + if ( finalDataType ) { + if ( finalDataType !== dataTypes[ 0 ] ) { + dataTypes.unshift( finalDataType ); + } + return responses[ finalDataType ]; + } +} + +/* Chain conversions given the request and the original response + * Also sets the responseXXX fields on the jqXHR instance + */ +function ajaxConvert( s, response, jqXHR, isSuccess ) { + var conv2, current, conv, tmp, prev, + converters = {}, + + // Work with a copy of dataTypes in case we need to modify it for conversion + dataTypes = s.dataTypes.slice(); + + // Create converters map with lowercased keys + if ( dataTypes[ 1 ] ) { + for ( conv in s.converters ) { + converters[ conv.toLowerCase() ] = s.converters[ conv ]; + } + } + + current = dataTypes.shift(); + + // Convert to each sequential dataType + while ( current ) { + + if ( s.responseFields[ current ] ) { + jqXHR[ s.responseFields[ current ] ] = response; + } + + // Apply the dataFilter if provided + if ( !prev && isSuccess && s.dataFilter ) { + response = s.dataFilter( response, s.dataType ); + } + + prev = current; + current = dataTypes.shift(); + + if ( current ) { + + // There's only work to do if current dataType is non-auto + if ( current === "*" ) { + + current = prev; + + // Convert response if prev dataType is non-auto and differs from current + } else if ( prev !== "*" && prev !== current ) { + + // Seek a direct converter + conv = converters[ prev + " " + current ] || converters[ "* " + current ]; + + // If none found, seek a pair + if ( !conv ) { + for ( conv2 in converters ) { + + // If conv2 outputs current + tmp = conv2.split( " " ); + if ( tmp[ 1 ] === current ) { + + // If prev can be converted to accepted input + conv = converters[ prev + " " + tmp[ 0 ] ] || + converters[ "* " + tmp[ 0 ] ]; + if ( conv ) { + + // Condense equivalence converters + if ( conv === true ) { + conv = converters[ conv2 ]; + + // Otherwise, insert the intermediate dataType + } else if ( converters[ conv2 ] !== true ) { + current = tmp[ 0 ]; + dataTypes.unshift( tmp[ 1 ] ); + } + break; + } + } + } + } + + // Apply converter (if not an equivalence) + if ( conv !== true ) { + + // Unless errors are allowed to bubble, catch and return them + if ( conv && s.throws ) { + response = conv( response ); + } else { + try { + response = conv( response ); + } catch ( e ) { + return { + state: "parsererror", + error: conv ? e : "No conversion from " + prev + " to " + current + }; + } + } + } + } + } + } + + return { state: "success", data: response }; +} + +jQuery.extend( { + + // Counter for holding the number of active queries + active: 0, + + // Last-Modified header cache for next request + lastModified: {}, + etag: {}, + + ajaxSettings: { + url: location.href, + type: "GET", + isLocal: rlocalProtocol.test( location.protocol ), + global: true, + processData: true, + async: true, + contentType: "application/x-www-form-urlencoded; charset=UTF-8", + + /* + timeout: 0, + data: null, + dataType: null, + username: null, + password: null, + cache: null, + throws: false, + traditional: false, + headers: {}, + */ + + accepts: { + "*": allTypes, + text: "text/plain", + html: "text/html", + xml: "application/xml, text/xml", + json: "application/json, text/javascript" + }, + + contents: { + xml: /\bxml\b/, + html: /\bhtml/, + json: /\bjson\b/ + }, + + responseFields: { + xml: "responseXML", + text: "responseText", + json: "responseJSON" + }, + + // Data converters + // Keys separate source (or catchall "*") and destination types with a single space + converters: { + + // Convert anything to text + "* text": String, + + // Text to html (true = no transformation) + "text html": true, + + // Evaluate text as a json expression + "text json": JSON.parse, + + // Parse text as xml + "text xml": jQuery.parseXML + }, + + // For options that shouldn't be deep extended: + // you can add your own custom options here if + // and when you create one that shouldn't be + // deep extended (see ajaxExtend) + flatOptions: { + url: true, + context: true + } + }, + + // Creates a full fledged settings object into target + // with both ajaxSettings and settings fields. + // If target is omitted, writes into ajaxSettings. + ajaxSetup: function( target, settings ) { + return settings ? + + // Building a settings object + ajaxExtend( ajaxExtend( target, jQuery.ajaxSettings ), settings ) : + + // Extending ajaxSettings + ajaxExtend( jQuery.ajaxSettings, target ); + }, + + ajaxPrefilter: addToPrefiltersOrTransports( prefilters ), + ajaxTransport: addToPrefiltersOrTransports( transports ), + + // Main method + ajax: function( url, options ) { + + // If url is an object, simulate pre-1.5 signature + if ( typeof url === "object" ) { + options = url; + url = undefined; + } + + // Force options to be an object + options = options || {}; + + var transport, + + // URL without anti-cache param + cacheURL, + + // Response headers + responseHeadersString, + responseHeaders, + + // timeout handle + timeoutTimer, + + // Url cleanup var + urlAnchor, + + // Request state (becomes false upon send and true upon completion) + completed, + + // To know if global events are to be dispatched + fireGlobals, + + // Loop variable + i, + + // uncached part of the url + uncached, + + // Create the final options object + s = jQuery.ajaxSetup( {}, options ), + + // Callbacks context + callbackContext = s.context || s, + + // Context for global events is callbackContext if it is a DOM node or jQuery collection + globalEventContext = s.context && + ( callbackContext.nodeType || callbackContext.jquery ) ? + jQuery( callbackContext ) : + jQuery.event, + + // Deferreds + deferred = jQuery.Deferred(), + completeDeferred = jQuery.Callbacks( "once memory" ), + + // Status-dependent callbacks + statusCode = s.statusCode || {}, + + // Headers (they are sent all at once) + requestHeaders = {}, + requestHeadersNames = {}, + + // Default abort message + strAbort = "canceled", + + // Fake xhr + jqXHR = { + readyState: 0, + + // Builds headers hashtable if needed + getResponseHeader: function( key ) { + var match; + if ( completed ) { + if ( !responseHeaders ) { + responseHeaders = {}; + while ( ( match = rheaders.exec( responseHeadersString ) ) ) { + responseHeaders[ match[ 1 ].toLowerCase() + " " ] = + ( responseHeaders[ match[ 1 ].toLowerCase() + " " ] || [] ) + .concat( match[ 2 ] ); + } + } + match = responseHeaders[ key.toLowerCase() + " " ]; + } + return match == null ? null : match.join( ", " ); + }, + + // Raw string + getAllResponseHeaders: function() { + return completed ? responseHeadersString : null; + }, + + // Caches the header + setRequestHeader: function( name, value ) { + if ( completed == null ) { + name = requestHeadersNames[ name.toLowerCase() ] = + requestHeadersNames[ name.toLowerCase() ] || name; + requestHeaders[ name ] = value; + } + return this; + }, + + // Overrides response content-type header + overrideMimeType: function( type ) { + if ( completed == null ) { + s.mimeType = type; + } + return this; + }, + + // Status-dependent callbacks + statusCode: function( map ) { + var code; + if ( map ) { + if ( completed ) { + + // Execute the appropriate callbacks + jqXHR.always( map[ jqXHR.status ] ); + } else { + + // Lazy-add the new callbacks in a way that preserves old ones + for ( code in map ) { + statusCode[ code ] = [ statusCode[ code ], map[ code ] ]; + } + } + } + return this; + }, + + // Cancel the request + abort: function( statusText ) { + var finalText = statusText || strAbort; + if ( transport ) { + transport.abort( finalText ); + } + done( 0, finalText ); + return this; + } + }; + + // Attach deferreds + deferred.promise( jqXHR ); + + // Add protocol if not provided (prefilters might expect it) + // Handle falsy url in the settings object (#10093: consistency with old signature) + // We also use the url parameter if available + s.url = ( ( url || s.url || location.href ) + "" ) + .replace( rprotocol, location.protocol + "//" ); + + // Alias method option to type as per ticket #12004 + s.type = options.method || options.type || s.method || s.type; + + // Extract dataTypes list + s.dataTypes = ( s.dataType || "*" ).toLowerCase().match( rnothtmlwhite ) || [ "" ]; + + // A cross-domain request is in order when the origin doesn't match the current origin. + if ( s.crossDomain == null ) { + urlAnchor = document.createElement( "a" ); + + // Support: IE <=8 - 11, Edge 12 - 15 + // IE throws exception on accessing the href property if url is malformed, + // e.g. http://example.com:80x/ + try { + urlAnchor.href = s.url; + + // Support: IE <=8 - 11 only + // Anchor's host property isn't correctly set when s.url is relative + urlAnchor.href = urlAnchor.href; + s.crossDomain = originAnchor.protocol + "//" + originAnchor.host !== + urlAnchor.protocol + "//" + urlAnchor.host; + } catch ( e ) { + + // If there is an error parsing the URL, assume it is crossDomain, + // it can be rejected by the transport if it is invalid + s.crossDomain = true; + } + } + + // Convert data if not already a string + if ( s.data && s.processData && typeof s.data !== "string" ) { + s.data = jQuery.param( s.data, s.traditional ); + } + + // Apply prefilters + inspectPrefiltersOrTransports( prefilters, s, options, jqXHR ); + + // If request was aborted inside a prefilter, stop there + if ( completed ) { + return jqXHR; + } + + // We can fire global events as of now if asked to + // Don't fire events if jQuery.event is undefined in an AMD-usage scenario (#15118) + fireGlobals = jQuery.event && s.global; + + // Watch for a new set of requests + if ( fireGlobals && jQuery.active++ === 0 ) { + jQuery.event.trigger( "ajaxStart" ); + } + + // Uppercase the type + s.type = s.type.toUpperCase(); + + // Determine if request has content + s.hasContent = !rnoContent.test( s.type ); + + // Save the URL in case we're toying with the If-Modified-Since + // and/or If-None-Match header later on + // Remove hash to simplify url manipulation + cacheURL = s.url.replace( rhash, "" ); + + // More options handling for requests with no content + if ( !s.hasContent ) { + + // Remember the hash so we can put it back + uncached = s.url.slice( cacheURL.length ); + + // If data is available and should be processed, append data to url + if ( s.data && ( s.processData || typeof s.data === "string" ) ) { + cacheURL += ( rquery.test( cacheURL ) ? "&" : "?" ) + s.data; + + // #9682: remove data so that it's not used in an eventual retry + delete s.data; + } + + // Add or update anti-cache param if needed + if ( s.cache === false ) { + cacheURL = cacheURL.replace( rantiCache, "$1" ); + uncached = ( rquery.test( cacheURL ) ? "&" : "?" ) + "_=" + ( nonce.guid++ ) + + uncached; + } + + // Put hash and anti-cache on the URL that will be requested (gh-1732) + s.url = cacheURL + uncached; + + // Change '%20' to '+' if this is encoded form body content (gh-2658) + } else if ( s.data && s.processData && + ( s.contentType || "" ).indexOf( "application/x-www-form-urlencoded" ) === 0 ) { + s.data = s.data.replace( r20, "+" ); + } + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + if ( jQuery.lastModified[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-Modified-Since", jQuery.lastModified[ cacheURL ] ); + } + if ( jQuery.etag[ cacheURL ] ) { + jqXHR.setRequestHeader( "If-None-Match", jQuery.etag[ cacheURL ] ); + } + } + + // Set the correct header, if data is being sent + if ( s.data && s.hasContent && s.contentType !== false || options.contentType ) { + jqXHR.setRequestHeader( "Content-Type", s.contentType ); + } + + // Set the Accepts header for the server, depending on the dataType + jqXHR.setRequestHeader( + "Accept", + s.dataTypes[ 0 ] && s.accepts[ s.dataTypes[ 0 ] ] ? + s.accepts[ s.dataTypes[ 0 ] ] + + ( s.dataTypes[ 0 ] !== "*" ? ", " + allTypes + "; q=0.01" : "" ) : + s.accepts[ "*" ] + ); + + // Check for headers option + for ( i in s.headers ) { + jqXHR.setRequestHeader( i, s.headers[ i ] ); + } + + // Allow custom headers/mimetypes and early abort + if ( s.beforeSend && + ( s.beforeSend.call( callbackContext, jqXHR, s ) === false || completed ) ) { + + // Abort if not done already and return + return jqXHR.abort(); + } + + // Aborting is no longer a cancellation + strAbort = "abort"; + + // Install callbacks on deferreds + completeDeferred.add( s.complete ); + jqXHR.done( s.success ); + jqXHR.fail( s.error ); + + // Get transport + transport = inspectPrefiltersOrTransports( transports, s, options, jqXHR ); + + // If no transport, we auto-abort + if ( !transport ) { + done( -1, "No Transport" ); + } else { + jqXHR.readyState = 1; + + // Send global event + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxSend", [ jqXHR, s ] ); + } + + // If request was aborted inside ajaxSend, stop there + if ( completed ) { + return jqXHR; + } + + // Timeout + if ( s.async && s.timeout > 0 ) { + timeoutTimer = window.setTimeout( function() { + jqXHR.abort( "timeout" ); + }, s.timeout ); + } + + try { + completed = false; + transport.send( requestHeaders, done ); + } catch ( e ) { + + // Rethrow post-completion exceptions + if ( completed ) { + throw e; + } + + // Propagate others as results + done( -1, e ); + } + } + + // Callback for when everything is done + function done( status, nativeStatusText, responses, headers ) { + var isSuccess, success, error, response, modified, + statusText = nativeStatusText; + + // Ignore repeat invocations + if ( completed ) { + return; + } + + completed = true; + + // Clear timeout if it exists + if ( timeoutTimer ) { + window.clearTimeout( timeoutTimer ); + } + + // Dereference transport for early garbage collection + // (no matter how long the jqXHR object will be used) + transport = undefined; + + // Cache response headers + responseHeadersString = headers || ""; + + // Set readyState + jqXHR.readyState = status > 0 ? 4 : 0; + + // Determine if successful + isSuccess = status >= 200 && status < 300 || status === 304; + + // Get response data + if ( responses ) { + response = ajaxHandleResponses( s, jqXHR, responses ); + } + + // Use a noop converter for missing script + if ( !isSuccess && jQuery.inArray( "script", s.dataTypes ) > -1 ) { + s.converters[ "text script" ] = function() {}; + } + + // Convert no matter what (that way responseXXX fields are always set) + response = ajaxConvert( s, response, jqXHR, isSuccess ); + + // If successful, handle type chaining + if ( isSuccess ) { + + // Set the If-Modified-Since and/or If-None-Match header, if in ifModified mode. + if ( s.ifModified ) { + modified = jqXHR.getResponseHeader( "Last-Modified" ); + if ( modified ) { + jQuery.lastModified[ cacheURL ] = modified; + } + modified = jqXHR.getResponseHeader( "etag" ); + if ( modified ) { + jQuery.etag[ cacheURL ] = modified; + } + } + + // if no content + if ( status === 204 || s.type === "HEAD" ) { + statusText = "nocontent"; + + // if not modified + } else if ( status === 304 ) { + statusText = "notmodified"; + + // If we have data, let's convert it + } else { + statusText = response.state; + success = response.data; + error = response.error; + isSuccess = !error; + } + } else { + + // Extract error from statusText and normalize for non-aborts + error = statusText; + if ( status || !statusText ) { + statusText = "error"; + if ( status < 0 ) { + status = 0; + } + } + } + + // Set data for the fake xhr object + jqXHR.status = status; + jqXHR.statusText = ( nativeStatusText || statusText ) + ""; + + // Success/Error + if ( isSuccess ) { + deferred.resolveWith( callbackContext, [ success, statusText, jqXHR ] ); + } else { + deferred.rejectWith( callbackContext, [ jqXHR, statusText, error ] ); + } + + // Status-dependent callbacks + jqXHR.statusCode( statusCode ); + statusCode = undefined; + + if ( fireGlobals ) { + globalEventContext.trigger( isSuccess ? "ajaxSuccess" : "ajaxError", + [ jqXHR, s, isSuccess ? success : error ] ); + } + + // Complete + completeDeferred.fireWith( callbackContext, [ jqXHR, statusText ] ); + + if ( fireGlobals ) { + globalEventContext.trigger( "ajaxComplete", [ jqXHR, s ] ); + + // Handle the global AJAX counter + if ( !( --jQuery.active ) ) { + jQuery.event.trigger( "ajaxStop" ); + } + } + } + + return jqXHR; + }, + + getJSON: function( url, data, callback ) { + return jQuery.get( url, data, callback, "json" ); + }, + + getScript: function( url, callback ) { + return jQuery.get( url, undefined, callback, "script" ); + } +} ); + +jQuery.each( [ "get", "post" ], function( _i, method ) { + jQuery[ method ] = function( url, data, callback, type ) { + + // Shift arguments if data argument was omitted + if ( isFunction( data ) ) { + type = type || callback; + callback = data; + data = undefined; + } + + // The url can be an options object (which then must have .url) + return jQuery.ajax( jQuery.extend( { + url: url, + type: method, + dataType: type, + data: data, + success: callback + }, jQuery.isPlainObject( url ) && url ) ); + }; +} ); + +jQuery.ajaxPrefilter( function( s ) { + var i; + for ( i in s.headers ) { + if ( i.toLowerCase() === "content-type" ) { + s.contentType = s.headers[ i ] || ""; + } + } +} ); + + +jQuery._evalUrl = function( url, options, doc ) { + return jQuery.ajax( { + url: url, + + // Make this explicit, since user can override this through ajaxSetup (#11264) + type: "GET", + dataType: "script", + cache: true, + async: false, + global: false, + + // Only evaluate the response if it is successful (gh-4126) + // dataFilter is not invoked for failure responses, so using it instead + // of the default converter is kludgy but it works. + converters: { + "text script": function() {} + }, + dataFilter: function( response ) { + jQuery.globalEval( response, options, doc ); + } + } ); +}; + + +jQuery.fn.extend( { + wrapAll: function( html ) { + var wrap; + + if ( this[ 0 ] ) { + if ( isFunction( html ) ) { + html = html.call( this[ 0 ] ); + } + + // The elements to wrap the target around + wrap = jQuery( html, this[ 0 ].ownerDocument ).eq( 0 ).clone( true ); + + if ( this[ 0 ].parentNode ) { + wrap.insertBefore( this[ 0 ] ); + } + + wrap.map( function() { + var elem = this; + + while ( elem.firstElementChild ) { + elem = elem.firstElementChild; + } + + return elem; + } ).append( this ); + } + + return this; + }, + + wrapInner: function( html ) { + if ( isFunction( html ) ) { + return this.each( function( i ) { + jQuery( this ).wrapInner( html.call( this, i ) ); + } ); + } + + return this.each( function() { + var self = jQuery( this ), + contents = self.contents(); + + if ( contents.length ) { + contents.wrapAll( html ); + + } else { + self.append( html ); + } + } ); + }, + + wrap: function( html ) { + var htmlIsFunction = isFunction( html ); + + return this.each( function( i ) { + jQuery( this ).wrapAll( htmlIsFunction ? html.call( this, i ) : html ); + } ); + }, + + unwrap: function( selector ) { + this.parent( selector ).not( "body" ).each( function() { + jQuery( this ).replaceWith( this.childNodes ); + } ); + return this; + } +} ); + + +jQuery.expr.pseudos.hidden = function( elem ) { + return !jQuery.expr.pseudos.visible( elem ); +}; +jQuery.expr.pseudos.visible = function( elem ) { + return !!( elem.offsetWidth || elem.offsetHeight || elem.getClientRects().length ); +}; + + + + +jQuery.ajaxSettings.xhr = function() { + try { + return new window.XMLHttpRequest(); + } catch ( e ) {} +}; + +var xhrSuccessStatus = { + + // File protocol always yields status code 0, assume 200 + 0: 200, + + // Support: IE <=9 only + // #1450: sometimes IE returns 1223 when it should be 204 + 1223: 204 + }, + xhrSupported = jQuery.ajaxSettings.xhr(); + +support.cors = !!xhrSupported && ( "withCredentials" in xhrSupported ); +support.ajax = xhrSupported = !!xhrSupported; + +jQuery.ajaxTransport( function( options ) { + var callback, errorCallback; + + // Cross domain only allowed if supported through XMLHttpRequest + if ( support.cors || xhrSupported && !options.crossDomain ) { + return { + send: function( headers, complete ) { + var i, + xhr = options.xhr(); + + xhr.open( + options.type, + options.url, + options.async, + options.username, + options.password + ); + + // Apply custom fields if provided + if ( options.xhrFields ) { + for ( i in options.xhrFields ) { + xhr[ i ] = options.xhrFields[ i ]; + } + } + + // Override mime type if needed + if ( options.mimeType && xhr.overrideMimeType ) { + xhr.overrideMimeType( options.mimeType ); + } + + // X-Requested-With header + // For cross-domain requests, seeing as conditions for a preflight are + // akin to a jigsaw puzzle, we simply never set it to be sure. + // (it can always be set on a per-request basis or even using ajaxSetup) + // For same-domain requests, won't change header if already provided. + if ( !options.crossDomain && !headers[ "X-Requested-With" ] ) { + headers[ "X-Requested-With" ] = "XMLHttpRequest"; + } + + // Set headers + for ( i in headers ) { + xhr.setRequestHeader( i, headers[ i ] ); + } + + // Callback + callback = function( type ) { + return function() { + if ( callback ) { + callback = errorCallback = xhr.onload = + xhr.onerror = xhr.onabort = xhr.ontimeout = + xhr.onreadystatechange = null; + + if ( type === "abort" ) { + xhr.abort(); + } else if ( type === "error" ) { + + // Support: IE <=9 only + // On a manual native abort, IE9 throws + // errors on any property access that is not readyState + if ( typeof xhr.status !== "number" ) { + complete( 0, "error" ); + } else { + complete( + + // File: protocol always yields status 0; see #8605, #14207 + xhr.status, + xhr.statusText + ); + } + } else { + complete( + xhrSuccessStatus[ xhr.status ] || xhr.status, + xhr.statusText, + + // Support: IE <=9 only + // IE9 has no XHR2 but throws on binary (trac-11426) + // For XHR2 non-text, let the caller handle it (gh-2498) + ( xhr.responseType || "text" ) !== "text" || + typeof xhr.responseText !== "string" ? + { binary: xhr.response } : + { text: xhr.responseText }, + xhr.getAllResponseHeaders() + ); + } + } + }; + }; + + // Listen to events + xhr.onload = callback(); + errorCallback = xhr.onerror = xhr.ontimeout = callback( "error" ); + + // Support: IE 9 only + // Use onreadystatechange to replace onabort + // to handle uncaught aborts + if ( xhr.onabort !== undefined ) { + xhr.onabort = errorCallback; + } else { + xhr.onreadystatechange = function() { + + // Check readyState before timeout as it changes + if ( xhr.readyState === 4 ) { + + // Allow onerror to be called first, + // but that will not handle a native abort + // Also, save errorCallback to a variable + // as xhr.onerror cannot be accessed + window.setTimeout( function() { + if ( callback ) { + errorCallback(); + } + } ); + } + }; + } + + // Create the abort callback + callback = callback( "abort" ); + + try { + + // Do send the request (this may raise an exception) + xhr.send( options.hasContent && options.data || null ); + } catch ( e ) { + + // #14683: Only rethrow if this hasn't been notified as an error yet + if ( callback ) { + throw e; + } + } + }, + + abort: function() { + if ( callback ) { + callback(); + } + } + }; + } +} ); + + + + +// Prevent auto-execution of scripts when no explicit dataType was provided (See gh-2432) +jQuery.ajaxPrefilter( function( s ) { + if ( s.crossDomain ) { + s.contents.script = false; + } +} ); + +// Install script dataType +jQuery.ajaxSetup( { + accepts: { + script: "text/javascript, application/javascript, " + + "application/ecmascript, application/x-ecmascript" + }, + contents: { + script: /\b(?:java|ecma)script\b/ + }, + converters: { + "text script": function( text ) { + jQuery.globalEval( text ); + return text; + } + } +} ); + +// Handle cache's special case and crossDomain +jQuery.ajaxPrefilter( "script", function( s ) { + if ( s.cache === undefined ) { + s.cache = false; + } + if ( s.crossDomain ) { + s.type = "GET"; + } +} ); + +// Bind script tag hack transport +jQuery.ajaxTransport( "script", function( s ) { + + // This transport only deals with cross domain or forced-by-attrs requests + if ( s.crossDomain || s.scriptAttrs ) { + var script, callback; + return { + send: function( _, complete ) { + script = jQuery( "\r\n"; + +// inject VBScript +document.write(IEBinaryToArray_ByteStr_Script); + +global.JSZipUtils._getBinaryFromXHR = function (xhr) { + var binary = xhr.responseBody; + var byteMapping = {}; + for ( var i = 0; i < 256; i++ ) { + for ( var j = 0; j < 256; j++ ) { + byteMapping[ String.fromCharCode( i + (j << 8) ) ] = + String.fromCharCode(i) + String.fromCharCode(j); + } + } + var rawBytes = IEBinaryToArray_ByteStr(binary); + var lastChr = IEBinaryToArray_ByteStr_Last(binary); + return rawBytes.replace(/[\s\S]/g, function( match ) { + return byteMapping[match]; + }) + lastChr; +}; + +// enforcing Stuk's coding style +// vim: set shiftwidth=4 softtabstop=4: + +},{}]},{},[1]) +; diff --git a/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils-ie.min.js b/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils-ie.min.js new file mode 100644 index 0000000..93d8bc8 --- /dev/null +++ b/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils-ie.min.js @@ -0,0 +1,10 @@ +/*! + +JSZipUtils - A collection of cross-browser utilities to go along with JSZip. + + +(c) 2014 Stuart Knightley, David Duponchel +Dual licenced under the MIT license or GPLv3. See https://raw.github.com/Stuk/jszip-utils/master/LICENSE.markdown. + +*/ +!function a(b,c,d){function e(g,h){if(!c[g]){if(!b[g]){var i="function"==typeof require&&require;if(!h&&i)return i(g,!0);if(f)return f(g,!0);throw new Error("Cannot find module '"+g+"'")}var j=c[g]={exports:{}};b[g][0].call(j.exports,function(a){var c=b[g][1][a];return e(c?c:a)},j,j.exports,a,b,c,d)}return c[g].exports}for(var f="function"==typeof require&&require,g=0;g\r\n";document.write(b),a.JSZipUtils._getBinaryFromXHR=function(a){for(var b=a.responseBody,c={},d=0;256>d;d++)for(var e=0;256>e;e++)c[String.fromCharCode(d+(e<<8))]=String.fromCharCode(d)+String.fromCharCode(e);var f=IEBinaryToArray_ByteStr(b),g=IEBinaryToArray_ByteStr_Last(b);return f.replace(/[\s\S]/g,function(a){return c[a]})+g}},{}]},{},[1]); diff --git a/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils.js b/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils.js new file mode 100644 index 0000000..775895e --- /dev/null +++ b/documentation/apidoc/jquery/jszip-utils/dist/jszip-utils.js @@ -0,0 +1,118 @@ +/*! + +JSZipUtils - A collection of cross-browser utilities to go along with JSZip. + + +(c) 2014 Stuart Knightley, David Duponchel +Dual licenced under the MIT license or GPLv3. See https://raw.github.com/Stuk/jszip-utils/master/LICENSE.markdown. + +*/ +!function(e){"object"==typeof exports?module.exports=e():"function"==typeof define&&define.amd?define(e):"undefined"!=typeof window?window.JSZipUtils=e():"undefined"!=typeof global?global.JSZipUtils=e():"undefined"!=typeof self&&(self.JSZipUtils=e())}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o + +(c) 2014 Stuart Knightley, David Duponchel +Dual licenced under the MIT license or GPLv3. See https://raw.github.com/Stuk/jszip-utils/master/LICENSE.markdown. + +*/ +!function(a){"object"==typeof exports?module.exports=a():"function"==typeof define&&define.amd?define(a):"undefined"!=typeof window?window.JSZipUtils=a():"undefined"!=typeof global?global.JSZipUtils=a():"undefined"!=typeof self&&(self.JSZipUtils=a())}(function(){return function a(b,c,d){function e(g,h){if(!c[g]){if(!b[g]){var i="function"==typeof require&&require;if(!h&&i)return i(g,!0);if(f)return f(g,!0);throw new Error("Cannot find module '"+g+"'")}var j=c[g]={exports:{}};b[g][0].call(j.exports,function(a){var c=b[g][1][a];return e(c?c:a)},j,j.exports,a,b,c,d)}return c[g].exports}for(var f="function"==typeof require&&require,g=0;g + +(c) 2009-2016 Stuart Knightley +Dual licenced under the MIT license or GPLv3. See https://raw.github.com/Stuk/jszip/master/LICENSE.markdown. + +JSZip uses the library pako released under the MIT license : +https://github.com/nodeca/pako/blob/master/LICENSE +*/ + +(function(f){if(typeof exports==="object"&&typeof module!=="undefined"){module.exports=f()}else if(typeof define==="function"&&define.amd){define([],f)}else{var g;if(typeof window!=="undefined"){g=window}else if(typeof global!=="undefined"){g=global}else if(typeof self!=="undefined"){g=self}else{g=this}g.JSZip = f()}})(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);var f=new Error("Cannot find module '"+o+"'");throw f.code="MODULE_NOT_FOUND",f}var l=n[o]={exports:{}};t[o][0].call(l.exports,function(e){var n=t[o][1][e];return s(n?n:e)},l,l.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o> 2; + enc2 = ((chr1 & 3) << 4) | (chr2 >> 4); + enc3 = remainingBytes > 1 ? (((chr2 & 15) << 2) | (chr3 >> 6)) : 64; + enc4 = remainingBytes > 2 ? (chr3 & 63) : 64; + + output.push(_keyStr.charAt(enc1) + _keyStr.charAt(enc2) + _keyStr.charAt(enc3) + _keyStr.charAt(enc4)); + + } + + return output.join(""); +}; + +// public method for decoding +exports.decode = function(input) { + var chr1, chr2, chr3; + var enc1, enc2, enc3, enc4; + var i = 0, resultIndex = 0; + + var dataUrlPrefix = "data:"; + + if (input.substr(0, dataUrlPrefix.length) === dataUrlPrefix) { + // This is a common error: people give a data url + // (...) with a {base64: true} and + // wonders why things don't work. + // We can detect that the string input looks like a data url but we + // *can't* be sure it is one: removing everything up to the comma would + // be too dangerous. + throw new Error("Invalid base64 input, it looks like a data url."); + } + + input = input.replace(/[^A-Za-z0-9\+\/\=]/g, ""); + + var totalLength = input.length * 3 / 4; + if(input.charAt(input.length - 1) === _keyStr.charAt(64)) { + totalLength--; + } + if(input.charAt(input.length - 2) === _keyStr.charAt(64)) { + totalLength--; + } + if (totalLength % 1 !== 0) { + // totalLength is not an integer, the length does not match a valid + // base64 content. That can happen if: + // - the input is not a base64 content + // - the input is *almost* a base64 content, with a extra chars at the + // beginning or at the end + // - the input uses a base64 variant (base64url for example) + throw new Error("Invalid base64 input, bad content length."); + } + var output; + if (support.uint8array) { + output = new Uint8Array(totalLength|0); + } else { + output = new Array(totalLength|0); + } + + while (i < input.length) { + + enc1 = _keyStr.indexOf(input.charAt(i++)); + enc2 = _keyStr.indexOf(input.charAt(i++)); + enc3 = _keyStr.indexOf(input.charAt(i++)); + enc4 = _keyStr.indexOf(input.charAt(i++)); + + chr1 = (enc1 << 2) | (enc2 >> 4); + chr2 = ((enc2 & 15) << 4) | (enc3 >> 2); + chr3 = ((enc3 & 3) << 6) | enc4; + + output[resultIndex++] = chr1; + + if (enc3 !== 64) { + output[resultIndex++] = chr2; + } + if (enc4 !== 64) { + output[resultIndex++] = chr3; + } + + } + + return output; +}; + +},{"./support":30,"./utils":32}],2:[function(require,module,exports){ +'use strict'; + +var external = require("./external"); +var DataWorker = require('./stream/DataWorker'); +var Crc32Probe = require('./stream/Crc32Probe'); +var DataLengthProbe = require('./stream/DataLengthProbe'); + +/** + * Represent a compressed object, with everything needed to decompress it. + * @constructor + * @param {number} compressedSize the size of the data compressed. + * @param {number} uncompressedSize the size of the data after decompression. + * @param {number} crc32 the crc32 of the decompressed file. + * @param {object} compression the type of compression, see lib/compressions.js. + * @param {String|ArrayBuffer|Uint8Array|Buffer} data the compressed data. + */ +function CompressedObject(compressedSize, uncompressedSize, crc32, compression, data) { + this.compressedSize = compressedSize; + this.uncompressedSize = uncompressedSize; + this.crc32 = crc32; + this.compression = compression; + this.compressedContent = data; +} + +CompressedObject.prototype = { + /** + * Create a worker to get the uncompressed content. + * @return {GenericWorker} the worker. + */ + getContentWorker: function () { + var worker = new DataWorker(external.Promise.resolve(this.compressedContent)) + .pipe(this.compression.uncompressWorker()) + .pipe(new DataLengthProbe("data_length")); + + var that = this; + worker.on("end", function () { + if (this.streamInfo['data_length'] !== that.uncompressedSize) { + throw new Error("Bug : uncompressed data size mismatch"); + } + }); + return worker; + }, + /** + * Create a worker to get the compressed content. + * @return {GenericWorker} the worker. + */ + getCompressedWorker: function () { + return new DataWorker(external.Promise.resolve(this.compressedContent)) + .withStreamInfo("compressedSize", this.compressedSize) + .withStreamInfo("uncompressedSize", this.uncompressedSize) + .withStreamInfo("crc32", this.crc32) + .withStreamInfo("compression", this.compression) + ; + } +}; + +/** + * Chain the given worker with other workers to compress the content with the + * given compression. + * @param {GenericWorker} uncompressedWorker the worker to pipe. + * @param {Object} compression the compression object. + * @param {Object} compressionOptions the options to use when compressing. + * @return {GenericWorker} the new worker compressing the content. + */ +CompressedObject.createWorkerFrom = function (uncompressedWorker, compression, compressionOptions) { + return uncompressedWorker + .pipe(new Crc32Probe()) + .pipe(new DataLengthProbe("uncompressedSize")) + .pipe(compression.compressWorker(compressionOptions)) + .pipe(new DataLengthProbe("compressedSize")) + .withStreamInfo("compression", compression); +}; + +module.exports = CompressedObject; + +},{"./external":6,"./stream/Crc32Probe":25,"./stream/DataLengthProbe":26,"./stream/DataWorker":27}],3:[function(require,module,exports){ +'use strict'; + +var GenericWorker = require("./stream/GenericWorker"); + +exports.STORE = { + magic: "\x00\x00", + compressWorker : function (compressionOptions) { + return new GenericWorker("STORE compression"); + }, + uncompressWorker : function () { + return new GenericWorker("STORE decompression"); + } +}; +exports.DEFLATE = require('./flate'); + +},{"./flate":7,"./stream/GenericWorker":28}],4:[function(require,module,exports){ +'use strict'; + +var utils = require('./utils'); + +/** + * The following functions come from pako, from pako/lib/zlib/crc32.js + * released under the MIT license, see pako https://github.com/nodeca/pako/ + */ + +// Use ordinary array, since untyped makes no boost here +function makeTable() { + var c, table = []; + + for(var n =0; n < 256; n++){ + c = n; + for(var k =0; k < 8; k++){ + c = ((c&1) ? (0xEDB88320 ^ (c >>> 1)) : (c >>> 1)); + } + table[n] = c; + } + + return table; +} + +// Create table on load. Just 255 signed longs. Not a problem. +var crcTable = makeTable(); + + +function crc32(crc, buf, len, pos) { + var t = crcTable, end = pos + len; + + crc = crc ^ (-1); + + for (var i = pos; i < end; i++ ) { + crc = (crc >>> 8) ^ t[(crc ^ buf[i]) & 0xFF]; + } + + return (crc ^ (-1)); // >>> 0; +} + +// That's all for the pako functions. + +/** + * Compute the crc32 of a string. + * This is almost the same as the function crc32, but for strings. Using the + * same function for the two use cases leads to horrible performances. + * @param {Number} crc the starting value of the crc. + * @param {String} str the string to use. + * @param {Number} len the length of the string. + * @param {Number} pos the starting position for the crc32 computation. + * @return {Number} the computed crc32. + */ +function crc32str(crc, str, len, pos) { + var t = crcTable, end = pos + len; + + crc = crc ^ (-1); + + for (var i = pos; i < end; i++ ) { + crc = (crc >>> 8) ^ t[(crc ^ str.charCodeAt(i)) & 0xFF]; + } + + return (crc ^ (-1)); // >>> 0; +} + +module.exports = function crc32wrapper(input, crc) { + if (typeof input === "undefined" || !input.length) { + return 0; + } + + var isArray = utils.getTypeOf(input) !== "string"; + + if(isArray) { + return crc32(crc|0, input, input.length, 0); + } else { + return crc32str(crc|0, input, input.length, 0); + } +}; + +},{"./utils":32}],5:[function(require,module,exports){ +'use strict'; +exports.base64 = false; +exports.binary = false; +exports.dir = false; +exports.createFolders = true; +exports.date = null; +exports.compression = null; +exports.compressionOptions = null; +exports.comment = null; +exports.unixPermissions = null; +exports.dosPermissions = null; + +},{}],6:[function(require,module,exports){ +/* global Promise */ +'use strict'; + +// load the global object first: +// - it should be better integrated in the system (unhandledRejection in node) +// - the environment may have a custom Promise implementation (see zone.js) +var ES6Promise = null; +if (typeof Promise !== "undefined") { + ES6Promise = Promise; +} else { + ES6Promise = require("lie"); +} + +/** + * Let the user use/change some implementations. + */ +module.exports = { + Promise: ES6Promise +}; + +},{"lie":37}],7:[function(require,module,exports){ +'use strict'; +var USE_TYPEDARRAY = (typeof Uint8Array !== 'undefined') && (typeof Uint16Array !== 'undefined') && (typeof Uint32Array !== 'undefined'); + +var pako = require("pako"); +var utils = require("./utils"); +var GenericWorker = require("./stream/GenericWorker"); + +var ARRAY_TYPE = USE_TYPEDARRAY ? "uint8array" : "array"; + +exports.magic = "\x08\x00"; + +/** + * Create a worker that uses pako to inflate/deflate. + * @constructor + * @param {String} action the name of the pako function to call : either "Deflate" or "Inflate". + * @param {Object} options the options to use when (de)compressing. + */ +function FlateWorker(action, options) { + GenericWorker.call(this, "FlateWorker/" + action); + + this._pako = null; + this._pakoAction = action; + this._pakoOptions = options; + // the `meta` object from the last chunk received + // this allow this worker to pass around metadata + this.meta = {}; +} + +utils.inherits(FlateWorker, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +FlateWorker.prototype.processChunk = function (chunk) { + this.meta = chunk.meta; + if (this._pako === null) { + this._createPako(); + } + this._pako.push(utils.transformTo(ARRAY_TYPE, chunk.data), false); +}; + +/** + * @see GenericWorker.flush + */ +FlateWorker.prototype.flush = function () { + GenericWorker.prototype.flush.call(this); + if (this._pako === null) { + this._createPako(); + } + this._pako.push([], true); +}; +/** + * @see GenericWorker.cleanUp + */ +FlateWorker.prototype.cleanUp = function () { + GenericWorker.prototype.cleanUp.call(this); + this._pako = null; +}; + +/** + * Create the _pako object. + * TODO: lazy-loading this object isn't the best solution but it's the + * quickest. The best solution is to lazy-load the worker list. See also the + * issue #446. + */ +FlateWorker.prototype._createPako = function () { + this._pako = new pako[this._pakoAction]({ + raw: true, + level: this._pakoOptions.level || -1 // default compression + }); + var self = this; + this._pako.onData = function(data) { + self.push({ + data : data, + meta : self.meta + }); + }; +}; + +exports.compressWorker = function (compressionOptions) { + return new FlateWorker("Deflate", compressionOptions); +}; +exports.uncompressWorker = function () { + return new FlateWorker("Inflate", {}); +}; + +},{"./stream/GenericWorker":28,"./utils":32,"pako":38}],8:[function(require,module,exports){ +'use strict'; + +var utils = require('../utils'); +var GenericWorker = require('../stream/GenericWorker'); +var utf8 = require('../utf8'); +var crc32 = require('../crc32'); +var signature = require('../signature'); + +/** + * Transform an integer into a string in hexadecimal. + * @private + * @param {number} dec the number to convert. + * @param {number} bytes the number of bytes to generate. + * @returns {string} the result. + */ +var decToHex = function(dec, bytes) { + var hex = "", i; + for (i = 0; i < bytes; i++) { + hex += String.fromCharCode(dec & 0xff); + dec = dec >>> 8; + } + return hex; +}; + +/** + * Generate the UNIX part of the external file attributes. + * @param {Object} unixPermissions the unix permissions or null. + * @param {Boolean} isDir true if the entry is a directory, false otherwise. + * @return {Number} a 32 bit integer. + * + * adapted from http://unix.stackexchange.com/questions/14705/the-zip-formats-external-file-attribute : + * + * TTTTsstrwxrwxrwx0000000000ADVSHR + * ^^^^____________________________ file type, see zipinfo.c (UNX_*) + * ^^^_________________________ setuid, setgid, sticky + * ^^^^^^^^^________________ permissions + * ^^^^^^^^^^______ not used ? + * ^^^^^^ DOS attribute bits : Archive, Directory, Volume label, System file, Hidden, Read only + */ +var generateUnixExternalFileAttr = function (unixPermissions, isDir) { + + var result = unixPermissions; + if (!unixPermissions) { + // I can't use octal values in strict mode, hence the hexa. + // 040775 => 0x41fd + // 0100664 => 0x81b4 + result = isDir ? 0x41fd : 0x81b4; + } + return (result & 0xFFFF) << 16; +}; + +/** + * Generate the DOS part of the external file attributes. + * @param {Object} dosPermissions the dos permissions or null. + * @param {Boolean} isDir true if the entry is a directory, false otherwise. + * @return {Number} a 32 bit integer. + * + * Bit 0 Read-Only + * Bit 1 Hidden + * Bit 2 System + * Bit 3 Volume Label + * Bit 4 Directory + * Bit 5 Archive + */ +var generateDosExternalFileAttr = function (dosPermissions, isDir) { + + // the dir flag is already set for compatibility + return (dosPermissions || 0) & 0x3F; +}; + +/** + * Generate the various parts used in the construction of the final zip file. + * @param {Object} streamInfo the hash with information about the compressed file. + * @param {Boolean} streamedContent is the content streamed ? + * @param {Boolean} streamingEnded is the stream finished ? + * @param {number} offset the current offset from the start of the zip file. + * @param {String} platform let's pretend we are this platform (change platform dependents fields) + * @param {Function} encodeFileName the function to encode the file name / comment. + * @return {Object} the zip parts. + */ +var generateZipParts = function(streamInfo, streamedContent, streamingEnded, offset, platform, encodeFileName) { + var file = streamInfo['file'], + compression = streamInfo['compression'], + useCustomEncoding = encodeFileName !== utf8.utf8encode, + encodedFileName = utils.transformTo("string", encodeFileName(file.name)), + utfEncodedFileName = utils.transformTo("string", utf8.utf8encode(file.name)), + comment = file.comment, + encodedComment = utils.transformTo("string", encodeFileName(comment)), + utfEncodedComment = utils.transformTo("string", utf8.utf8encode(comment)), + useUTF8ForFileName = utfEncodedFileName.length !== file.name.length, + useUTF8ForComment = utfEncodedComment.length !== comment.length, + dosTime, + dosDate, + extraFields = "", + unicodePathExtraField = "", + unicodeCommentExtraField = "", + dir = file.dir, + date = file.date; + + + var dataInfo = { + crc32 : 0, + compressedSize : 0, + uncompressedSize : 0 + }; + + // if the content is streamed, the sizes/crc32 are only available AFTER + // the end of the stream. + if (!streamedContent || streamingEnded) { + dataInfo.crc32 = streamInfo['crc32']; + dataInfo.compressedSize = streamInfo['compressedSize']; + dataInfo.uncompressedSize = streamInfo['uncompressedSize']; + } + + var bitflag = 0; + if (streamedContent) { + // Bit 3: the sizes/crc32 are set to zero in the local header. + // The correct values are put in the data descriptor immediately + // following the compressed data. + bitflag |= 0x0008; + } + if (!useCustomEncoding && (useUTF8ForFileName || useUTF8ForComment)) { + // Bit 11: Language encoding flag (EFS). + bitflag |= 0x0800; + } + + + var extFileAttr = 0; + var versionMadeBy = 0; + if (dir) { + // dos or unix, we set the dos dir flag + extFileAttr |= 0x00010; + } + if(platform === "UNIX") { + versionMadeBy = 0x031E; // UNIX, version 3.0 + extFileAttr |= generateUnixExternalFileAttr(file.unixPermissions, dir); + } else { // DOS or other, fallback to DOS + versionMadeBy = 0x0014; // DOS, version 2.0 + extFileAttr |= generateDosExternalFileAttr(file.dosPermissions, dir); + } + + // date + // @see http://www.delorie.com/djgpp/doc/rbinter/it/52/13.html + // @see http://www.delorie.com/djgpp/doc/rbinter/it/65/16.html + // @see http://www.delorie.com/djgpp/doc/rbinter/it/66/16.html + + dosTime = date.getUTCHours(); + dosTime = dosTime << 6; + dosTime = dosTime | date.getUTCMinutes(); + dosTime = dosTime << 5; + dosTime = dosTime | date.getUTCSeconds() / 2; + + dosDate = date.getUTCFullYear() - 1980; + dosDate = dosDate << 4; + dosDate = dosDate | (date.getUTCMonth() + 1); + dosDate = dosDate << 5; + dosDate = dosDate | date.getUTCDate(); + + if (useUTF8ForFileName) { + // set the unicode path extra field. unzip needs at least one extra + // field to correctly handle unicode path, so using the path is as good + // as any other information. This could improve the situation with + // other archive managers too. + // This field is usually used without the utf8 flag, with a non + // unicode path in the header (winrar, winzip). This helps (a bit) + // with the messy Windows' default compressed folders feature but + // breaks on p7zip which doesn't seek the unicode path extra field. + // So for now, UTF-8 everywhere ! + unicodePathExtraField = + // Version + decToHex(1, 1) + + // NameCRC32 + decToHex(crc32(encodedFileName), 4) + + // UnicodeName + utfEncodedFileName; + + extraFields += + // Info-ZIP Unicode Path Extra Field + "\x75\x70" + + // size + decToHex(unicodePathExtraField.length, 2) + + // content + unicodePathExtraField; + } + + if(useUTF8ForComment) { + + unicodeCommentExtraField = + // Version + decToHex(1, 1) + + // CommentCRC32 + decToHex(crc32(encodedComment), 4) + + // UnicodeName + utfEncodedComment; + + extraFields += + // Info-ZIP Unicode Path Extra Field + "\x75\x63" + + // size + decToHex(unicodeCommentExtraField.length, 2) + + // content + unicodeCommentExtraField; + } + + var header = ""; + + // version needed to extract + header += "\x0A\x00"; + // general purpose bit flag + header += decToHex(bitflag, 2); + // compression method + header += compression.magic; + // last mod file time + header += decToHex(dosTime, 2); + // last mod file date + header += decToHex(dosDate, 2); + // crc-32 + header += decToHex(dataInfo.crc32, 4); + // compressed size + header += decToHex(dataInfo.compressedSize, 4); + // uncompressed size + header += decToHex(dataInfo.uncompressedSize, 4); + // file name length + header += decToHex(encodedFileName.length, 2); + // extra field length + header += decToHex(extraFields.length, 2); + + + var fileRecord = signature.LOCAL_FILE_HEADER + header + encodedFileName + extraFields; + + var dirRecord = signature.CENTRAL_FILE_HEADER + + // version made by (00: DOS) + decToHex(versionMadeBy, 2) + + // file header (common to file and central directory) + header + + // file comment length + decToHex(encodedComment.length, 2) + + // disk number start + "\x00\x00" + + // internal file attributes TODO + "\x00\x00" + + // external file attributes + decToHex(extFileAttr, 4) + + // relative offset of local header + decToHex(offset, 4) + + // file name + encodedFileName + + // extra field + extraFields + + // file comment + encodedComment; + + return { + fileRecord: fileRecord, + dirRecord: dirRecord + }; +}; + +/** + * Generate the EOCD record. + * @param {Number} entriesCount the number of entries in the zip file. + * @param {Number} centralDirLength the length (in bytes) of the central dir. + * @param {Number} localDirLength the length (in bytes) of the local dir. + * @param {String} comment the zip file comment as a binary string. + * @param {Function} encodeFileName the function to encode the comment. + * @return {String} the EOCD record. + */ +var generateCentralDirectoryEnd = function (entriesCount, centralDirLength, localDirLength, comment, encodeFileName) { + var dirEnd = ""; + var encodedComment = utils.transformTo("string", encodeFileName(comment)); + + // end of central dir signature + dirEnd = signature.CENTRAL_DIRECTORY_END + + // number of this disk + "\x00\x00" + + // number of the disk with the start of the central directory + "\x00\x00" + + // total number of entries in the central directory on this disk + decToHex(entriesCount, 2) + + // total number of entries in the central directory + decToHex(entriesCount, 2) + + // size of the central directory 4 bytes + decToHex(centralDirLength, 4) + + // offset of start of central directory with respect to the starting disk number + decToHex(localDirLength, 4) + + // .ZIP file comment length + decToHex(encodedComment.length, 2) + + // .ZIP file comment + encodedComment; + + return dirEnd; +}; + +/** + * Generate data descriptors for a file entry. + * @param {Object} streamInfo the hash generated by a worker, containing information + * on the file entry. + * @return {String} the data descriptors. + */ +var generateDataDescriptors = function (streamInfo) { + var descriptor = ""; + descriptor = signature.DATA_DESCRIPTOR + + // crc-32 4 bytes + decToHex(streamInfo['crc32'], 4) + + // compressed size 4 bytes + decToHex(streamInfo['compressedSize'], 4) + + // uncompressed size 4 bytes + decToHex(streamInfo['uncompressedSize'], 4); + + return descriptor; +}; + + +/** + * A worker to concatenate other workers to create a zip file. + * @param {Boolean} streamFiles `true` to stream the content of the files, + * `false` to accumulate it. + * @param {String} comment the comment to use. + * @param {String} platform the platform to use, "UNIX" or "DOS". + * @param {Function} encodeFileName the function to encode file names and comments. + */ +function ZipFileWorker(streamFiles, comment, platform, encodeFileName) { + GenericWorker.call(this, "ZipFileWorker"); + // The number of bytes written so far. This doesn't count accumulated chunks. + this.bytesWritten = 0; + // The comment of the zip file + this.zipComment = comment; + // The platform "generating" the zip file. + this.zipPlatform = platform; + // the function to encode file names and comments. + this.encodeFileName = encodeFileName; + // Should we stream the content of the files ? + this.streamFiles = streamFiles; + // If `streamFiles` is false, we will need to accumulate the content of the + // files to calculate sizes / crc32 (and write them *before* the content). + // This boolean indicates if we are accumulating chunks (it will change a lot + // during the lifetime of this worker). + this.accumulate = false; + // The buffer receiving chunks when accumulating content. + this.contentBuffer = []; + // The list of generated directory records. + this.dirRecords = []; + // The offset (in bytes) from the beginning of the zip file for the current source. + this.currentSourceOffset = 0; + // The total number of entries in this zip file. + this.entriesCount = 0; + // the name of the file currently being added, null when handling the end of the zip file. + // Used for the emitted metadata. + this.currentFile = null; + + + + this._sources = []; +} +utils.inherits(ZipFileWorker, GenericWorker); + +/** + * @see GenericWorker.push + */ +ZipFileWorker.prototype.push = function (chunk) { + + var currentFilePercent = chunk.meta.percent || 0; + var entriesCount = this.entriesCount; + var remainingFiles = this._sources.length; + + if(this.accumulate) { + this.contentBuffer.push(chunk); + } else { + this.bytesWritten += chunk.data.length; + + GenericWorker.prototype.push.call(this, { + data : chunk.data, + meta : { + currentFile : this.currentFile, + percent : entriesCount ? (currentFilePercent + 100 * (entriesCount - remainingFiles - 1)) / entriesCount : 100 + } + }); + } +}; + +/** + * The worker started a new source (an other worker). + * @param {Object} streamInfo the streamInfo object from the new source. + */ +ZipFileWorker.prototype.openedSource = function (streamInfo) { + this.currentSourceOffset = this.bytesWritten; + this.currentFile = streamInfo['file'].name; + + var streamedContent = this.streamFiles && !streamInfo['file'].dir; + + // don't stream folders (because they don't have any content) + if(streamedContent) { + var record = generateZipParts(streamInfo, streamedContent, false, this.currentSourceOffset, this.zipPlatform, this.encodeFileName); + this.push({ + data : record.fileRecord, + meta : {percent:0} + }); + } else { + // we need to wait for the whole file before pushing anything + this.accumulate = true; + } +}; + +/** + * The worker finished a source (an other worker). + * @param {Object} streamInfo the streamInfo object from the finished source. + */ +ZipFileWorker.prototype.closedSource = function (streamInfo) { + this.accumulate = false; + var streamedContent = this.streamFiles && !streamInfo['file'].dir; + var record = generateZipParts(streamInfo, streamedContent, true, this.currentSourceOffset, this.zipPlatform, this.encodeFileName); + + this.dirRecords.push(record.dirRecord); + if(streamedContent) { + // after the streamed file, we put data descriptors + this.push({ + data : generateDataDescriptors(streamInfo), + meta : {percent:100} + }); + } else { + // the content wasn't streamed, we need to push everything now + // first the file record, then the content + this.push({ + data : record.fileRecord, + meta : {percent:0} + }); + while(this.contentBuffer.length) { + this.push(this.contentBuffer.shift()); + } + } + this.currentFile = null; +}; + +/** + * @see GenericWorker.flush + */ +ZipFileWorker.prototype.flush = function () { + + var localDirLength = this.bytesWritten; + for(var i = 0; i < this.dirRecords.length; i++) { + this.push({ + data : this.dirRecords[i], + meta : {percent:100} + }); + } + var centralDirLength = this.bytesWritten - localDirLength; + + var dirEnd = generateCentralDirectoryEnd(this.dirRecords.length, centralDirLength, localDirLength, this.zipComment, this.encodeFileName); + + this.push({ + data : dirEnd, + meta : {percent:100} + }); +}; + +/** + * Prepare the next source to be read. + */ +ZipFileWorker.prototype.prepareNextSource = function () { + this.previous = this._sources.shift(); + this.openedSource(this.previous.streamInfo); + if (this.isPaused) { + this.previous.pause(); + } else { + this.previous.resume(); + } +}; + +/** + * @see GenericWorker.registerPrevious + */ +ZipFileWorker.prototype.registerPrevious = function (previous) { + this._sources.push(previous); + var self = this; + + previous.on('data', function (chunk) { + self.processChunk(chunk); + }); + previous.on('end', function () { + self.closedSource(self.previous.streamInfo); + if(self._sources.length) { + self.prepareNextSource(); + } else { + self.end(); + } + }); + previous.on('error', function (e) { + self.error(e); + }); + return this; +}; + +/** + * @see GenericWorker.resume + */ +ZipFileWorker.prototype.resume = function () { + if(!GenericWorker.prototype.resume.call(this)) { + return false; + } + + if (!this.previous && this._sources.length) { + this.prepareNextSource(); + return true; + } + if (!this.previous && !this._sources.length && !this.generatedError) { + this.end(); + return true; + } +}; + +/** + * @see GenericWorker.error + */ +ZipFileWorker.prototype.error = function (e) { + var sources = this._sources; + if(!GenericWorker.prototype.error.call(this, e)) { + return false; + } + for(var i = 0; i < sources.length; i++) { + try { + sources[i].error(e); + } catch(e) { + // the `error` exploded, nothing to do + } + } + return true; +}; + +/** + * @see GenericWorker.lock + */ +ZipFileWorker.prototype.lock = function () { + GenericWorker.prototype.lock.call(this); + var sources = this._sources; + for(var i = 0; i < sources.length; i++) { + sources[i].lock(); + } +}; + +module.exports = ZipFileWorker; + +},{"../crc32":4,"../signature":23,"../stream/GenericWorker":28,"../utf8":31,"../utils":32}],9:[function(require,module,exports){ +'use strict'; + +var compressions = require('../compressions'); +var ZipFileWorker = require('./ZipFileWorker'); + +/** + * Find the compression to use. + * @param {String} fileCompression the compression defined at the file level, if any. + * @param {String} zipCompression the compression defined at the load() level. + * @return {Object} the compression object to use. + */ +var getCompression = function (fileCompression, zipCompression) { + + var compressionName = fileCompression || zipCompression; + var compression = compressions[compressionName]; + if (!compression) { + throw new Error(compressionName + " is not a valid compression method !"); + } + return compression; +}; + +/** + * Create a worker to generate a zip file. + * @param {JSZip} zip the JSZip instance at the right root level. + * @param {Object} options to generate the zip file. + * @param {String} comment the comment to use. + */ +exports.generateWorker = function (zip, options, comment) { + + var zipFileWorker = new ZipFileWorker(options.streamFiles, comment, options.platform, options.encodeFileName); + var entriesCount = 0; + try { + + zip.forEach(function (relativePath, file) { + entriesCount++; + var compression = getCompression(file.options.compression, options.compression); + var compressionOptions = file.options.compressionOptions || options.compressionOptions || {}; + var dir = file.dir, date = file.date; + + file._compressWorker(compression, compressionOptions) + .withStreamInfo("file", { + name : relativePath, + dir : dir, + date : date, + comment : file.comment || "", + unixPermissions : file.unixPermissions, + dosPermissions : file.dosPermissions + }) + .pipe(zipFileWorker); + }); + zipFileWorker.entriesCount = entriesCount; + } catch (e) { + zipFileWorker.error(e); + } + + return zipFileWorker; +}; + +},{"../compressions":3,"./ZipFileWorker":8}],10:[function(require,module,exports){ +'use strict'; + +/** + * Representation a of zip file in js + * @constructor + */ +function JSZip() { + // if this constructor is used without `new`, it adds `new` before itself: + if(!(this instanceof JSZip)) { + return new JSZip(); + } + + if(arguments.length) { + throw new Error("The constructor with parameters has been removed in JSZip 3.0, please check the upgrade guide."); + } + + // object containing the files : + // { + // "folder/" : {...}, + // "folder/data.txt" : {...} + // } + // NOTE: we use a null prototype because we do not + // want filenames like "toString" coming from a zip file + // to overwrite methods and attributes in a normal Object. + this.files = Object.create(null); + + this.comment = null; + + // Where we are in the hierarchy + this.root = ""; + this.clone = function() { + var newObj = new JSZip(); + for (var i in this) { + if (typeof this[i] !== "function") { + newObj[i] = this[i]; + } + } + return newObj; + }; +} +JSZip.prototype = require('./object'); +JSZip.prototype.loadAsync = require('./load'); +JSZip.support = require('./support'); +JSZip.defaults = require('./defaults'); + +// TODO find a better way to handle this version, +// a require('package.json').version doesn't work with webpack, see #327 +JSZip.version = "3.7.1"; + +JSZip.loadAsync = function (content, options) { + return new JSZip().loadAsync(content, options); +}; + +JSZip.external = require("./external"); +module.exports = JSZip; + +},{"./defaults":5,"./external":6,"./load":11,"./object":15,"./support":30}],11:[function(require,module,exports){ +'use strict'; +var utils = require('./utils'); +var external = require("./external"); +var utf8 = require('./utf8'); +var ZipEntries = require('./zipEntries'); +var Crc32Probe = require('./stream/Crc32Probe'); +var nodejsUtils = require("./nodejsUtils"); + +/** + * Check the CRC32 of an entry. + * @param {ZipEntry} zipEntry the zip entry to check. + * @return {Promise} the result. + */ +function checkEntryCRC32(zipEntry) { + return new external.Promise(function (resolve, reject) { + var worker = zipEntry.decompressed.getContentWorker().pipe(new Crc32Probe()); + worker.on("error", function (e) { + reject(e); + }) + .on("end", function () { + if (worker.streamInfo.crc32 !== zipEntry.decompressed.crc32) { + reject(new Error("Corrupted zip : CRC32 mismatch")); + } else { + resolve(); + } + }) + .resume(); + }); +} + +module.exports = function (data, options) { + var zip = this; + options = utils.extend(options || {}, { + base64: false, + checkCRC32: false, + optimizedBinaryString: false, + createFolders: false, + decodeFileName: utf8.utf8decode + }); + + if (nodejsUtils.isNode && nodejsUtils.isStream(data)) { + return external.Promise.reject(new Error("JSZip can't accept a stream when loading a zip file.")); + } + + return utils.prepareContent("the loaded zip file", data, true, options.optimizedBinaryString, options.base64) + .then(function (data) { + var zipEntries = new ZipEntries(options); + zipEntries.load(data); + return zipEntries; + }).then(function checkCRC32(zipEntries) { + var promises = [external.Promise.resolve(zipEntries)]; + var files = zipEntries.files; + if (options.checkCRC32) { + for (var i = 0; i < files.length; i++) { + promises.push(checkEntryCRC32(files[i])); + } + } + return external.Promise.all(promises); + }).then(function addFiles(results) { + var zipEntries = results.shift(); + var files = zipEntries.files; + for (var i = 0; i < files.length; i++) { + var input = files[i]; + zip.file(input.fileNameStr, input.decompressed, { + binary: true, + optimizedBinaryString: true, + date: input.date, + dir: input.dir, + comment: input.fileCommentStr.length ? input.fileCommentStr : null, + unixPermissions: input.unixPermissions, + dosPermissions: input.dosPermissions, + createFolders: options.createFolders + }); + } + if (zipEntries.zipComment.length) { + zip.comment = zipEntries.zipComment; + } + + return zip; + }); +}; + +},{"./external":6,"./nodejsUtils":14,"./stream/Crc32Probe":25,"./utf8":31,"./utils":32,"./zipEntries":33}],12:[function(require,module,exports){ +"use strict"; + +var utils = require('../utils'); +var GenericWorker = require('../stream/GenericWorker'); + +/** + * A worker that use a nodejs stream as source. + * @constructor + * @param {String} filename the name of the file entry for this stream. + * @param {Readable} stream the nodejs stream. + */ +function NodejsStreamInputAdapter(filename, stream) { + GenericWorker.call(this, "Nodejs stream input adapter for " + filename); + this._upstreamEnded = false; + this._bindStream(stream); +} + +utils.inherits(NodejsStreamInputAdapter, GenericWorker); + +/** + * Prepare the stream and bind the callbacks on it. + * Do this ASAP on node 0.10 ! A lazy binding doesn't always work. + * @param {Stream} stream the nodejs stream to use. + */ +NodejsStreamInputAdapter.prototype._bindStream = function (stream) { + var self = this; + this._stream = stream; + stream.pause(); + stream + .on("data", function (chunk) { + self.push({ + data: chunk, + meta : { + percent : 0 + } + }); + }) + .on("error", function (e) { + if(self.isPaused) { + this.generatedError = e; + } else { + self.error(e); + } + }) + .on("end", function () { + if(self.isPaused) { + self._upstreamEnded = true; + } else { + self.end(); + } + }); +}; +NodejsStreamInputAdapter.prototype.pause = function () { + if(!GenericWorker.prototype.pause.call(this)) { + return false; + } + this._stream.pause(); + return true; +}; +NodejsStreamInputAdapter.prototype.resume = function () { + if(!GenericWorker.prototype.resume.call(this)) { + return false; + } + + if(this._upstreamEnded) { + this.end(); + } else { + this._stream.resume(); + } + + return true; +}; + +module.exports = NodejsStreamInputAdapter; + +},{"../stream/GenericWorker":28,"../utils":32}],13:[function(require,module,exports){ +'use strict'; + +var Readable = require('readable-stream').Readable; + +var utils = require('../utils'); +utils.inherits(NodejsStreamOutputAdapter, Readable); + +/** +* A nodejs stream using a worker as source. +* @see the SourceWrapper in http://nodejs.org/api/stream.html +* @constructor +* @param {StreamHelper} helper the helper wrapping the worker +* @param {Object} options the nodejs stream options +* @param {Function} updateCb the update callback. +*/ +function NodejsStreamOutputAdapter(helper, options, updateCb) { + Readable.call(this, options); + this._helper = helper; + + var self = this; + helper.on("data", function (data, meta) { + if (!self.push(data)) { + self._helper.pause(); + } + if(updateCb) { + updateCb(meta); + } + }) + .on("error", function(e) { + self.emit('error', e); + }) + .on("end", function () { + self.push(null); + }); +} + + +NodejsStreamOutputAdapter.prototype._read = function() { + this._helper.resume(); +}; + +module.exports = NodejsStreamOutputAdapter; + +},{"../utils":32,"readable-stream":16}],14:[function(require,module,exports){ +'use strict'; + +module.exports = { + /** + * True if this is running in Nodejs, will be undefined in a browser. + * In a browser, browserify won't include this file and the whole module + * will be resolved an empty object. + */ + isNode : typeof Buffer !== "undefined", + /** + * Create a new nodejs Buffer from an existing content. + * @param {Object} data the data to pass to the constructor. + * @param {String} encoding the encoding to use. + * @return {Buffer} a new Buffer. + */ + newBufferFrom: function(data, encoding) { + if (Buffer.from && Buffer.from !== Uint8Array.from) { + return Buffer.from(data, encoding); + } else { + if (typeof data === "number") { + // Safeguard for old Node.js versions. On newer versions, + // Buffer.from(number) / Buffer(number, encoding) already throw. + throw new Error("The \"data\" argument must not be a number"); + } + return new Buffer(data, encoding); + } + }, + /** + * Create a new nodejs Buffer with the specified size. + * @param {Integer} size the size of the buffer. + * @return {Buffer} a new Buffer. + */ + allocBuffer: function (size) { + if (Buffer.alloc) { + return Buffer.alloc(size); + } else { + var buf = new Buffer(size); + buf.fill(0); + return buf; + } + }, + /** + * Find out if an object is a Buffer. + * @param {Object} b the object to test. + * @return {Boolean} true if the object is a Buffer, false otherwise. + */ + isBuffer : function(b){ + return Buffer.isBuffer(b); + }, + + isStream : function (obj) { + return obj && + typeof obj.on === "function" && + typeof obj.pause === "function" && + typeof obj.resume === "function"; + } +}; + +},{}],15:[function(require,module,exports){ +'use strict'; +var utf8 = require('./utf8'); +var utils = require('./utils'); +var GenericWorker = require('./stream/GenericWorker'); +var StreamHelper = require('./stream/StreamHelper'); +var defaults = require('./defaults'); +var CompressedObject = require('./compressedObject'); +var ZipObject = require('./zipObject'); +var generate = require("./generate"); +var nodejsUtils = require("./nodejsUtils"); +var NodejsStreamInputAdapter = require("./nodejs/NodejsStreamInputAdapter"); + + +/** + * Add a file in the current folder. + * @private + * @param {string} name the name of the file + * @param {String|ArrayBuffer|Uint8Array|Buffer} data the data of the file + * @param {Object} originalOptions the options of the file + * @return {Object} the new file. + */ +var fileAdd = function(name, data, originalOptions) { + // be sure sub folders exist + var dataType = utils.getTypeOf(data), + parent; + + + /* + * Correct options. + */ + + var o = utils.extend(originalOptions || {}, defaults); + o.date = o.date || new Date(); + if (o.compression !== null) { + o.compression = o.compression.toUpperCase(); + } + + if (typeof o.unixPermissions === "string") { + o.unixPermissions = parseInt(o.unixPermissions, 8); + } + + // UNX_IFDIR 0040000 see zipinfo.c + if (o.unixPermissions && (o.unixPermissions & 0x4000)) { + o.dir = true; + } + // Bit 4 Directory + if (o.dosPermissions && (o.dosPermissions & 0x0010)) { + o.dir = true; + } + + if (o.dir) { + name = forceTrailingSlash(name); + } + if (o.createFolders && (parent = parentFolder(name))) { + folderAdd.call(this, parent, true); + } + + var isUnicodeString = dataType === "string" && o.binary === false && o.base64 === false; + if (!originalOptions || typeof originalOptions.binary === "undefined") { + o.binary = !isUnicodeString; + } + + + var isCompressedEmpty = (data instanceof CompressedObject) && data.uncompressedSize === 0; + + if (isCompressedEmpty || o.dir || !data || data.length === 0) { + o.base64 = false; + o.binary = true; + data = ""; + o.compression = "STORE"; + dataType = "string"; + } + + /* + * Convert content to fit. + */ + + var zipObjectContent = null; + if (data instanceof CompressedObject || data instanceof GenericWorker) { + zipObjectContent = data; + } else if (nodejsUtils.isNode && nodejsUtils.isStream(data)) { + zipObjectContent = new NodejsStreamInputAdapter(name, data); + } else { + zipObjectContent = utils.prepareContent(name, data, o.binary, o.optimizedBinaryString, o.base64); + } + + var object = new ZipObject(name, zipObjectContent, o); + this.files[name] = object; + /* + TODO: we can't throw an exception because we have async promises + (we can have a promise of a Date() for example) but returning a + promise is useless because file(name, data) returns the JSZip + object for chaining. Should we break that to allow the user + to catch the error ? + + return external.Promise.resolve(zipObjectContent) + .then(function () { + return object; + }); + */ +}; + +/** + * Find the parent folder of the path. + * @private + * @param {string} path the path to use + * @return {string} the parent folder, or "" + */ +var parentFolder = function (path) { + if (path.slice(-1) === '/') { + path = path.substring(0, path.length - 1); + } + var lastSlash = path.lastIndexOf('/'); + return (lastSlash > 0) ? path.substring(0, lastSlash) : ""; +}; + +/** + * Returns the path with a slash at the end. + * @private + * @param {String} path the path to check. + * @return {String} the path with a trailing slash. + */ +var forceTrailingSlash = function(path) { + // Check the name ends with a / + if (path.slice(-1) !== "/") { + path += "/"; // IE doesn't like substr(-1) + } + return path; +}; + +/** + * Add a (sub) folder in the current folder. + * @private + * @param {string} name the folder's name + * @param {boolean=} [createFolders] If true, automatically create sub + * folders. Defaults to false. + * @return {Object} the new folder. + */ +var folderAdd = function(name, createFolders) { + createFolders = (typeof createFolders !== 'undefined') ? createFolders : defaults.createFolders; + + name = forceTrailingSlash(name); + + // Does this folder already exist? + if (!this.files[name]) { + fileAdd.call(this, name, null, { + dir: true, + createFolders: createFolders + }); + } + return this.files[name]; +}; + +/** +* Cross-window, cross-Node-context regular expression detection +* @param {Object} object Anything +* @return {Boolean} true if the object is a regular expression, +* false otherwise +*/ +function isRegExp(object) { + return Object.prototype.toString.call(object) === "[object RegExp]"; +} + +// return the actual prototype of JSZip +var out = { + /** + * @see loadAsync + */ + load: function() { + throw new Error("This method has been removed in JSZip 3.0, please check the upgrade guide."); + }, + + + /** + * Call a callback function for each entry at this folder level. + * @param {Function} cb the callback function: + * function (relativePath, file) {...} + * It takes 2 arguments : the relative path and the file. + */ + forEach: function(cb) { + var filename, relativePath, file; + /* jshint ignore:start */ + // ignore warning about unwanted properties because this.files is a null prototype object + for (filename in this.files) { + file = this.files[filename]; + relativePath = filename.slice(this.root.length, filename.length); + if (relativePath && filename.slice(0, this.root.length) === this.root) { // the file is in the current root + cb(relativePath, file); // TODO reverse the parameters ? need to be clean AND consistent with the filter search fn... + } + } + /* jshint ignore:end */ + }, + + /** + * Filter nested files/folders with the specified function. + * @param {Function} search the predicate to use : + * function (relativePath, file) {...} + * It takes 2 arguments : the relative path and the file. + * @return {Array} An array of matching elements. + */ + filter: function(search) { + var result = []; + this.forEach(function (relativePath, entry) { + if (search(relativePath, entry)) { // the file matches the function + result.push(entry); + } + + }); + return result; + }, + + /** + * Add a file to the zip file, or search a file. + * @param {string|RegExp} name The name of the file to add (if data is defined), + * the name of the file to find (if no data) or a regex to match files. + * @param {String|ArrayBuffer|Uint8Array|Buffer} data The file data, either raw or base64 encoded + * @param {Object} o File options + * @return {JSZip|Object|Array} this JSZip object (when adding a file), + * a file (when searching by string) or an array of files (when searching by regex). + */ + file: function(name, data, o) { + if (arguments.length === 1) { + if (isRegExp(name)) { + var regexp = name; + return this.filter(function(relativePath, file) { + return !file.dir && regexp.test(relativePath); + }); + } + else { // text + var obj = this.files[this.root + name]; + if (obj && !obj.dir) { + return obj; + } else { + return null; + } + } + } + else { // more than one argument : we have data ! + name = this.root + name; + fileAdd.call(this, name, data, o); + } + return this; + }, + + /** + * Add a directory to the zip file, or search. + * @param {String|RegExp} arg The name of the directory to add, or a regex to search folders. + * @return {JSZip} an object with the new directory as the root, or an array containing matching folders. + */ + folder: function(arg) { + if (!arg) { + return this; + } + + if (isRegExp(arg)) { + return this.filter(function(relativePath, file) { + return file.dir && arg.test(relativePath); + }); + } + + // else, name is a new folder + var name = this.root + arg; + var newFolder = folderAdd.call(this, name); + + // Allow chaining by returning a new object with this folder as the root + var ret = this.clone(); + ret.root = newFolder.name; + return ret; + }, + + /** + * Delete a file, or a directory and all sub-files, from the zip + * @param {string} name the name of the file to delete + * @return {JSZip} this JSZip object + */ + remove: function(name) { + name = this.root + name; + var file = this.files[name]; + if (!file) { + // Look for any folders + if (name.slice(-1) !== "/") { + name += "/"; + } + file = this.files[name]; + } + + if (file && !file.dir) { + // file + delete this.files[name]; + } else { + // maybe a folder, delete recursively + var kids = this.filter(function(relativePath, file) { + return file.name.slice(0, name.length) === name; + }); + for (var i = 0; i < kids.length; i++) { + delete this.files[kids[i].name]; + } + } + + return this; + }, + + /** + * Generate the complete zip file + * @param {Object} options the options to generate the zip file : + * - compression, "STORE" by default. + * - type, "base64" by default. Values are : string, base64, uint8array, arraybuffer, blob. + * @return {String|Uint8Array|ArrayBuffer|Buffer|Blob} the zip file + */ + generate: function(options) { + throw new Error("This method has been removed in JSZip 3.0, please check the upgrade guide."); + }, + + /** + * Generate the complete zip file as an internal stream. + * @param {Object} options the options to generate the zip file : + * - compression, "STORE" by default. + * - type, "base64" by default. Values are : string, base64, uint8array, arraybuffer, blob. + * @return {StreamHelper} the streamed zip file. + */ + generateInternalStream: function(options) { + var worker, opts = {}; + try { + opts = utils.extend(options || {}, { + streamFiles: false, + compression: "STORE", + compressionOptions : null, + type: "", + platform: "DOS", + comment: null, + mimeType: 'application/zip', + encodeFileName: utf8.utf8encode + }); + + opts.type = opts.type.toLowerCase(); + opts.compression = opts.compression.toUpperCase(); + + // "binarystring" is preferred but the internals use "string". + if(opts.type === "binarystring") { + opts.type = "string"; + } + + if (!opts.type) { + throw new Error("No output type specified."); + } + + utils.checkSupport(opts.type); + + // accept nodejs `process.platform` + if( + opts.platform === 'darwin' || + opts.platform === 'freebsd' || + opts.platform === 'linux' || + opts.platform === 'sunos' + ) { + opts.platform = "UNIX"; + } + if (opts.platform === 'win32') { + opts.platform = "DOS"; + } + + var comment = opts.comment || this.comment || ""; + worker = generate.generateWorker(this, opts, comment); + } catch (e) { + worker = new GenericWorker("error"); + worker.error(e); + } + return new StreamHelper(worker, opts.type || "string", opts.mimeType); + }, + /** + * Generate the complete zip file asynchronously. + * @see generateInternalStream + */ + generateAsync: function(options, onUpdate) { + return this.generateInternalStream(options).accumulate(onUpdate); + }, + /** + * Generate the complete zip file asynchronously. + * @see generateInternalStream + */ + generateNodeStream: function(options, onUpdate) { + options = options || {}; + if (!options.type) { + options.type = "nodebuffer"; + } + return this.generateInternalStream(options).toNodejsStream(onUpdate); + } +}; +module.exports = out; + +},{"./compressedObject":2,"./defaults":5,"./generate":9,"./nodejs/NodejsStreamInputAdapter":12,"./nodejsUtils":14,"./stream/GenericWorker":28,"./stream/StreamHelper":29,"./utf8":31,"./utils":32,"./zipObject":35}],16:[function(require,module,exports){ +/* + * This file is used by module bundlers (browserify/webpack/etc) when + * including a stream implementation. We use "readable-stream" to get a + * consistent behavior between nodejs versions but bundlers often have a shim + * for "stream". Using this shim greatly improve the compatibility and greatly + * reduce the final size of the bundle (only one stream implementation, not + * two). + */ +module.exports = require("stream"); + +},{"stream":undefined}],17:[function(require,module,exports){ +'use strict'; +var DataReader = require('./DataReader'); +var utils = require('../utils'); + +function ArrayReader(data) { + DataReader.call(this, data); + for(var i = 0; i < this.data.length; i++) { + data[i] = data[i] & 0xFF; + } +} +utils.inherits(ArrayReader, DataReader); +/** + * @see DataReader.byteAt + */ +ArrayReader.prototype.byteAt = function(i) { + return this.data[this.zero + i]; +}; +/** + * @see DataReader.lastIndexOfSignature + */ +ArrayReader.prototype.lastIndexOfSignature = function(sig) { + var sig0 = sig.charCodeAt(0), + sig1 = sig.charCodeAt(1), + sig2 = sig.charCodeAt(2), + sig3 = sig.charCodeAt(3); + for (var i = this.length - 4; i >= 0; --i) { + if (this.data[i] === sig0 && this.data[i + 1] === sig1 && this.data[i + 2] === sig2 && this.data[i + 3] === sig3) { + return i - this.zero; + } + } + + return -1; +}; +/** + * @see DataReader.readAndCheckSignature + */ +ArrayReader.prototype.readAndCheckSignature = function (sig) { + var sig0 = sig.charCodeAt(0), + sig1 = sig.charCodeAt(1), + sig2 = sig.charCodeAt(2), + sig3 = sig.charCodeAt(3), + data = this.readData(4); + return sig0 === data[0] && sig1 === data[1] && sig2 === data[2] && sig3 === data[3]; +}; +/** + * @see DataReader.readData + */ +ArrayReader.prototype.readData = function(size) { + this.checkOffset(size); + if(size === 0) { + return []; + } + var result = this.data.slice(this.zero + this.index, this.zero + this.index + size); + this.index += size; + return result; +}; +module.exports = ArrayReader; + +},{"../utils":32,"./DataReader":18}],18:[function(require,module,exports){ +'use strict'; +var utils = require('../utils'); + +function DataReader(data) { + this.data = data; // type : see implementation + this.length = data.length; + this.index = 0; + this.zero = 0; +} +DataReader.prototype = { + /** + * Check that the offset will not go too far. + * @param {string} offset the additional offset to check. + * @throws {Error} an Error if the offset is out of bounds. + */ + checkOffset: function(offset) { + this.checkIndex(this.index + offset); + }, + /** + * Check that the specified index will not be too far. + * @param {string} newIndex the index to check. + * @throws {Error} an Error if the index is out of bounds. + */ + checkIndex: function(newIndex) { + if (this.length < this.zero + newIndex || newIndex < 0) { + throw new Error("End of data reached (data length = " + this.length + ", asked index = " + (newIndex) + "). Corrupted zip ?"); + } + }, + /** + * Change the index. + * @param {number} newIndex The new index. + * @throws {Error} if the new index is out of the data. + */ + setIndex: function(newIndex) { + this.checkIndex(newIndex); + this.index = newIndex; + }, + /** + * Skip the next n bytes. + * @param {number} n the number of bytes to skip. + * @throws {Error} if the new index is out of the data. + */ + skip: function(n) { + this.setIndex(this.index + n); + }, + /** + * Get the byte at the specified index. + * @param {number} i the index to use. + * @return {number} a byte. + */ + byteAt: function(i) { + // see implementations + }, + /** + * Get the next number with a given byte size. + * @param {number} size the number of bytes to read. + * @return {number} the corresponding number. + */ + readInt: function(size) { + var result = 0, + i; + this.checkOffset(size); + for (i = this.index + size - 1; i >= this.index; i--) { + result = (result << 8) + this.byteAt(i); + } + this.index += size; + return result; + }, + /** + * Get the next string with a given byte size. + * @param {number} size the number of bytes to read. + * @return {string} the corresponding string. + */ + readString: function(size) { + return utils.transformTo("string", this.readData(size)); + }, + /** + * Get raw data without conversion, bytes. + * @param {number} size the number of bytes to read. + * @return {Object} the raw data, implementation specific. + */ + readData: function(size) { + // see implementations + }, + /** + * Find the last occurrence of a zip signature (4 bytes). + * @param {string} sig the signature to find. + * @return {number} the index of the last occurrence, -1 if not found. + */ + lastIndexOfSignature: function(sig) { + // see implementations + }, + /** + * Read the signature (4 bytes) at the current position and compare it with sig. + * @param {string} sig the expected signature + * @return {boolean} true if the signature matches, false otherwise. + */ + readAndCheckSignature: function(sig) { + // see implementations + }, + /** + * Get the next date. + * @return {Date} the date. + */ + readDate: function() { + var dostime = this.readInt(4); + return new Date(Date.UTC( + ((dostime >> 25) & 0x7f) + 1980, // year + ((dostime >> 21) & 0x0f) - 1, // month + (dostime >> 16) & 0x1f, // day + (dostime >> 11) & 0x1f, // hour + (dostime >> 5) & 0x3f, // minute + (dostime & 0x1f) << 1)); // second + } +}; +module.exports = DataReader; + +},{"../utils":32}],19:[function(require,module,exports){ +'use strict'; +var Uint8ArrayReader = require('./Uint8ArrayReader'); +var utils = require('../utils'); + +function NodeBufferReader(data) { + Uint8ArrayReader.call(this, data); +} +utils.inherits(NodeBufferReader, Uint8ArrayReader); + +/** + * @see DataReader.readData + */ +NodeBufferReader.prototype.readData = function(size) { + this.checkOffset(size); + var result = this.data.slice(this.zero + this.index, this.zero + this.index + size); + this.index += size; + return result; +}; +module.exports = NodeBufferReader; + +},{"../utils":32,"./Uint8ArrayReader":21}],20:[function(require,module,exports){ +'use strict'; +var DataReader = require('./DataReader'); +var utils = require('../utils'); + +function StringReader(data) { + DataReader.call(this, data); +} +utils.inherits(StringReader, DataReader); +/** + * @see DataReader.byteAt + */ +StringReader.prototype.byteAt = function(i) { + return this.data.charCodeAt(this.zero + i); +}; +/** + * @see DataReader.lastIndexOfSignature + */ +StringReader.prototype.lastIndexOfSignature = function(sig) { + return this.data.lastIndexOf(sig) - this.zero; +}; +/** + * @see DataReader.readAndCheckSignature + */ +StringReader.prototype.readAndCheckSignature = function (sig) { + var data = this.readData(4); + return sig === data; +}; +/** + * @see DataReader.readData + */ +StringReader.prototype.readData = function(size) { + this.checkOffset(size); + // this will work because the constructor applied the "& 0xff" mask. + var result = this.data.slice(this.zero + this.index, this.zero + this.index + size); + this.index += size; + return result; +}; +module.exports = StringReader; + +},{"../utils":32,"./DataReader":18}],21:[function(require,module,exports){ +'use strict'; +var ArrayReader = require('./ArrayReader'); +var utils = require('../utils'); + +function Uint8ArrayReader(data) { + ArrayReader.call(this, data); +} +utils.inherits(Uint8ArrayReader, ArrayReader); +/** + * @see DataReader.readData + */ +Uint8ArrayReader.prototype.readData = function(size) { + this.checkOffset(size); + if(size === 0) { + // in IE10, when using subarray(idx, idx), we get the array [0x00] instead of []. + return new Uint8Array(0); + } + var result = this.data.subarray(this.zero + this.index, this.zero + this.index + size); + this.index += size; + return result; +}; +module.exports = Uint8ArrayReader; + +},{"../utils":32,"./ArrayReader":17}],22:[function(require,module,exports){ +'use strict'; + +var utils = require('../utils'); +var support = require('../support'); +var ArrayReader = require('./ArrayReader'); +var StringReader = require('./StringReader'); +var NodeBufferReader = require('./NodeBufferReader'); +var Uint8ArrayReader = require('./Uint8ArrayReader'); + +/** + * Create a reader adapted to the data. + * @param {String|ArrayBuffer|Uint8Array|Buffer} data the data to read. + * @return {DataReader} the data reader. + */ +module.exports = function (data) { + var type = utils.getTypeOf(data); + utils.checkSupport(type); + if (type === "string" && !support.uint8array) { + return new StringReader(data); + } + if (type === "nodebuffer") { + return new NodeBufferReader(data); + } + if (support.uint8array) { + return new Uint8ArrayReader(utils.transformTo("uint8array", data)); + } + return new ArrayReader(utils.transformTo("array", data)); +}; + +},{"../support":30,"../utils":32,"./ArrayReader":17,"./NodeBufferReader":19,"./StringReader":20,"./Uint8ArrayReader":21}],23:[function(require,module,exports){ +'use strict'; +exports.LOCAL_FILE_HEADER = "PK\x03\x04"; +exports.CENTRAL_FILE_HEADER = "PK\x01\x02"; +exports.CENTRAL_DIRECTORY_END = "PK\x05\x06"; +exports.ZIP64_CENTRAL_DIRECTORY_LOCATOR = "PK\x06\x07"; +exports.ZIP64_CENTRAL_DIRECTORY_END = "PK\x06\x06"; +exports.DATA_DESCRIPTOR = "PK\x07\x08"; + +},{}],24:[function(require,module,exports){ +'use strict'; + +var GenericWorker = require('./GenericWorker'); +var utils = require('../utils'); + +/** + * A worker which convert chunks to a specified type. + * @constructor + * @param {String} destType the destination type. + */ +function ConvertWorker(destType) { + GenericWorker.call(this, "ConvertWorker to " + destType); + this.destType = destType; +} +utils.inherits(ConvertWorker, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +ConvertWorker.prototype.processChunk = function (chunk) { + this.push({ + data : utils.transformTo(this.destType, chunk.data), + meta : chunk.meta + }); +}; +module.exports = ConvertWorker; + +},{"../utils":32,"./GenericWorker":28}],25:[function(require,module,exports){ +'use strict'; + +var GenericWorker = require('./GenericWorker'); +var crc32 = require('../crc32'); +var utils = require('../utils'); + +/** + * A worker which calculate the crc32 of the data flowing through. + * @constructor + */ +function Crc32Probe() { + GenericWorker.call(this, "Crc32Probe"); + this.withStreamInfo("crc32", 0); +} +utils.inherits(Crc32Probe, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +Crc32Probe.prototype.processChunk = function (chunk) { + this.streamInfo.crc32 = crc32(chunk.data, this.streamInfo.crc32 || 0); + this.push(chunk); +}; +module.exports = Crc32Probe; + +},{"../crc32":4,"../utils":32,"./GenericWorker":28}],26:[function(require,module,exports){ +'use strict'; + +var utils = require('../utils'); +var GenericWorker = require('./GenericWorker'); + +/** + * A worker which calculate the total length of the data flowing through. + * @constructor + * @param {String} propName the name used to expose the length + */ +function DataLengthProbe(propName) { + GenericWorker.call(this, "DataLengthProbe for " + propName); + this.propName = propName; + this.withStreamInfo(propName, 0); +} +utils.inherits(DataLengthProbe, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +DataLengthProbe.prototype.processChunk = function (chunk) { + if(chunk) { + var length = this.streamInfo[this.propName] || 0; + this.streamInfo[this.propName] = length + chunk.data.length; + } + GenericWorker.prototype.processChunk.call(this, chunk); +}; +module.exports = DataLengthProbe; + + +},{"../utils":32,"./GenericWorker":28}],27:[function(require,module,exports){ +'use strict'; + +var utils = require('../utils'); +var GenericWorker = require('./GenericWorker'); + +// the size of the generated chunks +// TODO expose this as a public variable +var DEFAULT_BLOCK_SIZE = 16 * 1024; + +/** + * A worker that reads a content and emits chunks. + * @constructor + * @param {Promise} dataP the promise of the data to split + */ +function DataWorker(dataP) { + GenericWorker.call(this, "DataWorker"); + var self = this; + this.dataIsReady = false; + this.index = 0; + this.max = 0; + this.data = null; + this.type = ""; + + this._tickScheduled = false; + + dataP.then(function (data) { + self.dataIsReady = true; + self.data = data; + self.max = data && data.length || 0; + self.type = utils.getTypeOf(data); + if(!self.isPaused) { + self._tickAndRepeat(); + } + }, function (e) { + self.error(e); + }); +} + +utils.inherits(DataWorker, GenericWorker); + +/** + * @see GenericWorker.cleanUp + */ +DataWorker.prototype.cleanUp = function () { + GenericWorker.prototype.cleanUp.call(this); + this.data = null; +}; + +/** + * @see GenericWorker.resume + */ +DataWorker.prototype.resume = function () { + if(!GenericWorker.prototype.resume.call(this)) { + return false; + } + + if (!this._tickScheduled && this.dataIsReady) { + this._tickScheduled = true; + utils.delay(this._tickAndRepeat, [], this); + } + return true; +}; + +/** + * Trigger a tick a schedule an other call to this function. + */ +DataWorker.prototype._tickAndRepeat = function() { + this._tickScheduled = false; + if(this.isPaused || this.isFinished) { + return; + } + this._tick(); + if(!this.isFinished) { + utils.delay(this._tickAndRepeat, [], this); + this._tickScheduled = true; + } +}; + +/** + * Read and push a chunk. + */ +DataWorker.prototype._tick = function() { + + if(this.isPaused || this.isFinished) { + return false; + } + + var size = DEFAULT_BLOCK_SIZE; + var data = null, nextIndex = Math.min(this.max, this.index + size); + if (this.index >= this.max) { + // EOF + return this.end(); + } else { + switch(this.type) { + case "string": + data = this.data.substring(this.index, nextIndex); + break; + case "uint8array": + data = this.data.subarray(this.index, nextIndex); + break; + case "array": + case "nodebuffer": + data = this.data.slice(this.index, nextIndex); + break; + } + this.index = nextIndex; + return this.push({ + data : data, + meta : { + percent : this.max ? this.index / this.max * 100 : 0 + } + }); + } +}; + +module.exports = DataWorker; + +},{"../utils":32,"./GenericWorker":28}],28:[function(require,module,exports){ +'use strict'; + +/** + * A worker that does nothing but passing chunks to the next one. This is like + * a nodejs stream but with some differences. On the good side : + * - it works on IE 6-9 without any issue / polyfill + * - it weights less than the full dependencies bundled with browserify + * - it forwards errors (no need to declare an error handler EVERYWHERE) + * + * A chunk is an object with 2 attributes : `meta` and `data`. The former is an + * object containing anything (`percent` for example), see each worker for more + * details. The latter is the real data (String, Uint8Array, etc). + * + * @constructor + * @param {String} name the name of the stream (mainly used for debugging purposes) + */ +function GenericWorker(name) { + // the name of the worker + this.name = name || "default"; + // an object containing metadata about the workers chain + this.streamInfo = {}; + // an error which happened when the worker was paused + this.generatedError = null; + // an object containing metadata to be merged by this worker into the general metadata + this.extraStreamInfo = {}; + // true if the stream is paused (and should not do anything), false otherwise + this.isPaused = true; + // true if the stream is finished (and should not do anything), false otherwise + this.isFinished = false; + // true if the stream is locked to prevent further structure updates (pipe), false otherwise + this.isLocked = false; + // the event listeners + this._listeners = { + 'data':[], + 'end':[], + 'error':[] + }; + // the previous worker, if any + this.previous = null; +} + +GenericWorker.prototype = { + /** + * Push a chunk to the next workers. + * @param {Object} chunk the chunk to push + */ + push : function (chunk) { + this.emit("data", chunk); + }, + /** + * End the stream. + * @return {Boolean} true if this call ended the worker, false otherwise. + */ + end : function () { + if (this.isFinished) { + return false; + } + + this.flush(); + try { + this.emit("end"); + this.cleanUp(); + this.isFinished = true; + } catch (e) { + this.emit("error", e); + } + return true; + }, + /** + * End the stream with an error. + * @param {Error} e the error which caused the premature end. + * @return {Boolean} true if this call ended the worker with an error, false otherwise. + */ + error : function (e) { + if (this.isFinished) { + return false; + } + + if(this.isPaused) { + this.generatedError = e; + } else { + this.isFinished = true; + + this.emit("error", e); + + // in the workers chain exploded in the middle of the chain, + // the error event will go downward but we also need to notify + // workers upward that there has been an error. + if(this.previous) { + this.previous.error(e); + } + + this.cleanUp(); + } + return true; + }, + /** + * Add a callback on an event. + * @param {String} name the name of the event (data, end, error) + * @param {Function} listener the function to call when the event is triggered + * @return {GenericWorker} the current object for chainability + */ + on : function (name, listener) { + this._listeners[name].push(listener); + return this; + }, + /** + * Clean any references when a worker is ending. + */ + cleanUp : function () { + this.streamInfo = this.generatedError = this.extraStreamInfo = null; + this._listeners = []; + }, + /** + * Trigger an event. This will call registered callback with the provided arg. + * @param {String} name the name of the event (data, end, error) + * @param {Object} arg the argument to call the callback with. + */ + emit : function (name, arg) { + if (this._listeners[name]) { + for(var i = 0; i < this._listeners[name].length; i++) { + this._listeners[name][i].call(this, arg); + } + } + }, + /** + * Chain a worker with an other. + * @param {Worker} next the worker receiving events from the current one. + * @return {worker} the next worker for chainability + */ + pipe : function (next) { + return next.registerPrevious(this); + }, + /** + * Same as `pipe` in the other direction. + * Using an API with `pipe(next)` is very easy. + * Implementing the API with the point of view of the next one registering + * a source is easier, see the ZipFileWorker. + * @param {Worker} previous the previous worker, sending events to this one + * @return {Worker} the current worker for chainability + */ + registerPrevious : function (previous) { + if (this.isLocked) { + throw new Error("The stream '" + this + "' has already been used."); + } + + // sharing the streamInfo... + this.streamInfo = previous.streamInfo; + // ... and adding our own bits + this.mergeStreamInfo(); + this.previous = previous; + var self = this; + previous.on('data', function (chunk) { + self.processChunk(chunk); + }); + previous.on('end', function () { + self.end(); + }); + previous.on('error', function (e) { + self.error(e); + }); + return this; + }, + /** + * Pause the stream so it doesn't send events anymore. + * @return {Boolean} true if this call paused the worker, false otherwise. + */ + pause : function () { + if(this.isPaused || this.isFinished) { + return false; + } + this.isPaused = true; + + if(this.previous) { + this.previous.pause(); + } + return true; + }, + /** + * Resume a paused stream. + * @return {Boolean} true if this call resumed the worker, false otherwise. + */ + resume : function () { + if(!this.isPaused || this.isFinished) { + return false; + } + this.isPaused = false; + + // if true, the worker tried to resume but failed + var withError = false; + if(this.generatedError) { + this.error(this.generatedError); + withError = true; + } + if(this.previous) { + this.previous.resume(); + } + + return !withError; + }, + /** + * Flush any remaining bytes as the stream is ending. + */ + flush : function () {}, + /** + * Process a chunk. This is usually the method overridden. + * @param {Object} chunk the chunk to process. + */ + processChunk : function(chunk) { + this.push(chunk); + }, + /** + * Add a key/value to be added in the workers chain streamInfo once activated. + * @param {String} key the key to use + * @param {Object} value the associated value + * @return {Worker} the current worker for chainability + */ + withStreamInfo : function (key, value) { + this.extraStreamInfo[key] = value; + this.mergeStreamInfo(); + return this; + }, + /** + * Merge this worker's streamInfo into the chain's streamInfo. + */ + mergeStreamInfo : function () { + for(var key in this.extraStreamInfo) { + if (!this.extraStreamInfo.hasOwnProperty(key)) { + continue; + } + this.streamInfo[key] = this.extraStreamInfo[key]; + } + }, + + /** + * Lock the stream to prevent further updates on the workers chain. + * After calling this method, all calls to pipe will fail. + */ + lock: function () { + if (this.isLocked) { + throw new Error("The stream '" + this + "' has already been used."); + } + this.isLocked = true; + if (this.previous) { + this.previous.lock(); + } + }, + + /** + * + * Pretty print the workers chain. + */ + toString : function () { + var me = "Worker " + this.name; + if (this.previous) { + return this.previous + " -> " + me; + } else { + return me; + } + } +}; + +module.exports = GenericWorker; + +},{}],29:[function(require,module,exports){ +'use strict'; + +var utils = require('../utils'); +var ConvertWorker = require('./ConvertWorker'); +var GenericWorker = require('./GenericWorker'); +var base64 = require('../base64'); +var support = require("../support"); +var external = require("../external"); + +var NodejsStreamOutputAdapter = null; +if (support.nodestream) { + try { + NodejsStreamOutputAdapter = require('../nodejs/NodejsStreamOutputAdapter'); + } catch(e) {} +} + +/** + * Apply the final transformation of the data. If the user wants a Blob for + * example, it's easier to work with an U8intArray and finally do the + * ArrayBuffer/Blob conversion. + * @param {String} type the name of the final type + * @param {String|Uint8Array|Buffer} content the content to transform + * @param {String} mimeType the mime type of the content, if applicable. + * @return {String|Uint8Array|ArrayBuffer|Buffer|Blob} the content in the right format. + */ +function transformZipOutput(type, content, mimeType) { + switch(type) { + case "blob" : + return utils.newBlob(utils.transformTo("arraybuffer", content), mimeType); + case "base64" : + return base64.encode(content); + default : + return utils.transformTo(type, content); + } +} + +/** + * Concatenate an array of data of the given type. + * @param {String} type the type of the data in the given array. + * @param {Array} dataArray the array containing the data chunks to concatenate + * @return {String|Uint8Array|Buffer} the concatenated data + * @throws Error if the asked type is unsupported + */ +function concat (type, dataArray) { + var i, index = 0, res = null, totalLength = 0; + for(i = 0; i < dataArray.length; i++) { + totalLength += dataArray[i].length; + } + switch(type) { + case "string": + return dataArray.join(""); + case "array": + return Array.prototype.concat.apply([], dataArray); + case "uint8array": + res = new Uint8Array(totalLength); + for(i = 0; i < dataArray.length; i++) { + res.set(dataArray[i], index); + index += dataArray[i].length; + } + return res; + case "nodebuffer": + return Buffer.concat(dataArray); + default: + throw new Error("concat : unsupported type '" + type + "'"); + } +} + +/** + * Listen a StreamHelper, accumulate its content and concatenate it into a + * complete block. + * @param {StreamHelper} helper the helper to use. + * @param {Function} updateCallback a callback called on each update. Called + * with one arg : + * - the metadata linked to the update received. + * @return Promise the promise for the accumulation. + */ +function accumulate(helper, updateCallback) { + return new external.Promise(function (resolve, reject){ + var dataArray = []; + var chunkType = helper._internalType, + resultType = helper._outputType, + mimeType = helper._mimeType; + helper + .on('data', function (data, meta) { + dataArray.push(data); + if(updateCallback) { + updateCallback(meta); + } + }) + .on('error', function(err) { + dataArray = []; + reject(err); + }) + .on('end', function (){ + try { + var result = transformZipOutput(resultType, concat(chunkType, dataArray), mimeType); + resolve(result); + } catch (e) { + reject(e); + } + dataArray = []; + }) + .resume(); + }); +} + +/** + * An helper to easily use workers outside of JSZip. + * @constructor + * @param {Worker} worker the worker to wrap + * @param {String} outputType the type of data expected by the use + * @param {String} mimeType the mime type of the content, if applicable. + */ +function StreamHelper(worker, outputType, mimeType) { + var internalType = outputType; + switch(outputType) { + case "blob": + case "arraybuffer": + internalType = "uint8array"; + break; + case "base64": + internalType = "string"; + break; + } + + try { + // the type used internally + this._internalType = internalType; + // the type used to output results + this._outputType = outputType; + // the mime type + this._mimeType = mimeType; + utils.checkSupport(internalType); + this._worker = worker.pipe(new ConvertWorker(internalType)); + // the last workers can be rewired without issues but we need to + // prevent any updates on previous workers. + worker.lock(); + } catch(e) { + this._worker = new GenericWorker("error"); + this._worker.error(e); + } +} + +StreamHelper.prototype = { + /** + * Listen a StreamHelper, accumulate its content and concatenate it into a + * complete block. + * @param {Function} updateCb the update callback. + * @return Promise the promise for the accumulation. + */ + accumulate : function (updateCb) { + return accumulate(this, updateCb); + }, + /** + * Add a listener on an event triggered on a stream. + * @param {String} evt the name of the event + * @param {Function} fn the listener + * @return {StreamHelper} the current helper. + */ + on : function (evt, fn) { + var self = this; + + if(evt === "data") { + this._worker.on(evt, function (chunk) { + fn.call(self, chunk.data, chunk.meta); + }); + } else { + this._worker.on(evt, function () { + utils.delay(fn, arguments, self); + }); + } + return this; + }, + /** + * Resume the flow of chunks. + * @return {StreamHelper} the current helper. + */ + resume : function () { + utils.delay(this._worker.resume, [], this._worker); + return this; + }, + /** + * Pause the flow of chunks. + * @return {StreamHelper} the current helper. + */ + pause : function () { + this._worker.pause(); + return this; + }, + /** + * Return a nodejs stream for this helper. + * @param {Function} updateCb the update callback. + * @return {NodejsStreamOutputAdapter} the nodejs stream. + */ + toNodejsStream : function (updateCb) { + utils.checkSupport("nodestream"); + if (this._outputType !== "nodebuffer") { + // an object stream containing blob/arraybuffer/uint8array/string + // is strange and I don't know if it would be useful. + // I you find this comment and have a good usecase, please open a + // bug report ! + throw new Error(this._outputType + " is not supported by this method"); + } + + return new NodejsStreamOutputAdapter(this, { + objectMode : this._outputType !== "nodebuffer" + }, updateCb); + } +}; + + +module.exports = StreamHelper; + +},{"../base64":1,"../external":6,"../nodejs/NodejsStreamOutputAdapter":13,"../support":30,"../utils":32,"./ConvertWorker":24,"./GenericWorker":28}],30:[function(require,module,exports){ +'use strict'; + +exports.base64 = true; +exports.array = true; +exports.string = true; +exports.arraybuffer = typeof ArrayBuffer !== "undefined" && typeof Uint8Array !== "undefined"; +exports.nodebuffer = typeof Buffer !== "undefined"; +// contains true if JSZip can read/generate Uint8Array, false otherwise. +exports.uint8array = typeof Uint8Array !== "undefined"; + +if (typeof ArrayBuffer === "undefined") { + exports.blob = false; +} +else { + var buffer = new ArrayBuffer(0); + try { + exports.blob = new Blob([buffer], { + type: "application/zip" + }).size === 0; + } + catch (e) { + try { + var Builder = self.BlobBuilder || self.WebKitBlobBuilder || self.MozBlobBuilder || self.MSBlobBuilder; + var builder = new Builder(); + builder.append(buffer); + exports.blob = builder.getBlob('application/zip').size === 0; + } + catch (e) { + exports.blob = false; + } + } +} + +try { + exports.nodestream = !!require('readable-stream').Readable; +} catch(e) { + exports.nodestream = false; +} + +},{"readable-stream":16}],31:[function(require,module,exports){ +'use strict'; + +var utils = require('./utils'); +var support = require('./support'); +var nodejsUtils = require('./nodejsUtils'); +var GenericWorker = require('./stream/GenericWorker'); + +/** + * The following functions come from pako, from pako/lib/utils/strings + * released under the MIT license, see pako https://github.com/nodeca/pako/ + */ + +// Table with utf8 lengths (calculated by first byte of sequence) +// Note, that 5 & 6-byte values and some 4-byte values can not be represented in JS, +// because max possible codepoint is 0x10ffff +var _utf8len = new Array(256); +for (var i=0; i<256; i++) { + _utf8len[i] = (i >= 252 ? 6 : i >= 248 ? 5 : i >= 240 ? 4 : i >= 224 ? 3 : i >= 192 ? 2 : 1); +} +_utf8len[254]=_utf8len[254]=1; // Invalid sequence start + +// convert string to array (typed, when possible) +var string2buf = function (str) { + var buf, c, c2, m_pos, i, str_len = str.length, buf_len = 0; + + // count binary size + for (m_pos = 0; m_pos < str_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos+1 < str_len)) { + c2 = str.charCodeAt(m_pos+1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + buf_len += c < 0x80 ? 1 : c < 0x800 ? 2 : c < 0x10000 ? 3 : 4; + } + + // allocate buffer + if (support.uint8array) { + buf = new Uint8Array(buf_len); + } else { + buf = new Array(buf_len); + } + + // convert + for (i=0, m_pos = 0; i < buf_len; m_pos++) { + c = str.charCodeAt(m_pos); + if ((c & 0xfc00) === 0xd800 && (m_pos+1 < str_len)) { + c2 = str.charCodeAt(m_pos+1); + if ((c2 & 0xfc00) === 0xdc00) { + c = 0x10000 + ((c - 0xd800) << 10) + (c2 - 0xdc00); + m_pos++; + } + } + if (c < 0x80) { + /* one byte */ + buf[i++] = c; + } else if (c < 0x800) { + /* two bytes */ + buf[i++] = 0xC0 | (c >>> 6); + buf[i++] = 0x80 | (c & 0x3f); + } else if (c < 0x10000) { + /* three bytes */ + buf[i++] = 0xE0 | (c >>> 12); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } else { + /* four bytes */ + buf[i++] = 0xf0 | (c >>> 18); + buf[i++] = 0x80 | (c >>> 12 & 0x3f); + buf[i++] = 0x80 | (c >>> 6 & 0x3f); + buf[i++] = 0x80 | (c & 0x3f); + } + } + + return buf; +}; + +// Calculate max possible position in utf8 buffer, +// that will not break sequence. If that's not possible +// - (very small limits) return max size as is. +// +// buf[] - utf8 bytes array +// max - length limit (mandatory); +var utf8border = function(buf, max) { + var pos; + + max = max || buf.length; + if (max > buf.length) { max = buf.length; } + + // go back from last position, until start of sequence found + pos = max-1; + while (pos >= 0 && (buf[pos] & 0xC0) === 0x80) { pos--; } + + // Fuckup - very small and broken sequence, + // return max, because we should return something anyway. + if (pos < 0) { return max; } + + // If we came to start of buffer - that means vuffer is too small, + // return max too. + if (pos === 0) { return max; } + + return (pos + _utf8len[buf[pos]] > max) ? pos : max; +}; + +// convert array to string +var buf2string = function (buf) { + var str, i, out, c, c_len; + var len = buf.length; + + // Reserve max possible length (2 words per char) + // NB: by unknown reasons, Array is significantly faster for + // String.fromCharCode.apply than Uint16Array. + var utf16buf = new Array(len*2); + + for (out=0, i=0; i 4) { utf16buf[out++] = 0xfffd; i += c_len-1; continue; } + + // apply mask on first byte + c &= c_len === 2 ? 0x1f : c_len === 3 ? 0x0f : 0x07; + // join the rest + while (c_len > 1 && i < len) { + c = (c << 6) | (buf[i++] & 0x3f); + c_len--; + } + + // terminated by end of string? + if (c_len > 1) { utf16buf[out++] = 0xfffd; continue; } + + if (c < 0x10000) { + utf16buf[out++] = c; + } else { + c -= 0x10000; + utf16buf[out++] = 0xd800 | ((c >> 10) & 0x3ff); + utf16buf[out++] = 0xdc00 | (c & 0x3ff); + } + } + + // shrinkBuf(utf16buf, out) + if (utf16buf.length !== out) { + if(utf16buf.subarray) { + utf16buf = utf16buf.subarray(0, out); + } else { + utf16buf.length = out; + } + } + + // return String.fromCharCode.apply(null, utf16buf); + return utils.applyFromCharCode(utf16buf); +}; + + +// That's all for the pako functions. + + +/** + * Transform a javascript string into an array (typed if possible) of bytes, + * UTF-8 encoded. + * @param {String} str the string to encode + * @return {Array|Uint8Array|Buffer} the UTF-8 encoded string. + */ +exports.utf8encode = function utf8encode(str) { + if (support.nodebuffer) { + return nodejsUtils.newBufferFrom(str, "utf-8"); + } + + return string2buf(str); +}; + + +/** + * Transform a bytes array (or a representation) representing an UTF-8 encoded + * string into a javascript string. + * @param {Array|Uint8Array|Buffer} buf the data de decode + * @return {String} the decoded string. + */ +exports.utf8decode = function utf8decode(buf) { + if (support.nodebuffer) { + return utils.transformTo("nodebuffer", buf).toString("utf-8"); + } + + buf = utils.transformTo(support.uint8array ? "uint8array" : "array", buf); + + return buf2string(buf); +}; + +/** + * A worker to decode utf8 encoded binary chunks into string chunks. + * @constructor + */ +function Utf8DecodeWorker() { + GenericWorker.call(this, "utf-8 decode"); + // the last bytes if a chunk didn't end with a complete codepoint. + this.leftOver = null; +} +utils.inherits(Utf8DecodeWorker, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +Utf8DecodeWorker.prototype.processChunk = function (chunk) { + + var data = utils.transformTo(support.uint8array ? "uint8array" : "array", chunk.data); + + // 1st step, re-use what's left of the previous chunk + if (this.leftOver && this.leftOver.length) { + if(support.uint8array) { + var previousData = data; + data = new Uint8Array(previousData.length + this.leftOver.length); + data.set(this.leftOver, 0); + data.set(previousData, this.leftOver.length); + } else { + data = this.leftOver.concat(data); + } + this.leftOver = null; + } + + var nextBoundary = utf8border(data); + var usableData = data; + if (nextBoundary !== data.length) { + if (support.uint8array) { + usableData = data.subarray(0, nextBoundary); + this.leftOver = data.subarray(nextBoundary, data.length); + } else { + usableData = data.slice(0, nextBoundary); + this.leftOver = data.slice(nextBoundary, data.length); + } + } + + this.push({ + data : exports.utf8decode(usableData), + meta : chunk.meta + }); +}; + +/** + * @see GenericWorker.flush + */ +Utf8DecodeWorker.prototype.flush = function () { + if(this.leftOver && this.leftOver.length) { + this.push({ + data : exports.utf8decode(this.leftOver), + meta : {} + }); + this.leftOver = null; + } +}; +exports.Utf8DecodeWorker = Utf8DecodeWorker; + +/** + * A worker to endcode string chunks into utf8 encoded binary chunks. + * @constructor + */ +function Utf8EncodeWorker() { + GenericWorker.call(this, "utf-8 encode"); +} +utils.inherits(Utf8EncodeWorker, GenericWorker); + +/** + * @see GenericWorker.processChunk + */ +Utf8EncodeWorker.prototype.processChunk = function (chunk) { + this.push({ + data : exports.utf8encode(chunk.data), + meta : chunk.meta + }); +}; +exports.Utf8EncodeWorker = Utf8EncodeWorker; + +},{"./nodejsUtils":14,"./stream/GenericWorker":28,"./support":30,"./utils":32}],32:[function(require,module,exports){ +'use strict'; + +var support = require('./support'); +var base64 = require('./base64'); +var nodejsUtils = require('./nodejsUtils'); +var setImmediate = require('set-immediate-shim'); +var external = require("./external"); + + +/** + * Convert a string that pass as a "binary string": it should represent a byte + * array but may have > 255 char codes. Be sure to take only the first byte + * and returns the byte array. + * @param {String} str the string to transform. + * @return {Array|Uint8Array} the string in a binary format. + */ +function string2binary(str) { + var result = null; + if (support.uint8array) { + result = new Uint8Array(str.length); + } else { + result = new Array(str.length); + } + return stringToArrayLike(str, result); +} + +/** + * Create a new blob with the given content and the given type. + * @param {String|ArrayBuffer} part the content to put in the blob. DO NOT use + * an Uint8Array because the stock browser of android 4 won't accept it (it + * will be silently converted to a string, "[object Uint8Array]"). + * + * Use only ONE part to build the blob to avoid a memory leak in IE11 / Edge: + * when a large amount of Array is used to create the Blob, the amount of + * memory consumed is nearly 100 times the original data amount. + * + * @param {String} type the mime type of the blob. + * @return {Blob} the created blob. + */ +exports.newBlob = function(part, type) { + exports.checkSupport("blob"); + + try { + // Blob constructor + return new Blob([part], { + type: type + }); + } + catch (e) { + + try { + // deprecated, browser only, old way + var Builder = self.BlobBuilder || self.WebKitBlobBuilder || self.MozBlobBuilder || self.MSBlobBuilder; + var builder = new Builder(); + builder.append(part); + return builder.getBlob(type); + } + catch (e) { + + // well, fuck ?! + throw new Error("Bug : can't construct the Blob."); + } + } + + +}; +/** + * The identity function. + * @param {Object} input the input. + * @return {Object} the same input. + */ +function identity(input) { + return input; +} + +/** + * Fill in an array with a string. + * @param {String} str the string to use. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} array the array to fill in (will be mutated). + * @return {Array|ArrayBuffer|Uint8Array|Buffer} the updated array. + */ +function stringToArrayLike(str, array) { + for (var i = 0; i < str.length; ++i) { + array[i] = str.charCodeAt(i) & 0xFF; + } + return array; +} + +/** + * An helper for the function arrayLikeToString. + * This contains static information and functions that + * can be optimized by the browser JIT compiler. + */ +var arrayToStringHelper = { + /** + * Transform an array of int into a string, chunk by chunk. + * See the performances notes on arrayLikeToString. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} array the array to transform. + * @param {String} type the type of the array. + * @param {Integer} chunk the chunk size. + * @return {String} the resulting string. + * @throws Error if the chunk is too big for the stack. + */ + stringifyByChunk: function(array, type, chunk) { + var result = [], k = 0, len = array.length; + // shortcut + if (len <= chunk) { + return String.fromCharCode.apply(null, array); + } + while (k < len) { + if (type === "array" || type === "nodebuffer") { + result.push(String.fromCharCode.apply(null, array.slice(k, Math.min(k + chunk, len)))); + } + else { + result.push(String.fromCharCode.apply(null, array.subarray(k, Math.min(k + chunk, len)))); + } + k += chunk; + } + return result.join(""); + }, + /** + * Call String.fromCharCode on every item in the array. + * This is the naive implementation, which generate A LOT of intermediate string. + * This should be used when everything else fail. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} array the array to transform. + * @return {String} the result. + */ + stringifyByChar: function(array){ + var resultStr = ""; + for(var i = 0; i < array.length; i++) { + resultStr += String.fromCharCode(array[i]); + } + return resultStr; + }, + applyCanBeUsed : { + /** + * true if the browser accepts to use String.fromCharCode on Uint8Array + */ + uint8array : (function () { + try { + return support.uint8array && String.fromCharCode.apply(null, new Uint8Array(1)).length === 1; + } catch (e) { + return false; + } + })(), + /** + * true if the browser accepts to use String.fromCharCode on nodejs Buffer. + */ + nodebuffer : (function () { + try { + return support.nodebuffer && String.fromCharCode.apply(null, nodejsUtils.allocBuffer(1)).length === 1; + } catch (e) { + return false; + } + })() + } +}; + +/** + * Transform an array-like object to a string. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} array the array to transform. + * @return {String} the result. + */ +function arrayLikeToString(array) { + // Performances notes : + // -------------------- + // String.fromCharCode.apply(null, array) is the fastest, see + // see http://jsperf.com/converting-a-uint8array-to-a-string/2 + // but the stack is limited (and we can get huge arrays !). + // + // result += String.fromCharCode(array[i]); generate too many strings ! + // + // This code is inspired by http://jsperf.com/arraybuffer-to-string-apply-performance/2 + // TODO : we now have workers that split the work. Do we still need that ? + var chunk = 65536, + type = exports.getTypeOf(array), + canUseApply = true; + if (type === "uint8array") { + canUseApply = arrayToStringHelper.applyCanBeUsed.uint8array; + } else if (type === "nodebuffer") { + canUseApply = arrayToStringHelper.applyCanBeUsed.nodebuffer; + } + + if (canUseApply) { + while (chunk > 1) { + try { + return arrayToStringHelper.stringifyByChunk(array, type, chunk); + } catch (e) { + chunk = Math.floor(chunk / 2); + } + } + } + + // no apply or chunk error : slow and painful algorithm + // default browser on android 4.* + return arrayToStringHelper.stringifyByChar(array); +} + +exports.applyFromCharCode = arrayLikeToString; + + +/** + * Copy the data from an array-like to an other array-like. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} arrayFrom the origin array. + * @param {Array|ArrayBuffer|Uint8Array|Buffer} arrayTo the destination array which will be mutated. + * @return {Array|ArrayBuffer|Uint8Array|Buffer} the updated destination array. + */ +function arrayLikeToArrayLike(arrayFrom, arrayTo) { + for (var i = 0; i < arrayFrom.length; i++) { + arrayTo[i] = arrayFrom[i]; + } + return arrayTo; +} + +// a matrix containing functions to transform everything into everything. +var transform = {}; + +// string to ? +transform["string"] = { + "string": identity, + "array": function(input) { + return stringToArrayLike(input, new Array(input.length)); + }, + "arraybuffer": function(input) { + return transform["string"]["uint8array"](input).buffer; + }, + "uint8array": function(input) { + return stringToArrayLike(input, new Uint8Array(input.length)); + }, + "nodebuffer": function(input) { + return stringToArrayLike(input, nodejsUtils.allocBuffer(input.length)); + } +}; + +// array to ? +transform["array"] = { + "string": arrayLikeToString, + "array": identity, + "arraybuffer": function(input) { + return (new Uint8Array(input)).buffer; + }, + "uint8array": function(input) { + return new Uint8Array(input); + }, + "nodebuffer": function(input) { + return nodejsUtils.newBufferFrom(input); + } +}; + +// arraybuffer to ? +transform["arraybuffer"] = { + "string": function(input) { + return arrayLikeToString(new Uint8Array(input)); + }, + "array": function(input) { + return arrayLikeToArrayLike(new Uint8Array(input), new Array(input.byteLength)); + }, + "arraybuffer": identity, + "uint8array": function(input) { + return new Uint8Array(input); + }, + "nodebuffer": function(input) { + return nodejsUtils.newBufferFrom(new Uint8Array(input)); + } +}; + +// uint8array to ? +transform["uint8array"] = { + "string": arrayLikeToString, + "array": function(input) { + return arrayLikeToArrayLike(input, new Array(input.length)); + }, + "arraybuffer": function(input) { + return input.buffer; + }, + "uint8array": identity, + "nodebuffer": function(input) { + return nodejsUtils.newBufferFrom(input); + } +}; + +// nodebuffer to ? +transform["nodebuffer"] = { + "string": arrayLikeToString, + "array": function(input) { + return arrayLikeToArrayLike(input, new Array(input.length)); + }, + "arraybuffer": function(input) { + return transform["nodebuffer"]["uint8array"](input).buffer; + }, + "uint8array": function(input) { + return arrayLikeToArrayLike(input, new Uint8Array(input.length)); + }, + "nodebuffer": identity +}; + +/** + * Transform an input into any type. + * The supported output type are : string, array, uint8array, arraybuffer, nodebuffer. + * If no output type is specified, the unmodified input will be returned. + * @param {String} outputType the output type. + * @param {String|Array|ArrayBuffer|Uint8Array|Buffer} input the input to convert. + * @throws {Error} an Error if the browser doesn't support the requested output type. + */ +exports.transformTo = function(outputType, input) { + if (!input) { + // undefined, null, etc + // an empty string won't harm. + input = ""; + } + if (!outputType) { + return input; + } + exports.checkSupport(outputType); + var inputType = exports.getTypeOf(input); + var result = transform[inputType][outputType](input); + return result; +}; + +/** + * Return the type of the input. + * The type will be in a format valid for JSZip.utils.transformTo : string, array, uint8array, arraybuffer. + * @param {Object} input the input to identify. + * @return {String} the (lowercase) type of the input. + */ +exports.getTypeOf = function(input) { + if (typeof input === "string") { + return "string"; + } + if (Object.prototype.toString.call(input) === "[object Array]") { + return "array"; + } + if (support.nodebuffer && nodejsUtils.isBuffer(input)) { + return "nodebuffer"; + } + if (support.uint8array && input instanceof Uint8Array) { + return "uint8array"; + } + if (support.arraybuffer && input instanceof ArrayBuffer) { + return "arraybuffer"; + } +}; + +/** + * Throw an exception if the type is not supported. + * @param {String} type the type to check. + * @throws {Error} an Error if the browser doesn't support the requested type. + */ +exports.checkSupport = function(type) { + var supported = support[type.toLowerCase()]; + if (!supported) { + throw new Error(type + " is not supported by this platform"); + } +}; + +exports.MAX_VALUE_16BITS = 65535; +exports.MAX_VALUE_32BITS = -1; // well, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" is parsed as -1 + +/** + * Prettify a string read as binary. + * @param {string} str the string to prettify. + * @return {string} a pretty string. + */ +exports.pretty = function(str) { + var res = '', + code, i; + for (i = 0; i < (str || "").length; i++) { + code = str.charCodeAt(i); + res += '\\x' + (code < 16 ? "0" : "") + code.toString(16).toUpperCase(); + } + return res; +}; + +/** + * Defer the call of a function. + * @param {Function} callback the function to call asynchronously. + * @param {Array} args the arguments to give to the callback. + */ +exports.delay = function(callback, args, self) { + setImmediate(function () { + callback.apply(self || null, args || []); + }); +}; + +/** + * Extends a prototype with an other, without calling a constructor with + * side effects. Inspired by nodejs' `utils.inherits` + * @param {Function} ctor the constructor to augment + * @param {Function} superCtor the parent constructor to use + */ +exports.inherits = function (ctor, superCtor) { + var Obj = function() {}; + Obj.prototype = superCtor.prototype; + ctor.prototype = new Obj(); +}; + +/** + * Merge the objects passed as parameters into a new one. + * @private + * @param {...Object} var_args All objects to merge. + * @return {Object} a new object with the data of the others. + */ +exports.extend = function() { + var result = {}, i, attr; + for (i = 0; i < arguments.length; i++) { // arguments is not enumerable in some browsers + for (attr in arguments[i]) { + if (arguments[i].hasOwnProperty(attr) && typeof result[attr] === "undefined") { + result[attr] = arguments[i][attr]; + } + } + } + return result; +}; + +/** + * Transform arbitrary content into a Promise. + * @param {String} name a name for the content being processed. + * @param {Object} inputData the content to process. + * @param {Boolean} isBinary true if the content is not an unicode string + * @param {Boolean} isOptimizedBinaryString true if the string content only has one byte per character. + * @param {Boolean} isBase64 true if the string content is encoded with base64. + * @return {Promise} a promise in a format usable by JSZip. + */ +exports.prepareContent = function(name, inputData, isBinary, isOptimizedBinaryString, isBase64) { + + // if inputData is already a promise, this flatten it. + var promise = external.Promise.resolve(inputData).then(function(data) { + + + var isBlob = support.blob && (data instanceof Blob || ['[object File]', '[object Blob]'].indexOf(Object.prototype.toString.call(data)) !== -1); + + if (isBlob && typeof FileReader !== "undefined") { + return new external.Promise(function (resolve, reject) { + var reader = new FileReader(); + + reader.onload = function(e) { + resolve(e.target.result); + }; + reader.onerror = function(e) { + reject(e.target.error); + }; + reader.readAsArrayBuffer(data); + }); + } else { + return data; + } + }); + + return promise.then(function(data) { + var dataType = exports.getTypeOf(data); + + if (!dataType) { + return external.Promise.reject( + new Error("Can't read the data of '" + name + "'. Is it " + + "in a supported JavaScript type (String, Blob, ArrayBuffer, etc) ?") + ); + } + // special case : it's way easier to work with Uint8Array than with ArrayBuffer + if (dataType === "arraybuffer") { + data = exports.transformTo("uint8array", data); + } else if (dataType === "string") { + if (isBase64) { + data = base64.decode(data); + } + else if (isBinary) { + // optimizedBinaryString === true means that the file has already been filtered with a 0xFF mask + if (isOptimizedBinaryString !== true) { + // this is a string, not in a base64 format. + // Be sure that this is a correct "binary string" + data = string2binary(data); + } + } + } + return data; + }); +}; + +},{"./base64":1,"./external":6,"./nodejsUtils":14,"./support":30,"set-immediate-shim":54}],33:[function(require,module,exports){ +'use strict'; +var readerFor = require('./reader/readerFor'); +var utils = require('./utils'); +var sig = require('./signature'); +var ZipEntry = require('./zipEntry'); +var utf8 = require('./utf8'); +var support = require('./support'); +// class ZipEntries {{{ +/** + * All the entries in the zip file. + * @constructor + * @param {Object} loadOptions Options for loading the stream. + */ +function ZipEntries(loadOptions) { + this.files = []; + this.loadOptions = loadOptions; +} +ZipEntries.prototype = { + /** + * Check that the reader is on the specified signature. + * @param {string} expectedSignature the expected signature. + * @throws {Error} if it is an other signature. + */ + checkSignature: function(expectedSignature) { + if (!this.reader.readAndCheckSignature(expectedSignature)) { + this.reader.index -= 4; + var signature = this.reader.readString(4); + throw new Error("Corrupted zip or bug: unexpected signature " + "(" + utils.pretty(signature) + ", expected " + utils.pretty(expectedSignature) + ")"); + } + }, + /** + * Check if the given signature is at the given index. + * @param {number} askedIndex the index to check. + * @param {string} expectedSignature the signature to expect. + * @return {boolean} true if the signature is here, false otherwise. + */ + isSignature: function(askedIndex, expectedSignature) { + var currentIndex = this.reader.index; + this.reader.setIndex(askedIndex); + var signature = this.reader.readString(4); + var result = signature === expectedSignature; + this.reader.setIndex(currentIndex); + return result; + }, + /** + * Read the end of the central directory. + */ + readBlockEndOfCentral: function() { + this.diskNumber = this.reader.readInt(2); + this.diskWithCentralDirStart = this.reader.readInt(2); + this.centralDirRecordsOnThisDisk = this.reader.readInt(2); + this.centralDirRecords = this.reader.readInt(2); + this.centralDirSize = this.reader.readInt(4); + this.centralDirOffset = this.reader.readInt(4); + + this.zipCommentLength = this.reader.readInt(2); + // warning : the encoding depends of the system locale + // On a linux machine with LANG=en_US.utf8, this field is utf8 encoded. + // On a windows machine, this field is encoded with the localized windows code page. + var zipComment = this.reader.readData(this.zipCommentLength); + var decodeParamType = support.uint8array ? "uint8array" : "array"; + // To get consistent behavior with the generation part, we will assume that + // this is utf8 encoded unless specified otherwise. + var decodeContent = utils.transformTo(decodeParamType, zipComment); + this.zipComment = this.loadOptions.decodeFileName(decodeContent); + }, + /** + * Read the end of the Zip 64 central directory. + * Not merged with the method readEndOfCentral : + * The end of central can coexist with its Zip64 brother, + * I don't want to read the wrong number of bytes ! + */ + readBlockZip64EndOfCentral: function() { + this.zip64EndOfCentralSize = this.reader.readInt(8); + this.reader.skip(4); + // this.versionMadeBy = this.reader.readString(2); + // this.versionNeeded = this.reader.readInt(2); + this.diskNumber = this.reader.readInt(4); + this.diskWithCentralDirStart = this.reader.readInt(4); + this.centralDirRecordsOnThisDisk = this.reader.readInt(8); + this.centralDirRecords = this.reader.readInt(8); + this.centralDirSize = this.reader.readInt(8); + this.centralDirOffset = this.reader.readInt(8); + + this.zip64ExtensibleData = {}; + var extraDataSize = this.zip64EndOfCentralSize - 44, + index = 0, + extraFieldId, + extraFieldLength, + extraFieldValue; + while (index < extraDataSize) { + extraFieldId = this.reader.readInt(2); + extraFieldLength = this.reader.readInt(4); + extraFieldValue = this.reader.readData(extraFieldLength); + this.zip64ExtensibleData[extraFieldId] = { + id: extraFieldId, + length: extraFieldLength, + value: extraFieldValue + }; + } + }, + /** + * Read the end of the Zip 64 central directory locator. + */ + readBlockZip64EndOfCentralLocator: function() { + this.diskWithZip64CentralDirStart = this.reader.readInt(4); + this.relativeOffsetEndOfZip64CentralDir = this.reader.readInt(8); + this.disksCount = this.reader.readInt(4); + if (this.disksCount > 1) { + throw new Error("Multi-volumes zip are not supported"); + } + }, + /** + * Read the local files, based on the offset read in the central part. + */ + readLocalFiles: function() { + var i, file; + for (i = 0; i < this.files.length; i++) { + file = this.files[i]; + this.reader.setIndex(file.localHeaderOffset); + this.checkSignature(sig.LOCAL_FILE_HEADER); + file.readLocalPart(this.reader); + file.handleUTF8(); + file.processAttributes(); + } + }, + /** + * Read the central directory. + */ + readCentralDir: function() { + var file; + + this.reader.setIndex(this.centralDirOffset); + while (this.reader.readAndCheckSignature(sig.CENTRAL_FILE_HEADER)) { + file = new ZipEntry({ + zip64: this.zip64 + }, this.loadOptions); + file.readCentralPart(this.reader); + this.files.push(file); + } + + if (this.centralDirRecords !== this.files.length) { + if (this.centralDirRecords !== 0 && this.files.length === 0) { + // We expected some records but couldn't find ANY. + // This is really suspicious, as if something went wrong. + throw new Error("Corrupted zip or bug: expected " + this.centralDirRecords + " records in central dir, got " + this.files.length); + } else { + // We found some records but not all. + // Something is wrong but we got something for the user: no error here. + // console.warn("expected", this.centralDirRecords, "records in central dir, got", this.files.length); + } + } + }, + /** + * Read the end of central directory. + */ + readEndOfCentral: function() { + var offset = this.reader.lastIndexOfSignature(sig.CENTRAL_DIRECTORY_END); + if (offset < 0) { + // Check if the content is a truncated zip or complete garbage. + // A "LOCAL_FILE_HEADER" is not required at the beginning (auto + // extractible zip for example) but it can give a good hint. + // If an ajax request was used without responseType, we will also + // get unreadable data. + var isGarbage = !this.isSignature(0, sig.LOCAL_FILE_HEADER); + + if (isGarbage) { + throw new Error("Can't find end of central directory : is this a zip file ? " + + "If it is, see https://stuk.github.io/jszip/documentation/howto/read_zip.html"); + } else { + throw new Error("Corrupted zip: can't find end of central directory"); + } + + } + this.reader.setIndex(offset); + var endOfCentralDirOffset = offset; + this.checkSignature(sig.CENTRAL_DIRECTORY_END); + this.readBlockEndOfCentral(); + + + /* extract from the zip spec : + 4) If one of the fields in the end of central directory + record is too small to hold required data, the field + should be set to -1 (0xFFFF or 0xFFFFFFFF) and the + ZIP64 format record should be created. + 5) The end of central directory record and the + Zip64 end of central directory locator record must + reside on the same disk when splitting or spanning + an archive. + */ + if (this.diskNumber === utils.MAX_VALUE_16BITS || this.diskWithCentralDirStart === utils.MAX_VALUE_16BITS || this.centralDirRecordsOnThisDisk === utils.MAX_VALUE_16BITS || this.centralDirRecords === utils.MAX_VALUE_16BITS || this.centralDirSize === utils.MAX_VALUE_32BITS || this.centralDirOffset === utils.MAX_VALUE_32BITS) { + this.zip64 = true; + + /* + Warning : the zip64 extension is supported, but ONLY if the 64bits integer read from + the zip file can fit into a 32bits integer. This cannot be solved : JavaScript represents + all numbers as 64-bit double precision IEEE 754 floating point numbers. + So, we have 53bits for integers and bitwise operations treat everything as 32bits. + see https://developer.mozilla.org/en-US/docs/JavaScript/Reference/Operators/Bitwise_Operators + and http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf section 8.5 + */ + + // should look for a zip64 EOCD locator + offset = this.reader.lastIndexOfSignature(sig.ZIP64_CENTRAL_DIRECTORY_LOCATOR); + if (offset < 0) { + throw new Error("Corrupted zip: can't find the ZIP64 end of central directory locator"); + } + this.reader.setIndex(offset); + this.checkSignature(sig.ZIP64_CENTRAL_DIRECTORY_LOCATOR); + this.readBlockZip64EndOfCentralLocator(); + + // now the zip64 EOCD record + if (!this.isSignature(this.relativeOffsetEndOfZip64CentralDir, sig.ZIP64_CENTRAL_DIRECTORY_END)) { + // console.warn("ZIP64 end of central directory not where expected."); + this.relativeOffsetEndOfZip64CentralDir = this.reader.lastIndexOfSignature(sig.ZIP64_CENTRAL_DIRECTORY_END); + if (this.relativeOffsetEndOfZip64CentralDir < 0) { + throw new Error("Corrupted zip: can't find the ZIP64 end of central directory"); + } + } + this.reader.setIndex(this.relativeOffsetEndOfZip64CentralDir); + this.checkSignature(sig.ZIP64_CENTRAL_DIRECTORY_END); + this.readBlockZip64EndOfCentral(); + } + + var expectedEndOfCentralDirOffset = this.centralDirOffset + this.centralDirSize; + if (this.zip64) { + expectedEndOfCentralDirOffset += 20; // end of central dir 64 locator + expectedEndOfCentralDirOffset += 12 /* should not include the leading 12 bytes */ + this.zip64EndOfCentralSize; + } + + var extraBytes = endOfCentralDirOffset - expectedEndOfCentralDirOffset; + + if (extraBytes > 0) { + // console.warn(extraBytes, "extra bytes at beginning or within zipfile"); + if (this.isSignature(endOfCentralDirOffset, sig.CENTRAL_FILE_HEADER)) { + // The offsets seem wrong, but we have something at the specified offset. + // So… we keep it. + } else { + // the offset is wrong, update the "zero" of the reader + // this happens if data has been prepended (crx files for example) + this.reader.zero = extraBytes; + } + } else if (extraBytes < 0) { + throw new Error("Corrupted zip: missing " + Math.abs(extraBytes) + " bytes."); + } + }, + prepareReader: function(data) { + this.reader = readerFor(data); + }, + /** + * Read a zip file and create ZipEntries. + * @param {String|ArrayBuffer|Uint8Array|Buffer} data the binary string representing a zip file. + */ + load: function(data) { + this.prepareReader(data); + this.readEndOfCentral(); + this.readCentralDir(); + this.readLocalFiles(); + } +}; +// }}} end of ZipEntries +module.exports = ZipEntries; + +},{"./reader/readerFor":22,"./signature":23,"./support":30,"./utf8":31,"./utils":32,"./zipEntry":34}],34:[function(require,module,exports){ +'use strict'; +var readerFor = require('./reader/readerFor'); +var utils = require('./utils'); +var CompressedObject = require('./compressedObject'); +var crc32fn = require('./crc32'); +var utf8 = require('./utf8'); +var compressions = require('./compressions'); +var support = require('./support'); + +var MADE_BY_DOS = 0x00; +var MADE_BY_UNIX = 0x03; + +/** + * Find a compression registered in JSZip. + * @param {string} compressionMethod the method magic to find. + * @return {Object|null} the JSZip compression object, null if none found. + */ +var findCompression = function(compressionMethod) { + for (var method in compressions) { + if (!compressions.hasOwnProperty(method)) { + continue; + } + if (compressions[method].magic === compressionMethod) { + return compressions[method]; + } + } + return null; +}; + +// class ZipEntry {{{ +/** + * An entry in the zip file. + * @constructor + * @param {Object} options Options of the current file. + * @param {Object} loadOptions Options for loading the stream. + */ +function ZipEntry(options, loadOptions) { + this.options = options; + this.loadOptions = loadOptions; +} +ZipEntry.prototype = { + /** + * say if the file is encrypted. + * @return {boolean} true if the file is encrypted, false otherwise. + */ + isEncrypted: function() { + // bit 1 is set + return (this.bitFlag & 0x0001) === 0x0001; + }, + /** + * say if the file has utf-8 filename/comment. + * @return {boolean} true if the filename/comment is in utf-8, false otherwise. + */ + useUTF8: function() { + // bit 11 is set + return (this.bitFlag & 0x0800) === 0x0800; + }, + /** + * Read the local part of a zip file and add the info in this object. + * @param {DataReader} reader the reader to use. + */ + readLocalPart: function(reader) { + var compression, localExtraFieldsLength; + + // we already know everything from the central dir ! + // If the central dir data are false, we are doomed. + // On the bright side, the local part is scary : zip64, data descriptors, both, etc. + // The less data we get here, the more reliable this should be. + // Let's skip the whole header and dash to the data ! + reader.skip(22); + // in some zip created on windows, the filename stored in the central dir contains \ instead of /. + // Strangely, the filename here is OK. + // I would love to treat these zip files as corrupted (see http://www.info-zip.org/FAQ.html#backslashes + // or APPNOTE#4.4.17.1, "All slashes MUST be forward slashes '/'") but there are a lot of bad zip generators... + // Search "unzip mismatching "local" filename continuing with "central" filename version" on + // the internet. + // + // I think I see the logic here : the central directory is used to display + // content and the local directory is used to extract the files. Mixing / and \ + // may be used to display \ to windows users and use / when extracting the files. + // Unfortunately, this lead also to some issues : http://seclists.org/fulldisclosure/2009/Sep/394 + this.fileNameLength = reader.readInt(2); + localExtraFieldsLength = reader.readInt(2); // can't be sure this will be the same as the central dir + // the fileName is stored as binary data, the handleUTF8 method will take care of the encoding. + this.fileName = reader.readData(this.fileNameLength); + reader.skip(localExtraFieldsLength); + + if (this.compressedSize === -1 || this.uncompressedSize === -1) { + throw new Error("Bug or corrupted zip : didn't get enough information from the central directory " + "(compressedSize === -1 || uncompressedSize === -1)"); + } + + compression = findCompression(this.compressionMethod); + if (compression === null) { // no compression found + throw new Error("Corrupted zip : compression " + utils.pretty(this.compressionMethod) + " unknown (inner file : " + utils.transformTo("string", this.fileName) + ")"); + } + this.decompressed = new CompressedObject(this.compressedSize, this.uncompressedSize, this.crc32, compression, reader.readData(this.compressedSize)); + }, + + /** + * Read the central part of a zip file and add the info in this object. + * @param {DataReader} reader the reader to use. + */ + readCentralPart: function(reader) { + this.versionMadeBy = reader.readInt(2); + reader.skip(2); + // this.versionNeeded = reader.readInt(2); + this.bitFlag = reader.readInt(2); + this.compressionMethod = reader.readString(2); + this.date = reader.readDate(); + this.crc32 = reader.readInt(4); + this.compressedSize = reader.readInt(4); + this.uncompressedSize = reader.readInt(4); + var fileNameLength = reader.readInt(2); + this.extraFieldsLength = reader.readInt(2); + this.fileCommentLength = reader.readInt(2); + this.diskNumberStart = reader.readInt(2); + this.internalFileAttributes = reader.readInt(2); + this.externalFileAttributes = reader.readInt(4); + this.localHeaderOffset = reader.readInt(4); + + if (this.isEncrypted()) { + throw new Error("Encrypted zip are not supported"); + } + + // will be read in the local part, see the comments there + reader.skip(fileNameLength); + this.readExtraFields(reader); + this.parseZIP64ExtraField(reader); + this.fileComment = reader.readData(this.fileCommentLength); + }, + + /** + * Parse the external file attributes and get the unix/dos permissions. + */ + processAttributes: function () { + this.unixPermissions = null; + this.dosPermissions = null; + var madeBy = this.versionMadeBy >> 8; + + // Check if we have the DOS directory flag set. + // We look for it in the DOS and UNIX permissions + // but some unknown platform could set it as a compatibility flag. + this.dir = this.externalFileAttributes & 0x0010 ? true : false; + + if(madeBy === MADE_BY_DOS) { + // first 6 bits (0 to 5) + this.dosPermissions = this.externalFileAttributes & 0x3F; + } + + if(madeBy === MADE_BY_UNIX) { + this.unixPermissions = (this.externalFileAttributes >> 16) & 0xFFFF; + // the octal permissions are in (this.unixPermissions & 0x01FF).toString(8); + } + + // fail safe : if the name ends with a / it probably means a folder + if (!this.dir && this.fileNameStr.slice(-1) === '/') { + this.dir = true; + } + }, + + /** + * Parse the ZIP64 extra field and merge the info in the current ZipEntry. + * @param {DataReader} reader the reader to use. + */ + parseZIP64ExtraField: function(reader) { + + if (!this.extraFields[0x0001]) { + return; + } + + // should be something, preparing the extra reader + var extraReader = readerFor(this.extraFields[0x0001].value); + + // I really hope that these 64bits integer can fit in 32 bits integer, because js + // won't let us have more. + if (this.uncompressedSize === utils.MAX_VALUE_32BITS) { + this.uncompressedSize = extraReader.readInt(8); + } + if (this.compressedSize === utils.MAX_VALUE_32BITS) { + this.compressedSize = extraReader.readInt(8); + } + if (this.localHeaderOffset === utils.MAX_VALUE_32BITS) { + this.localHeaderOffset = extraReader.readInt(8); + } + if (this.diskNumberStart === utils.MAX_VALUE_32BITS) { + this.diskNumberStart = extraReader.readInt(4); + } + }, + /** + * Read the central part of a zip file and add the info in this object. + * @param {DataReader} reader the reader to use. + */ + readExtraFields: function(reader) { + var end = reader.index + this.extraFieldsLength, + extraFieldId, + extraFieldLength, + extraFieldValue; + + if (!this.extraFields) { + this.extraFields = {}; + } + + while (reader.index + 4 < end) { + extraFieldId = reader.readInt(2); + extraFieldLength = reader.readInt(2); + extraFieldValue = reader.readData(extraFieldLength); + + this.extraFields[extraFieldId] = { + id: extraFieldId, + length: extraFieldLength, + value: extraFieldValue + }; + } + + reader.setIndex(end); + }, + /** + * Apply an UTF8 transformation if needed. + */ + handleUTF8: function() { + var decodeParamType = support.uint8array ? "uint8array" : "array"; + if (this.useUTF8()) { + this.fileNameStr = utf8.utf8decode(this.fileName); + this.fileCommentStr = utf8.utf8decode(this.fileComment); + } else { + var upath = this.findExtraFieldUnicodePath(); + if (upath !== null) { + this.fileNameStr = upath; + } else { + // ASCII text or unsupported code page + var fileNameByteArray = utils.transformTo(decodeParamType, this.fileName); + this.fileNameStr = this.loadOptions.decodeFileName(fileNameByteArray); + } + + var ucomment = this.findExtraFieldUnicodeComment(); + if (ucomment !== null) { + this.fileCommentStr = ucomment; + } else { + // ASCII text or unsupported code page + var commentByteArray = utils.transformTo(decodeParamType, this.fileComment); + this.fileCommentStr = this.loadOptions.decodeFileName(commentByteArray); + } + } + }, + + /** + * Find the unicode path declared in the extra field, if any. + * @return {String} the unicode path, null otherwise. + */ + findExtraFieldUnicodePath: function() { + var upathField = this.extraFields[0x7075]; + if (upathField) { + var extraReader = readerFor(upathField.value); + + // wrong version + if (extraReader.readInt(1) !== 1) { + return null; + } + + // the crc of the filename changed, this field is out of date. + if (crc32fn(this.fileName) !== extraReader.readInt(4)) { + return null; + } + + return utf8.utf8decode(extraReader.readData(upathField.length - 5)); + } + return null; + }, + + /** + * Find the unicode comment declared in the extra field, if any. + * @return {String} the unicode comment, null otherwise. + */ + findExtraFieldUnicodeComment: function() { + var ucommentField = this.extraFields[0x6375]; + if (ucommentField) { + var extraReader = readerFor(ucommentField.value); + + // wrong version + if (extraReader.readInt(1) !== 1) { + return null; + } + + // the crc of the comment changed, this field is out of date. + if (crc32fn(this.fileComment) !== extraReader.readInt(4)) { + return null; + } + + return utf8.utf8decode(extraReader.readData(ucommentField.length - 5)); + } + return null; + } +}; +module.exports = ZipEntry; + +},{"./compressedObject":2,"./compressions":3,"./crc32":4,"./reader/readerFor":22,"./support":30,"./utf8":31,"./utils":32}],35:[function(require,module,exports){ +'use strict'; + +var StreamHelper = require('./stream/StreamHelper'); +var DataWorker = require('./stream/DataWorker'); +var utf8 = require('./utf8'); +var CompressedObject = require('./compressedObject'); +var GenericWorker = require('./stream/GenericWorker'); + +/** + * A simple object representing a file in the zip file. + * @constructor + * @param {string} name the name of the file + * @param {String|ArrayBuffer|Uint8Array|Buffer} data the data + * @param {Object} options the options of the file + */ +var ZipObject = function(name, data, options) { + this.name = name; + this.dir = options.dir; + this.date = options.date; + this.comment = options.comment; + this.unixPermissions = options.unixPermissions; + this.dosPermissions = options.dosPermissions; + + this._data = data; + this._dataBinary = options.binary; + // keep only the compression + this.options = { + compression : options.compression, + compressionOptions : options.compressionOptions + }; +}; + +ZipObject.prototype = { + /** + * Create an internal stream for the content of this object. + * @param {String} type the type of each chunk. + * @return StreamHelper the stream. + */ + internalStream: function (type) { + var result = null, outputType = "string"; + try { + if (!type) { + throw new Error("No output type specified."); + } + outputType = type.toLowerCase(); + var askUnicodeString = outputType === "string" || outputType === "text"; + if (outputType === "binarystring" || outputType === "text") { + outputType = "string"; + } + result = this._decompressWorker(); + + var isUnicodeString = !this._dataBinary; + + if (isUnicodeString && !askUnicodeString) { + result = result.pipe(new utf8.Utf8EncodeWorker()); + } + if (!isUnicodeString && askUnicodeString) { + result = result.pipe(new utf8.Utf8DecodeWorker()); + } + } catch (e) { + result = new GenericWorker("error"); + result.error(e); + } + + return new StreamHelper(result, outputType, ""); + }, + + /** + * Prepare the content in the asked type. + * @param {String} type the type of the result. + * @param {Function} onUpdate a function to call on each internal update. + * @return Promise the promise of the result. + */ + async: function (type, onUpdate) { + return this.internalStream(type).accumulate(onUpdate); + }, + + /** + * Prepare the content as a nodejs stream. + * @param {String} type the type of each chunk. + * @param {Function} onUpdate a function to call on each internal update. + * @return Stream the stream. + */ + nodeStream: function (type, onUpdate) { + return this.internalStream(type || "nodebuffer").toNodejsStream(onUpdate); + }, + + /** + * Return a worker for the compressed content. + * @private + * @param {Object} compression the compression object to use. + * @param {Object} compressionOptions the options to use when compressing. + * @return Worker the worker. + */ + _compressWorker: function (compression, compressionOptions) { + if ( + this._data instanceof CompressedObject && + this._data.compression.magic === compression.magic + ) { + return this._data.getCompressedWorker(); + } else { + var result = this._decompressWorker(); + if(!this._dataBinary) { + result = result.pipe(new utf8.Utf8EncodeWorker()); + } + return CompressedObject.createWorkerFrom(result, compression, compressionOptions); + } + }, + /** + * Return a worker for the decompressed content. + * @private + * @return Worker the worker. + */ + _decompressWorker : function () { + if (this._data instanceof CompressedObject) { + return this._data.getContentWorker(); + } else if (this._data instanceof GenericWorker) { + return this._data; + } else { + return new DataWorker(this._data); + } + } +}; + +var removedMethods = ["asText", "asBinary", "asNodeBuffer", "asUint8Array", "asArrayBuffer"]; +var removedFn = function () { + throw new Error("This method has been removed in JSZip 3.0, please check the upgrade guide."); +}; + +for(var i = 0; i < removedMethods.length; i++) { + ZipObject.prototype[removedMethods[i]] = removedFn; +} +module.exports = ZipObject; + +},{"./compressedObject":2,"./stream/DataWorker":27,"./stream/GenericWorker":28,"./stream/StreamHelper":29,"./utf8":31}],36:[function(require,module,exports){ +(function (global){ +'use strict'; +var Mutation = global.MutationObserver || global.WebKitMutationObserver; + +var scheduleDrain; + +{ + if (Mutation) { + var called = 0; + var observer = new Mutation(nextTick); + var element = global.document.createTextNode(''); + observer.observe(element, { + characterData: true + }); + scheduleDrain = function () { + element.data = (called = ++called % 2); + }; + } else if (!global.setImmediate && typeof global.MessageChannel !== 'undefined') { + var channel = new global.MessageChannel(); + channel.port1.onmessage = nextTick; + scheduleDrain = function () { + channel.port2.postMessage(0); + }; + } else if ('document' in global && 'onreadystatechange' in global.document.createElement('script')) { + scheduleDrain = function () { + + // Create a + + + + + +var pathtoroot = "../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
+ +
+
-
miml
+
Package miml

Class AppTest

@@ -119,10 +144,9 @@

Class AppTest

  • All Implemented Interfaces:
    -
    junit.framework.Test
    +
    junit.framework.Test

    -
    public class AppTest
     extends junit.framework.TestCase
    Unit test for simple App.
    @@ -133,56 +157,64 @@

    Class AppTest

    • +
        -
      • +
      • Constructor Summary

        - +
        - + + - +
        Constructors 
        Constructor and DescriptionConstructorDescription
        AppTest(java.lang.String testName) +AppTest​(java.lang.String testName)
        Create the test case
      +
      +
        -
      • +
      • Method Summary

        - +
        - + + - + + - +
        All Methods Static Methods Instance Methods Concrete Methods 
        Modifier and TypeMethod and DescriptionMethodDescription
        static junit.framework.Testsuite() suite() 
        voidtestApp() +testApp()
        Rigourous Test :-)
          -
        • +
        • Methods inherited from class junit.framework.TestCase

          assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertEquals, assertFalse, assertFalse, assertNotNull, assertNotNull, assertNotSame, assertNotSame, assertNull, assertNull, assertSame, assertSame, assertTrue, assertTrue, countTestCases, createResult, fail, fail, failNotEquals, failNotSame, failSame, format, getName, run, run, runBare, runTest, setName, setUp, tearDown, toString
          -
        • +
        • Methods inherited from class java.lang.Object

          @@ -190,6 +222,7 @@

          Methods inherited from class java.lang.Object

      +
  • @@ -197,18 +230,19 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Constructor Detail

        - +
        • AppTest

          -
          public AppTest(java.lang.String testName)
          +
          public AppTest​(java.lang.String testName)
          Create the test case
          Parameters:
          @@ -218,52 +252,58 @@

          AppTest

      +
      +
        -
      • +
      • Method Detail

        - +
        • suite

          -
          public static junit.framework.Test suite()
          +
          public static junit.framework.Test suite()
          Returns:
          the suite of tests being tested
        - +
        • testApp

          -
          public void testApp()
          +
          public void testApp()
          Rigourous Test :-)
      +
    +
    + diff --git a/documentation/apidoc/miml/class-use/AppTest.html b/documentation/apidoc/miml/class-use/AppTest.html old mode 100755 new mode 100644 index 26f4e9f..1c7fe50 --- a/documentation/apidoc/miml/class-use/AppTest.html +++ b/documentation/apidoc/miml/class-use/AppTest.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.AppTest - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.AppTest

    No usage of miml.AppTest
    +
    + diff --git a/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.html b/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.html old mode 100755 new mode 100644 index 795f2be..973f515 --- a/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.html +++ b/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.html @@ -1,12 +1,22 @@ - + - + MISMOWrapper - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.mi
    +

    Class MISMOWrapper

    @@ -119,10 +144,9 @@

    Class MISMOWrapper

  • All Implemented Interfaces:
    -
    java.io.Serializable, java.lang.Cloneable, weka.classifiers.Classifier, weka.core.CapabilitiesHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.OptionHandler, weka.core.RevisionHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler
    +
    java.io.Serializable, java.lang.Cloneable, weka.classifiers.Classifier, weka.core.CapabilitiesHandler, weka.core.MultiInstanceCapabilitiesHandler, weka.core.OptionHandler, weka.core.RevisionHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler

    -
    public class MISMOWrapper
     extends weka.classifiers.mi.MISMO
    Wrapper for MISMO algorithm to work in MIML to MI classifiers.
    @@ -141,13 +165,14 @@

    Class MISMOWrapper

    • +
        -
      • +
      • Nested Class Summary

          -
        • +
        • Nested classes/interfaces inherited from class weka.classifiers.mi.MISMO

          @@ -155,34 +180,38 @@

          Nested classes/interfaces inherited from class weka.classifiers.mi.MISM

      +
      +
        -
      • +
      • Field Summary

        - +
        - + + - +
        Fields 
        Modifier and TypeField and DescriptionFieldDescription
        private static longserialVersionUID +serialVersionUID
        Generated Serial version UID.
          -
        • +
        • Fields inherited from class weka.classifiers.mi.MISMO

          FILTER_NONE, FILTER_NORMALIZE, FILTER_STANDARDIZE, m_C, m_checksTurnedOff, m_classAttribute, m_classifiers, m_classIndex, m_Del, m_eps, m_Filter, m_filterType, m_fitLogisticModels, m_kernel, m_minimax, m_Missing, m_NominalToBinary, m_numFolds, m_randomSeed, m_tol, TAGS_FILTER
          -
        • +
        • Fields inherited from class weka.classifiers.AbstractClassifier

          @@ -190,56 +219,64 @@

          Fields inherited from class weka.classifiers.AbstractClassifier

      +
      +
        -
      • +
      • Constructor Summary

        - +
        - + + - + +
        Constructors 
        Constructor and DescriptionConstructorDescription
        MISMOWrapper() MISMOWrapper() 
      +
      +
        -
      • +
      • Method Summary

        - +
        - + + - + +
        All Methods Instance Methods Concrete Methods 
        Modifier and TypeMethod and DescriptionMethodDescription
        double[]distributionForInstance(weka.core.Instance inst) distributionForInstance​(weka.core.Instance inst) 
          -
        • +
        • Methods inherited from class weka.classifiers.mi.MISMO

          attributeNames, bias, buildClassifier, buildLogisticModelsTipText, checksTurnedOffTipText, classAttributeNames, cTipText, epsilonTipText, filterTypeTipText, getBuildLogisticModels, getC, getCapabilities, getChecksTurnedOff, getEpsilon, getFilterType, getKernel, getMinimax, getMultiInstanceCapabilities, getNumFolds, getOptions, getRandomSeed, getRevision, getTechnicalInformation, getToleranceParameter, globalInfo, kernelTipText, listOptions, main, minimaxTipText, numClassAttributeValues, numFoldsTipText, pairwiseCoupling, randomSeedTipText, setBuildLogisticModels, setC, setChecksTurnedOff, setEpsilon, setFilterType, setKernel, setMinimax, setNumFolds, setOptions, setRandomSeed, setToleranceParameter, sparseIndices, sparseWeights, toleranceParameterTipText, toString, turnChecksOff, turnChecksOn
          -
        • +
        • Methods inherited from class weka.classifiers.AbstractClassifier

          classifyInstance, debugTipText, forName, getDebug, makeCopies, makeCopy, runClassifier, setDebug
          -
        • +
        • Methods inherited from class java.lang.Object

          @@ -247,6 +284,7 @@

          Methods inherited from class java.lang.Object

      +
  • @@ -254,12 +292,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -275,13 +314,15 @@

          serialVersionUID

      +
      +
        -
      • +
      • Constructor Detail

        - +
          @@ -292,19 +333,21 @@

          MISMOWrapper

      +
      +
        -
      • +
      • Method Detail

        - +
        • distributionForInstance

          -
          public double[] distributionForInstance(weka.core.Instance inst)
          +
          public double[] distributionForInstance​(weka.core.Instance inst)
                                            throws java.lang.Exception
          Specified by:
          @@ -318,21 +361,25 @@

          distributionForInstance

      +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.svg b/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.svg new file mode 100644 index 0000000..27c45b6 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/mi/MISMOWrapper.svg @@ -0,0 +1,29 @@ +MISMOWrappermiml.classifiers.miserialVersionUID: longdistributionForInstance(Instance): double[]MISMOweka.classifiers.miUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/mi/class-use/MISMOWrapper.html b/documentation/apidoc/miml/classifiers/mi/class-use/MISMOWrapper.html old mode 100755 new mode 100644 index 3d653e5..a6f49fd --- a/documentation/apidoc/miml/classifiers/mi/class-use/MISMOWrapper.html +++ b/documentation/apidoc/miml/classifiers/mi/class-use/MISMOWrapper.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.mi.MISMOWrapper - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.mi.MISMOWrapper

    No usage of miml.classifiers.mi.MISMOWrapper
    +
    + diff --git a/documentation/apidoc/miml/classifiers/mi/package-frame.html b/documentation/apidoc/miml/classifiers/mi/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/mi/package-summary.html b/documentation/apidoc/miml/classifiers/mi/package-summary.html old mode 100755 new mode 100644 index 5f2a702..8288bd3 --- a/documentation/apidoc/miml/classifiers/mi/package-summary.html +++ b/documentation/apidoc/miml/classifiers/mi/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.mi - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Package miml.classifiers.mi

    • - +
      @@ -83,7 +108,7 @@

      Package miml.classifiers.mi

      - + @@ -93,16 +118,19 @@

      Package miml.classifiers.mi

      + + diff --git a/documentation/apidoc/miml/classifiers/mi/package-tree.html b/documentation/apidoc/miml/classifiers/mi/package-tree.html old mode 100755 new mode 100644 index 99afd5b..2c7dfd0 --- a/documentation/apidoc/miml/classifiers/mi/package-tree.html +++ b/documentation/apidoc/miml/classifiers/mi/package-tree.html @@ -1,12 +1,22 @@ - + - +miml.classifiers.mi Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Hierarchy For Package miml.classifiers.mi

      Package Hierarchies: @@ -77,15 +102,16 @@

      Hierarchy For Package miml.classifiers.mi

      +

      Class Hierarchy

        -
      • java.lang.Object +
      • java.lang.Object
          -
        • weka.classifiers.AbstractClassifier (implements weka.core.CapabilitiesHandler, weka.classifiers.Classifier, java.lang.Cloneable, weka.core.OptionHandler, weka.core.RevisionHandler, java.io.Serializable) +
        • weka.classifiers.AbstractClassifier (implements weka.core.CapabilitiesHandler, weka.classifiers.Classifier, java.lang.Cloneable, weka.core.OptionHandler, weka.core.RevisionHandler, java.io.Serializable)
            -
          • weka.classifiers.mi.MISMO (implements weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler) +
          • weka.classifiers.mi.MISMO (implements weka.core.MultiInstanceCapabilitiesHandler, weka.core.TechnicalInformationHandler, weka.core.WeightedInstancesHandler)
          @@ -93,17 +119,21 @@

          Class Hierarchy

      +
      +
      + diff --git a/documentation/apidoc/miml/classifiers/mi/package-use.html b/documentation/apidoc/miml/classifiers/mi/package-use.html old mode 100755 new mode 100644 index 0d41ac0..b03ca73 --- a/documentation/apidoc/miml/classifiers/mi/package-use.html +++ b/documentation/apidoc/miml/classifiers/mi/package-use.html @@ -1,12 +1,22 @@ - + - +Uses of Package miml.classifiers.mi - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Package
      miml.classifiers.mi

      No usage of miml.classifiers.mi
      +
      + diff --git a/documentation/apidoc/miml/classifiers/mi/package.svg b/documentation/apidoc/miml/classifiers/mi/package.svg new file mode 100644 index 0000000..0492885 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/mi/package.svg @@ -0,0 +1,55 @@ +miml.classifiers.miweka.classifiers.miMISMOWrapperserialVersionUID: longdistributionForInstance(Instance): double[]MISMOserialVersionUID: longFILTER_NORMALIZE: intFILTER_STANDARDIZE: intFILTER_NONE: intTAGS_FILTER: Tag[]m_classifiers: BinaryMISMO[]m_C: doublem_eps: doublem_tol: doublem_filterType: intm_minimax: booleanm_NominalToBinary: NominalToBinarym_Filter: Filterm_Missing: ReplaceMissingValuesm_classIndex: intm_classAttribute: Attributem_kernel: Kernelm_checksTurnedOff: booleanm_Del: doublem_fitLogisticModels: booleanm_numFolds: intm_randomSeed: intUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.html b/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.html old mode 100755 new mode 100644 index 682e8a8..3183018 --- a/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.html @@ -1,12 +1,22 @@ - + - +IMIMLClassifier - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +
      -
      miml.classifiers.miml
      +

      Interface IMIMLClassifier

      @@ -101,14 +126,13 @@

      Interface IMIMLClassifier
      All Superinterfaces:
      -
      mulan.classifier.MultiLabelLearner, java.io.Serializable
      +
      mulan.classifier.MultiLabelLearner, java.io.Serializable
      All Known Implementing Classes:
      -
      DMIMLkNN, EnMIMLNNmetric, KiSar, MIMLBagging, MIMLBRkNN, MIMLClassifier, MIMLClassifierToMI, MIMLClassifierToML, MIMLDGC, MIMLFast, MIMLFuzzykNN, MIMLIBLR, MIMLkNN, MIMLMAPkNN, MIMLNN, MIMLRBF, MIMLSVM, MIMLWel, MultiInstanceMultiLabelKNN, MWClassifier
      +
      DMIMLkNN, EnMIMLNNmetric, KiSar, MIMLBagging, MIMLBRkNN, MIMLClassifier, MIMLClassifierToMI, MIMLClassifierToML, MIMLDGC, MIMLFast, MIMLFuzzykNN, MIMLIBLR, MIMLkNN, MIMLMAPkNN, MIMLNN, MIMLRBF, MIMLSVM, MIMLWel, MultiInstanceMultiLabelKNN, MWClassifier

      -
      public interface IMIMLClassifier
       extends mulan.classifier.MultiLabelLearner, java.io.Serializable
      Common interface for MIML classifiers.
      @@ -125,38 +149,44 @@

      Interface IMIMLClassifier
    • +
        -
      • +
      • Method Summary

        -
    • Class Summary 
      Class
      MISMOWrapperMISMOWrapper
      Wrapper for MISMO algorithm to work in MIML to MI classifiers.
      +
      - + + - + - - + + + - + + - + +
      All Methods Instance Methods Abstract Methods 
      Modifier and TypeMethod and DescriptionMethodDescription
      voidbuild(MIMLInstances trainingSet) -
      Builds the learner model from specified MIMLInstances data.
      +
      build​(MIMLInstances trainingSet) +
      Builds the learner model from specified MIMLInstances data.
      IMIMLClassifiermakeCopy() IMIMLClassifiermakeCopy() 
      mulan.classifier.MultiLabelOutputmakePrediction(weka.core.Instance instance) makePrediction​(weka.core.Instance instance) 
      voidsetDebug(boolean debug) setDebug​(boolean debug) 
        -
      • +
      • Methods inherited from interface mulan.classifier.MultiLabelLearner

        @@ -164,6 +194,7 @@

        Methods inherited from interface mulan.classifier.MultiLabelLearner

      +
    @@ -171,18 +202,19 @@

    Methods inherited from interface mulan.classifier.MultiLabelLearner

  • +
      -
    • +
    • Method Detail

      - +
      • makePrediction

        -
        mulan.classifier.MultiLabelOutput makePrediction(weka.core.Instance instance)
        +
        mulan.classifier.MultiLabelOutput makePrediction​(weka.core.Instance instance)
                                                   throws java.lang.Exception
        Specified by:
        @@ -192,15 +224,15 @@

        makePrediction

      - +
      • build

        -
        void build(MIMLInstances trainingSet)
        +
        void build​(MIMLInstances trainingSet)
             throws java.lang.Exception
        -
        Builds the learner model from specified MIMLInstances data.
        +
        Builds the learner model from specified MIMLInstances data.
        Parameters:
        trainingSet - Set of training data, upon which the learner model should @@ -210,26 +242,26 @@

        build

      - +
      • setDebug

        -
        void setDebug(boolean debug)
        +
        void setDebug​(boolean debug)
        Specified by:
        setDebug in interface mulan.classifier.MultiLabelLearner
      - +
    +
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.svg b/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.svg new file mode 100644 index 0000000..922c6c2 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/IMIMLClassifier.svg @@ -0,0 +1,41 @@ +IMIMLClassifiermiml.classifiers.mimlmakePrediction(Instance): MultiLabelOutputbuild(MIMLInstances): voidsetDebug(boolean): voidmakeCopy(): IMIMLClassifierMultiLabelLearnermulan.classifierisUpdatable(): booleanbuild(MultiLabelInstances): voidmakeCopy(): MultiLabelLearnermakePrediction(Instance): MultiLabelOutputsetDebug(boolean): voidSerializablejava.ioUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.html b/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.html old mode 100755 new mode 100644 index 72c4f90..7ebd8bc --- a/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.html @@ -1,12 +1,22 @@ - + - + MIMLClassifier - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml
    +

    Class MIMLClassifier

    @@ -109,17 +134,16 @@

    Class MIMLClassifier

  • All Implemented Interfaces:
    -
    java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
    +
    java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
    Direct Known Subclasses:
    -
    MIMLBagging, MIMLClassifierToMI, MIMLClassifierToML, MIMLkNN, MultiInstanceMultiLabelKNN, MWClassifier
    +
    MIMLBagging, MIMLClassifierToMI, MIMLClassifierToML, MIMLkNN, MultiInstanceMultiLabelKNN, MWClassifier

    -
    public abstract class MIMLClassifier
     extends java.lang.Object
    -implements IConfiguration, IMIMLClassifier
    +implements IConfiguration, IMIMLClassifier
    This java class is based on the mulan.data.Statistics.java class provided in the Mulan java framework for multi-label learning Tsoumakas, G., Katakis, I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining and Knowledge @@ -141,171 +165,199 @@

    Class MIMLClassifier

    @@ -313,12 +365,13 @@

    Methods inherited from interface miml.core.
  • +
      -
    • +
    • Field Detail

      - +
        @@ -332,7 +385,7 @@

        serialVersionUID

      - +
        @@ -342,7 +395,7 @@

        isModelInitialized

        Boolean that indicate if the model has been initialized.
      - +
        @@ -353,7 +406,7 @@

        numLabels

        determined from the training data when learner is build.
  • - +
      @@ -366,7 +419,7 @@

      labelIndices

      the MultiLabelOutput object.
    - +
      @@ -379,7 +432,7 @@

      labelNames

      the MultiLabelOutput object.
    - +
      @@ -390,7 +443,7 @@

      featureIndices

      Instances object of the training data in increasing order.
    - +
      @@ -402,13 +455,15 @@

      isDebug

    + +
      -
    • +
    • Constructor Detail

      - +
        @@ -419,32 +474,34 @@

        MIMLClassifier

    +
    +
      -
    • +
    • Method Detail

      - +
      • isUpdatable

        -
        public boolean isUpdatable()
        +
        public boolean isUpdatable()
        Specified by:
        isUpdatable in interface mulan.classifier.MultiLabelLearner
      - +
      • build

        -
        public final void build(mulan.data.MultiLabelInstances trainingSet)
        +
        public final void build​(mulan.data.MultiLabelInstances trainingSet)
                          throws java.lang.Exception
        Specified by:
        @@ -454,19 +511,19 @@

        build

      - + - +
      • makePrediction

        -
        public final mulan.classifier.MultiLabelOutput makePrediction(weka.core.Instance instance)
        +
        public final mulan.classifier.MultiLabelOutput makePrediction​(weka.core.Instance instance)
                                                                throws java.lang.Exception,
                                                                       mulan.classifier.InvalidDataException,
                                                                       mulan.classifier.ModelInitializationException
        Specified by:
        -
        makePrediction in interface IMIMLClassifier
        +
        makePrediction in interface IMIMLClassifier
        Specified by:
        makePrediction in interface mulan.classifier.MultiLabelLearner
        Throws:
        @@ -497,32 +554,32 @@

        makePrediction

      - +
      • setDebug

        -
        public void setDebug(boolean debug)
        +
        public void setDebug​(boolean debug)
        Specified by:
        -
        setDebug in interface IMIMLClassifier
        +
        setDebug in interface IMIMLClassifier
        Specified by:
        setDebug in interface mulan.classifier.MultiLabelLearner
      - + - + - +
      • getDebug

        -
        public boolean getDebug()
        +
        public boolean getDebug()
        Get whether debugging is turned on.
        Returns:
        @@ -560,13 +617,13 @@

        getDebug

      - +
      • debug

        -
        protected void debug(java.lang.String msg)
        +
        protected void debug​(java.lang.String msg)
        Writes the debug message string to the console output if debug for the learner is enabled.
        @@ -575,17 +632,17 @@

        debug

      - +
      • buildInternal

        -
        protected abstract void buildInternal(MIMLInstances trainingSet)
        +
        protected abstract void buildInternal​(MIMLInstances trainingSet)
                                        throws java.lang.Exception
        Learner specific implementation of building the model from MultiLabelInstances training data set. This method is called from - build(MultiLabelInstances) method, where behavior common across all + build(MultiLabelInstances) method, where behavior common across all learners is applied.
        Parameters:
        @@ -595,18 +652,18 @@

        buildInternal

      - +
      • makePredictionInternal

        -
        protected abstract mulan.classifier.MultiLabelOutput makePredictionInternal(MIMLBag instance)
        +
        protected abstract mulan.classifier.MultiLabelOutput makePredictionInternal​(MIMLBag instance)
                                                                              throws java.lang.Exception,
                                                                                     mulan.classifier.InvalidDataException
        Learner specific implementation for predicting on specified data based on trained model. This method is called from - makePrediction(weka.core.Instance) which guards for model + makePrediction(weka.core.Instance) which guards for model initialization and apply common handling/behavior.
        Parameters:
        @@ -622,21 +679,25 @@

        makePredictionInternal

    +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.svg b/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.svg new file mode 100644 index 0000000..be0307b --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/MIMLClassifier.svg @@ -0,0 +1,56 @@ +MIMLClassifiermiml.classifiers.mimlserialVersionUID: longisModelInitialized: booleannumLabels: intlabelIndices: int[]labelNames: String[]featureIndices: int[]isDebug: booleanisUpdatable(): booleanbuild(MultiLabelInstances): voidbuild(MIMLInstances): voidmakePrediction(Instance): MultiLabelOutputsetDebug(boolean): voidmakeCopy(): IMIMLClassifierisModelInitialized(): booleangetDebug(): booleandebug(String): voidbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputIConfigurationmiml.coreconfigure(Configuration): voidIMIMLClassifiermiml.classifiers.mimlmakePrediction(Instance): MultiLabelOutputbuild(MIMLInstances): voidsetDebug(boolean): voidmakeCopy(): IMIMLClassifierUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/MWClassifier.html b/documentation/apidoc/miml/classifiers/miml/MWClassifier.html old mode 100755 new mode 100644 index 6c65716..2ffe3b1 --- a/documentation/apidoc/miml/classifiers/miml/MWClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/MWClassifier.html @@ -1,12 +1,22 @@ - + - + MWClassifier - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml
    +

    Class MWClassifier

    @@ -100,7 +125,7 @@

    Class MWClassifier

  • java.lang.Object
  • @@ -276,12 +318,13 @@

    Methods inherited from interface miml.core.
  • +
      -
    • +
    • Field Detail

      - +
        @@ -295,17 +338,17 @@

        serialVersionUID

      - + - +
        @@ -318,13 +361,15 @@

        classifier

    +
    +
      -
    • +
    • Constructor Detail

      - +
        @@ -335,28 +380,30 @@

        MWClassifier

    +
    +
      -
    • +
    • Method Detail

      - + - + - +
      • trainMWClassifier

        -
        protected abstract void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
        +
        protected abstract void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                   com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                            throws com.mathworks.toolbox.javabuilder.MWException
        Trains a Matlab classifier. Returns the classifier model in an array of @@ -419,13 +466,13 @@

        trainMWClassifier

      - +
      • predictMWClassifier

        -
        protected abstract java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
        +
        protected abstract java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                   com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                   com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                            throws com.mathworks.toolbox.javabuilder.MWException
        @@ -456,13 +503,13 @@

        predictMWClassifier

      - +
      • dispose

        -
        public abstract void dispose()
        +
        public abstract void dispose()
        Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
        @@ -470,21 +517,25 @@

        dispose

    +
  • +

    + diff --git a/documentation/apidoc/miml/classifiers/miml/MWClassifier.svg b/documentation/apidoc/miml/classifiers/miml/MWClassifier.svg new file mode 100644 index 0000000..af9f8a9 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/MWClassifier.svg @@ -0,0 +1,38 @@ +MWClassifiermiml.classifiers.mimlserialVersionUID: longwrapper: MWTranslatorclassifier: Object[]buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/class-use/IMIMLClassifier.html b/documentation/apidoc/miml/classifiers/miml/class-use/IMIMLClassifier.html old mode 100755 new mode 100644 index 24574cf..cc3d7fe --- a/documentation/apidoc/miml/classifiers/miml/class-use/IMIMLClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/class-use/IMIMLClassifier.html @@ -1,12 +1,22 @@ - + - + Uses of Interface miml.classifiers.miml.IMIMLClassifier - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Interface
    miml.classifiers.miml.IMIMLClassifier

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/class-use/MIMLClassifier.html b/documentation/apidoc/miml/classifiers/miml/class-use/MIMLClassifier.html old mode 100755 new mode 100644 index 70e9f94..7f9e97e --- a/documentation/apidoc/miml/classifiers/miml/class-use/MIMLClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/class-use/MIMLClassifier.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.MIMLClassifier - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.MIMLClassifier

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/class-use/MWClassifier.html b/documentation/apidoc/miml/classifiers/miml/class-use/MWClassifier.html old mode 100755 new mode 100644 index 75e7eca..d14f871 --- a/documentation/apidoc/miml/classifiers/miml/class-use/MWClassifier.html +++ b/documentation/apidoc/miml/classifiers/miml/class-use/MWClassifier.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.MWClassifier - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.MWClassifier

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.html old mode 100755 new mode 100644 index 24640c4..b5e93e8 --- a/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.html @@ -1,12 +1,22 @@ - + - + DMIMLkNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class DMIMLkNN

    @@ -100,10 +125,10 @@

    Class DMIMLkNN

  • java.lang.Object
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.svg new file mode 100644 index 0000000..1f0c530 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/DMIMLkNN.svg @@ -0,0 +1,36 @@ +DMIMLkNNmiml.classifiers.miml.lazyserialVersionUID: longsmooth: doubleDMIMLkNN(MIMLDistanceFunction)DMIMLkNN(int, MIMLDistanceFunction)DMIMLkNN(int, double, MIMLDistanceFunction)DMIMLkNN()configure(Configuration): voidgetSmooth(): doublesetSmooth(double): voidMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.html old mode 100755 new mode 100644 index eb9b76f..92a70b5 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.html @@ -1,12 +1,22 @@ - + - + MIMLBRkNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLBRkNN

    @@ -100,10 +125,10 @@

    Class MIMLBRkNN

  • java.lang.Object
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.svg new file mode 100644 index 0000000..f25c127 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLBRkNN.svg @@ -0,0 +1,36 @@ +MIMLBRkNNmiml.classifiers.miml.lazyserialVersionUID: longextension: ExtensionTypeMIMLBRkNN()MIMLBRkNN(MIMLDistanceFunction)MIMLBRkNN(MIMLDistanceFunction, int)MIMLBRkNN(MIMLDistanceFunction, int, ExtensionType)configure(Configuration): voidgetExtension(): ExtensionTypesetExtension(ExtensionType): voidMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.html old mode 100755 new mode 100644 index 0b2a3ca..ef44691 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.html @@ -1,12 +1,22 @@ - + - + MIMLDGC - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLDGC

    @@ -100,10 +125,10 @@

    Class MIMLDGC

  • java.lang.Object
  • @@ -256,12 +294,13 @@

    Methods inherited from class java.lang.Object

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.svg new file mode 100644 index 0000000..5af5c14 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDGC.svg @@ -0,0 +1,32 @@ +MIMLDGCmiml.classifiers.miml.lazyserialVersionUID: longMIMLDGC()MIMLDGC(MIMLDistanceFunction)MIMLDGC(MIMLDistanceFunction, int)configure(Configuration): voidMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.html old mode 100755 new mode 100644 index ac26289..56607c6 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.html @@ -1,12 +1,22 @@ - + - + MIMLDistanceFunction - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLDistanceFunction

    @@ -114,10 +139,9 @@

    Class MIMLDistanceFunction<
  • All Implemented Interfaces:
    -
    java.io.Serializable, weka.core.DistanceFunction, weka.core.OptionHandler, weka.core.RevisionHandler
    +
    java.io.Serializable, weka.core.DistanceFunction, weka.core.OptionHandler, weka.core.RevisionHandler

    -
    public class MIMLDistanceFunction
     extends weka.core.NormalizableDistance
    Wrapper for using IDistance metrics of MIML package with Mulan Lazy @@ -133,30 +157,34 @@

    Class MIMLDistanceFunction<

    @@ -310,12 +366,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -328,31 +385,33 @@

          serialVersionUID

        - +
        • metric

          -
          protected IDistance metric
          +
          protected IDistance metric
          Metric to measure distance between bags.
      +
      +
        -
      • +
      • Constructor Detail

        - +
        • MIMLDistanceFunction

          -
          public MIMLDistanceFunction(IDistance metric)
          +
          public MIMLDistanceFunction​(IDistance metric)
          Constructor that sets the metric to be used.
          Parameters:
          @@ -362,19 +421,21 @@

          MIMLDistanceFunction

      +
      +
        -
      • +
      • Method Detail

        - +
        • setMetric

          -
          public void setMetric(IDistance metric)
          +
          public void setMetric​(IDistance metric)
          Sets the metric to be used.
          Parameters:
          @@ -382,22 +443,22 @@

          setMetric

        - + - +
        • distance

          -
          public double distance(weka.core.Instance arg0,
          +
          public double distance​(weka.core.Instance arg0,
                                  weka.core.Instance arg1,
                                  double arg2,
                                  weka.core.neighboursearch.PerformanceStats arg3)
          @@ -409,13 +470,13 @@

          distance

        - +
        • getOptions

          -
          public java.lang.String[] getOptions()
          +
          public java.lang.String[] getOptions()
          Specified by:
          getOptions in interface weka.core.OptionHandler
          @@ -424,13 +485,13 @@

          getOptions

        - +
        • setOptions

          -
          public void setOptions(java.lang.String[] arg0)
          +
          public void setOptions​(java.lang.String[] arg0)
                           throws java.lang.Exception
          Specified by:
          @@ -442,13 +503,13 @@

          setOptions

        - +
        • distance

          -
          public double distance(weka.core.Instance arg0,
          +
          public double distance​(weka.core.Instance arg0,
                                  weka.core.Instance arg1)
          Specified by:
          @@ -458,13 +519,13 @@

          distance

        - +
        • distance

          -
          public double distance(weka.core.Instance arg0,
          +
          public double distance​(weka.core.Instance arg0,
                                  weka.core.Instance arg1,
                                  weka.core.neighboursearch.PerformanceStats arg2)
          @@ -475,13 +536,13 @@

          distance

        - +
        • distance

          -
          public double distance(weka.core.Instance arg0,
          +
          public double distance​(weka.core.Instance arg0,
                                  weka.core.Instance arg1,
                                  double arg2)
          @@ -492,13 +553,13 @@

          distance

        - +
        • setInstances

          -
          public void setInstances(weka.core.Instances insts)
          +
          public void setInstances​(weka.core.Instances insts)
          Specified by:
          setInstances in interface weka.core.DistanceFunction
          @@ -507,13 +568,13 @@

          setInstances

        - +
        • getInstances

          -
          public weka.core.Instances getInstances()
          +
          public weka.core.Instances getInstances()
          Specified by:
          getInstances in interface weka.core.DistanceFunction
          @@ -522,13 +583,13 @@

          getInstances

        - +
        • setAttributeIndices

          -
          public void setAttributeIndices(java.lang.String value)
          +
          public void setAttributeIndices​(java.lang.String value)
          Specified by:
          setAttributeIndices in interface weka.core.DistanceFunction
          @@ -537,13 +598,13 @@

          setAttributeIndices

        - +
        • getAttributeIndices

          -
          public java.lang.String getAttributeIndices()
          +
          public java.lang.String getAttributeIndices()
          Specified by:
          getAttributeIndices in interface weka.core.DistanceFunction
          @@ -552,13 +613,13 @@

          getAttributeIndices

        - +
        • setInvertSelection

          -
          public void setInvertSelection(boolean value)
          +
          public void setInvertSelection​(boolean value)
          Specified by:
          setInvertSelection in interface weka.core.DistanceFunction
          @@ -567,13 +628,13 @@

          setInvertSelection

        - +
        • getInvertSelection

          -
          public boolean getInvertSelection()
          +
          public boolean getInvertSelection()
          Specified by:
          getInvertSelection in interface weka.core.DistanceFunction
          @@ -582,13 +643,13 @@

          getInvertSelection

        - +
        • postProcessDistances

          -
          public void postProcessDistances(double[] distances)
          +
          public void postProcessDistances​(double[] distances)
          Specified by:
          postProcessDistances in interface weka.core.DistanceFunction
          @@ -597,13 +658,13 @@

          postProcessDistances

        - +
        • update

          -
          public void update(weka.core.Instance ins)
          +
          public void update​(weka.core.Instance ins)
          Specified by:
          update in interface weka.core.DistanceFunction
          @@ -612,13 +673,13 @@

          update

        - +
        • listOptions

          -
          public java.util.Enumeration<?> listOptions()
          +
          public java.util.Enumeration<?> listOptions()
          Specified by:
          listOptions in interface weka.core.OptionHandler
          @@ -627,35 +688,35 @@

          listOptions

        - +
        • getRevision

          -
          public java.lang.String getRevision()
          +
          public java.lang.String getRevision()
        - +
        • globalInfo

          -
          public java.lang.String globalInfo()
          +
          public java.lang.String globalInfo()
          Specified by:
          globalInfo in class weka.core.NormalizableDistance
        - +
        • updateDistance

          -
          protected double updateDistance(double currDist,
          +
          protected double updateDistance​(double currDist,
                                           double diff)
          Specified by:
          @@ -665,21 +726,25 @@

          updateDistance

      +
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.svg new file mode 100644 index 0000000..cd11e27 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLDistanceFunction.svg @@ -0,0 +1,53 @@ +MIMLDistanceFunctionmiml.classifiers.miml.lazyserialVersionUID: longmetric: IDistanceMIMLDistanceFunction(IDistance)setMetric(IDistance): voidgetMetric(): IDistancedistance(Instance, Instance, double, PerformanceStats): doublegetOptions(): String[]setOptions(String[]): voiddistance(Instance, Instance): doubledistance(Instance, Instance, PerformanceStats): doubledistance(Instance, Instance, double): doublesetInstances(Instances): voidgetInstances(): InstancessetAttributeIndices(String): voidgetAttributeIndices(): StringsetInvertSelection(boolean): voidgetInvertSelection(): booleanpostProcessDistances(double[]): voidupdate(Instance): voidlistOptions(): Enumeration<?>getRevision(): StringglobalInfo(): StringupdateDistance(double, double): doubleNormalizableDistanceweka.coreglobalInfo(): StringupdateDistance(double, double): doubleUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.html old mode 100755 new mode 100644 index 34029ab..31f820f --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.html @@ -1,12 +1,22 @@ - + - + MIMLFuzzykNN.LinearNNESearch - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLFuzzykNN.LinearNNESearch

    @@ -119,14 +144,13 @@

    Class MIMLFuzzykNN.
  • All Implemented Interfaces:
    -
    java.io.Serializable, weka.core.AdditionalMeasureProducer, weka.core.OptionHandler, weka.core.RevisionHandler
    +
    java.io.Serializable, weka.core.AdditionalMeasureProducer, weka.core.OptionHandler, weka.core.RevisionHandler
    Enclosing class:
    -
    MIMLFuzzykNN
    +
    MIMLFuzzykNN

    -
    class MIMLFuzzykNN.LinearNNESearch
     extends weka.core.neighboursearch.LinearNNSearch
  • @@ -136,13 +160,14 @@

    Class MIMLFuzzykNN.
    • +
        -
      • +
      • Nested Class Summary

          -
        • +
        • Nested classes/interfaces inherited from class weka.core.neighboursearch.NearestNeighbourSearch

          @@ -150,34 +175,38 @@

          Nested classes/interfaces inherited from class weka.core.neighboursearc

      +
      +
        -
      • +
      • Field Summary

        - +
        - + + - +
        Fields 
        Modifier and TypeField and DescriptionFieldDescription
        private static longserialVersionUID +serialVersionUID
        For serialization
          -
        • +
        • Fields inherited from class weka.core.neighboursearch.LinearNNSearch

          m_Distances, m_SkipIdentical
          -
        • +
        • Fields inherited from class weka.core.neighboursearch.NearestNeighbourSearch

          @@ -185,57 +214,65 @@

          Fields inherited from class weka.core.neighboursearch.NearestNeighbourS

      +
      +
        -
      • +
      • Constructor Summary

        - +
        - + + - + +
        Constructors 
        Constructor and DescriptionConstructorDescription
        LinearNNESearch(weka.core.Instances insts) LinearNNESearch​(weka.core.Instances insts) 
      +
      +
        -
      • +
      • Method Summary

        - +
        - + + - + +
        All Methods Instance Methods Concrete Methods 
        Modifier and TypeMethod and DescriptionMethodDescription
        int[]kNearestNeighboursIndices(weka.core.Instance target, - int kNN) kNearestNeighboursIndices​(weka.core.Instance target, + int kNN) 
          -
        • +
        • Methods inherited from class weka.core.neighboursearch.LinearNNSearch

          addInstanceInfo, getDistances, getOptions, getRevision, getSkipIdentical, globalInfo, kNearestNeighbours, listOptions, nearestNeighbour, setInstances, setOptions, setSkipIdentical, skipIdenticalTipText, update
          -
        • +
        • Methods inherited from class weka.core.neighboursearch.NearestNeighbourSearch

          combSort11, distanceFunctionTipText, enumerateMeasures, getDistanceFunction, getInstances, getMeasure, getMeasurePerformance, getPerformanceStats, measurePerformanceTipText, partition, quickSort, setDistanceFunction, setMeasurePerformance
          -
        • +
        • Methods inherited from class java.lang.Object

          @@ -243,6 +280,7 @@

          Methods inherited from class java.lang.Object

      +

    @@ -250,12 +288,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -271,19 +310,21 @@

          serialVersionUID

      +
      +
        -
      • +
      • Constructor Detail

        - +
        • LinearNNESearch

          -
          public LinearNNESearch(weka.core.Instances insts)
          +
          public LinearNNESearch​(weka.core.Instances insts)
                           throws java.lang.Exception
          Throws:
          @@ -293,19 +334,21 @@

          LinearNNESearch

      +
      +
        -
      • +
      • Method Detail

        - +
        • kNearestNeighboursIndices

          -
          public int[] kNearestNeighboursIndices(weka.core.Instance target,
          +
          public int[] kNearestNeighboursIndices​(weka.core.Instance target,
                                                  int kNN)
                                           throws java.lang.Exception
          @@ -316,21 +359,25 @@

          kNearestNeighboursIndices

      +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.svg new file mode 100644 index 0000000..310c640 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.LinearNNESearch.svg @@ -0,0 +1,34 @@ +MIMLFuzzykNN.LinearNNESearchmiml.classifiers.miml.lazyserialVersionUID: longLinearNNESearch(Instances)kNearestNeighboursIndices(Instance, int): int[]LinearNNSearchweka.core.neighboursearchMIMLFuzzykNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.html old mode 100755 new mode 100644 index 27c1103..79aea5d --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.html @@ -1,12 +1,22 @@ - + - + MIMLFuzzykNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLFuzzykNN

    @@ -94,10 +119,10 @@

    Class MIMLFuzzykNN

  • java.lang.Object
  • @@ -284,12 +330,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -303,17 +350,17 @@

          serialVersionUID

        - + - +
          @@ -323,7 +370,7 @@

          k

          Neighborhood size.
        - +
          @@ -333,7 +380,7 @@

          U

          Partition matrix of num_labels x num_bags
        - +
          @@ -343,7 +390,7 @@

          kini

          Neighborhood size for initialization of U matrix.
        - +
          @@ -353,7 +400,7 @@

          m

          Fuzzy exponent.
        - +
          @@ -363,17 +410,17 @@

          ini

          Type of initialization: Crisp, fuzzy
        - + - +
          @@ -385,13 +432,15 @@

          e

      +
      +
        -
      • +
      • Constructor Detail

        - +
          @@ -402,21 +451,25 @@

          MIMLFuzzykNN

      +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.svg new file mode 100644 index 0000000..8cbd70f --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLFuzzykNN.svg @@ -0,0 +1,40 @@ +MIMLFuzzykNNmiml.classifiers.miml.lazyserialVersionUID: longdataset: MIMLInstancesk: intU: double[]kini: intm: doubleini: intelnn: LinearNNESearche: doubleMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyMIMLFuzzykNN.LinearNNESearchmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.html old mode 100755 new mode 100644 index 71da6d2..0bcc586 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.html @@ -1,12 +1,22 @@ - + - + MIMLIBLR - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLIBLR

    @@ -100,10 +125,10 @@

    Class MIMLIBLR

  • java.lang.Object
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.svg new file mode 100644 index 0000000..40d9b82 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLIBLR.svg @@ -0,0 +1,36 @@ +MIMLIBLRmiml.classifiers.miml.lazyserialVersionUID: longaddFeatures: booleanMIMLIBLR(MIMLDistanceFunction)MIMLIBLR(int, MIMLDistanceFunction)MIMLIBLR(int, boolean, MIMLDistanceFunction)MIMLIBLR()configure(Configuration): voidgetAddFeatures(): booleansetAddFeatures(boolean): voidMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.html old mode 100755 new mode 100644 index eaadf36..01e7142 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.html @@ -1,12 +1,22 @@ - + - + MIMLMAPkNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLMAPkNN

    @@ -100,10 +125,10 @@

    Class MIMLMAPkNN

  • java.lang.Object
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.svg new file mode 100644 index 0000000..99833db --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLMAPkNN.svg @@ -0,0 +1,36 @@ +MIMLMAPkNNmiml.classifiers.miml.lazyserialVersionUID: longsmooth: doubleMIMLMAPkNN(MIMLDistanceFunction)MIMLMAPkNN(int, MIMLDistanceFunction)MIMLMAPkNN(int, double, MIMLDistanceFunction)MIMLMAPkNN()configure(Configuration): voidgetSmooth(): doublesetSmooth(double): voidMultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.html old mode 100755 new mode 100644 index de268a7..9bd40b5 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.html @@ -1,12 +1,22 @@ - + - + MIMLkNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MIMLkNN

    @@ -100,7 +125,7 @@

    Class MIMLkNN

  • java.lang.Object
    • -
    • miml.classifiers.miml.MIMLClassifier
    • +
    • miml.classifiers.miml.MIMLClassifier
      • miml.classifiers.miml.lazy.MIMLkNN
      • @@ -114,12 +139,11 @@

        Class MIMLkNN

      • All Implemented Interfaces:
        -
        java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
        +
        java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner

        -
        public class MIMLkNN
        -extends MIMLClassifier
        +extends MIMLClassifier
        Class implementing the MIMLkNN algorithm for MIML data. For more information, see Zhang, M. L. (2010, October). A k-nearest neighbor based multi-instance multi-label learning algorithm. In 2010 22nd IEEE @@ -140,256 +164,295 @@

        Class MIMLkNN

        @@ -404,12 +468,13 @@

        Methods inherited from class java.lang.Object

        • +
            -
          • +
          • Field Detail

            - +
              @@ -423,7 +488,7 @@

              serialVersionUID

            - +
              @@ -433,7 +498,7 @@

              num_citers

              Number of citers.
            - +
              @@ -443,27 +508,27 @@

              num_references

              Number of references.
            - +
            • metric

              -
              protected IDistance metric
              +
              protected IDistance metric
              Metric for measure the distance between bags.
            - + - +
              @@ -473,7 +538,7 @@

              d_size

              Dataset size (number of bags).
            - +
              @@ -483,7 +548,7 @@

              distance_matrix

              Distance matrix between dataset's instances.
            - +
              @@ -493,7 +558,7 @@

              ref_matrix

              Instances' references matrix.
            - +
              @@ -503,7 +568,7 @@

              weights_matrix

              Weights matrix.
            - +
              @@ -513,7 +578,7 @@

              t_matrix

              The t matrix.
            - +
              @@ -525,21 +590,23 @@

              phi_matrix

          +
          +
            -
          • +
          • Constructor Detail

            - +
            • MIMLkNN

              -
              public MIMLkNN(int num_references,
              +
              public MIMLkNN​(int num_references,
                              int num_citers,
              -               IDistance metric)
              + IDistance metric)
              Basic constructor to initialize the classifier.
              Parameters:
              @@ -550,13 +617,13 @@

              MIMLkNN

            - +
            • MIMLkNN

              -
              public MIMLkNN(IDistance metric)
              +
              public MIMLkNN​(IDistance metric)
              Instantiates a new MIMLkNN with values by default except distance metric.
              Parameters:
              @@ -564,7 +631,7 @@

              MIMLkNN

            - +
              @@ -576,54 +643,56 @@

              MIMLkNN

          +
          +
            -
          • +
          • Method Detail

            - + - + - +
            • calculateDatasetDistances

              -
              protected void calculateDatasetDistances()
              +
              protected void calculateDatasetDistances()
                                                 throws java.lang.Exception
              Calculate the distances matrix of current data set with the metric assigned.
              @@ -650,13 +719,13 @@

              calculateDatasetDistances

            - +
            • calculateReferenceMatrix

              -
              protected void calculateReferenceMatrix()
              +
              protected void calculateReferenceMatrix()
                                                throws java.lang.Exception
              Calculate the references matrix.
              @@ -665,13 +734,13 @@

              calculateReferenceMatrix

            - +
            • calculateBagReferences

              -
              protected int[] calculateBagReferences(int indexBag)
              +
              protected int[] calculateBagReferences​(int indexBag)
                                               throws java.lang.Exception
              Calculate the references of a bag specified by its index. It's necessary calculate the distance matrix previously.
              @@ -685,13 +754,13 @@

              calculateBagReferences

            - +
            • getReferences

              -
              protected int[] getReferences(int indexBag)
              +
              protected int[] getReferences​(int indexBag)
              Gets the references of a specified bag.
              Parameters:
              @@ -701,13 +770,13 @@

              getReferences

            - +
            • getCiters

              -
              protected int[] getCiters(int indexBag)
              +
              protected int[] getCiters​(int indexBag)
              Calculate and return the citers of a bag specified by its index. It's necessary calculate the distance matrix first.
              @@ -718,13 +787,13 @@

              getCiters

            - +
            • getUnionNeighbours

              -
              protected java.lang.Integer[] getUnionNeighbours(int indexBag)
              +
              protected java.lang.Integer[] getUnionNeighbours​(int indexBag)
              Gets the union of references and citers (without repetitions) of the bag specified.
              @@ -735,13 +804,13 @@

              getUnionNeighbours

            - +
            • calculateRecordLabel

              -
              protected double[] calculateRecordLabel(java.lang.Integer[] indices)
              +
              protected double[] calculateRecordLabel​(java.lang.Integer[] indices)
              Calculate the number of times each label appears in the bag's neighborhood.
              Parameters:
              @@ -751,13 +820,13 @@

              calculateRecordLabel

            - +
            • getBagLabels

              -
              protected double[] getBagLabels(int bagIndex)
              +
              protected double[] getBagLabels​(int bagIndex)
              Gets the labels of specified bag.
              Parameters:
              @@ -767,13 +836,13 @@

              getBagLabels

            - +
            • getWeightsMatrix

              -
              protected double[][] getWeightsMatrix()
              +
              protected double[][] getWeightsMatrix()
              Calculate the weights matrix used for prediction.
              Returns:
              @@ -781,13 +850,13 @@

              getWeightsMatrix

            - +
            • linearClassifier

              -
              protected boolean linearClassifier(double[] weights,
              +
              protected boolean linearClassifier​(double[] weights,
                                                  double[] record)
              Classifier that determines the labels associated with an example. A linear classifier uses the label counting vector of the example and the weight @@ -801,13 +870,13 @@

              linearClassifier

            - +
            • getNumCiters

              -
              public int getNumCiters()
              +
              public int getNumCiters()
              Returns the number of citers considered to estimate the class prediction of tests bags.
              @@ -816,13 +885,13 @@

              getNumCiters

            - +
            • setNumCiters

              -
              public void setNumCiters(int numCiters)
              +
              public void setNumCiters​(int numCiters)
              Sets the number of citers considered to estimate the class prediction of tests bags.
              @@ -831,13 +900,13 @@

              setNumCiters

            - +
            • getNumReferences

              -
              public int getNumReferences()
              +
              public int getNumReferences()
              Returns the number of references considered to estimate the class prediction of tests bags.
              @@ -846,13 +915,13 @@

              getNumReferences

            - +
            • setNumReferences

              -
              public void setNumReferences(int numReferences)
              +
              public void setNumReferences​(int numReferences)
              Sets the number of references considered to estimate the class prediction of tests bags.
              @@ -861,14 +930,14 @@

              setNumReferences

            - +
            • configure

              -
              public void configure(org.apache.commons.configuration2.Configuration configuration)
              -
              Description copied from interface: IConfiguration
              +
              public void configure​(org.apache.commons.configuration2.Configuration configuration)
              +
              Description copied from interface: IConfiguration
              Method to configure the class with the given configuration.
              Parameters:
              @@ -878,21 +947,25 @@

              configure

          +
  • +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.svg new file mode 100644 index 0000000..c2e2fa9 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MIMLkNN.svg @@ -0,0 +1,61 @@ +MIMLkNNmiml.classifiers.miml.lazyserialVersionUID: longnum_citers: intnum_references: intmetric: IDistancedataset: MIMLInstancesd_size: intdistance_matrix: double[]ref_matrix: int[]weights_matrix: double[]t_matrix: double[]phi_matrix: double[]MIMLkNN(int, int, IDistance)MIMLkNN(IDistance)MIMLkNN()buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputcalculateDatasetDistances(): voidcalculateReferenceMatrix(): voidcalculateBagReferences(int): int[]getReferences(int): int[]getCiters(int): int[]getUnionNeighbours(int): Integer[]calculateRecordLabel(Integer[]): double[]getBagLabels(int): double[]getWeightsMatrix(): double[]linearClassifier(double[], double[]): booleangetNumCiters(): intsetNumCiters(int): voidgetNumReferences(): intsetNumReferences(int): voidconfigure(Configuration): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.html old mode 100755 new mode 100644 index a52c193..67e12b0 --- a/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.html @@ -1,12 +1,22 @@ - + - + MultiInstanceMultiLabelKNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +
    -
    miml.classifiers.miml.lazy
    +

    Class MultiInstanceMultiLabelKNN

    @@ -100,7 +125,7 @@

    Class MultiInstanceMu
  • java.lang.Object
  • @@ -299,12 +348,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -318,7 +368,7 @@

          serialVersionUID

        - +
          @@ -328,17 +378,17 @@

          numOfNeighbours

          Number of neighbours used in the k-nearest neighbor algorithm.
        - + - +
          @@ -350,19 +400,21 @@

          classifier

      +
      +
        -
      • +
      • Constructor Detail

        - +
        • MultiInstanceMultiLabelKNN

          -
          public MultiInstanceMultiLabelKNN(MIMLDistanceFunction metric)
          +
          public MultiInstanceMultiLabelKNN​(MIMLDistanceFunction metric)
          Constructor to initialize the classifier. It sets the numberOfNeighbours to 10
          @@ -372,13 +424,13 @@

          MultiInstanceMultiLabelKNN

        - +
        • MultiInstanceMultiLabelKNN

          -
          public MultiInstanceMultiLabelKNN(MIMLDistanceFunction metric,
          +
          public MultiInstanceMultiLabelKNN​(MIMLDistanceFunction metric,
                                             int numOfNeighbours)
          Constructor to initialize the classifier. It sets the numOfNeighbours to 10
          @@ -389,7 +441,7 @@

          MultiInstanceMultiLabelKNN

        - +
          @@ -401,20 +453,22 @@

          MultiInstanceMultiLabelKNN

      +
      +
        -
      • +
      • Method Detail

        - +
        • configure

          -
          public void configure(org.apache.commons.configuration2.Configuration configuration)
          -
          Description copied from interface: IConfiguration
          +
          public void configure​(org.apache.commons.configuration2.Configuration configuration)
          +
          Description copied from interface: IConfiguration
          Method to configure the class with the given configuration.
          Parameters:
          @@ -422,22 +476,22 @@

          configure

        - + - + - +
        • getMetric

          -
          public weka.core.DistanceFunction getMetric()
          +
          public weka.core.DistanceFunction getMetric()
          Gets the distance metric considered by the classifier.
          Returns:
          @@ -487,13 +541,13 @@

          getMetric

        - +
        • setMetric

          -
          public void setMetric(weka.core.DistanceFunction metric)
          +
          public void setMetric​(weka.core.DistanceFunction metric)
          Sets the distance metric considered by the classifier.
          Parameters:
          @@ -501,31 +555,31 @@

          setMetric

        - +
        • getClassifier

          -
          public mulan.classifier.lazy.MultiLabelKNN getClassifier()
          +
          public mulan.classifier.lazy.MultiLabelKNN getClassifier()
        - +
        • setClassifier

          -
          public void setClassifier(mulan.classifier.lazy.MultiLabelKNN classifier)
          +
          public void setClassifier​(mulan.classifier.lazy.MultiLabelKNN classifier)
        - +
        • getNumOfNeighbours

          -
          public int getNumOfNeighbours()
          +
          public int getNumOfNeighbours()
          Gets the number of neigbors considered by the classifier.
          Returns:
          @@ -533,13 +587,13 @@

          getNumOfNeighbours

        - +
        • setnumOfNeighbours

          -
          public void setnumOfNeighbours(int numOfNeighbours)
          +
          public void setnumOfNeighbours​(int numOfNeighbours)
          Sets the number of neigbors considered by the classifier.
          Parameters:
          @@ -549,21 +603,25 @@

          setnumOfNeighbours

      +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.svg b/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.svg new file mode 100644 index 0000000..196b756 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.svg @@ -0,0 +1,46 @@ +MultiInstanceMultiLabelKNNmiml.classifiers.miml.lazyserialVersionUID: longnumOfNeighbours: intmetric: MIMLDistanceFunctionclassifier: MultiLabelKNNMultiInstanceMultiLabelKNN(MIMLDistanceFunction)MultiInstanceMultiLabelKNN(MIMLDistanceFunction, int)MultiInstanceMultiLabelKNN()configure(Configuration): voidbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputgetMetric(): DistanceFunctionsetMetric(DistanceFunction): voidgetClassifier(): MultiLabelKNNsetClassifier(MultiLabelKNN): voidgetNumOfNeighbours(): intsetnumOfNeighbours(int): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/DMIMLkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/DMIMLkNN.html old mode 100755 new mode 100644 index 350053c..ab17de2 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/DMIMLkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/DMIMLkNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.DMIMLkNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.DMIMLkNN

    No usage of miml.classifiers.miml.lazy.DMIMLkNN
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLBRkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLBRkNN.html old mode 100755 new mode 100644 index 9042810..36db63a --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLBRkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLBRkNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLBRkNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLBRkNN

    No usage of miml.classifiers.miml.lazy.MIMLBRkNN
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDGC.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDGC.html old mode 100755 new mode 100644 index 7a6bae1..9958ea1 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDGC.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDGC.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLDGC - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLDGC

    No usage of miml.classifiers.miml.lazy.MIMLDGC
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDistanceFunction.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDistanceFunction.html old mode 100755 new mode 100644 index 0aebd06..2ffe788 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDistanceFunction.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLDistanceFunction.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLDistanceFunction - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLDistanceFunction

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.LinearNNESearch.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.LinearNNESearch.html old mode 100755 new mode 100644 index c87a78c..ceccef1 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.LinearNNESearch.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.LinearNNESearch.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLFuzzykNN.LinearNNESearch

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.html old mode 100755 new mode 100644 index 8475cef..e016105 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLFuzzykNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLFuzzykNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLFuzzykNN

    No usage of miml.classifiers.miml.lazy.MIMLFuzzykNN
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLIBLR.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLIBLR.html old mode 100755 new mode 100644 index 592d18a..0902723 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLIBLR.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLIBLR.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLIBLR - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLIBLR

    No usage of miml.classifiers.miml.lazy.MIMLIBLR
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLMAPkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLMAPkNN.html old mode 100755 new mode 100644 index 68deb9f..0ee1062 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLMAPkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLMAPkNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLMAPkNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLMAPkNN

    No usage of miml.classifiers.miml.lazy.MIMLMAPkNN
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLkNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLkNN.html old mode 100755 new mode 100644 index 6f9527d..b98e8ea --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLkNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MIMLkNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MIMLkNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MIMLkNN

    No usage of miml.classifiers.miml.lazy.MIMLkNN
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MultiInstanceMultiLabelKNN.html b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MultiInstanceMultiLabelKNN.html old mode 100755 new mode 100644 index e118dfa..a73a525 --- a/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MultiInstanceMultiLabelKNN.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/class-use/MultiInstanceMultiLabelKNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN

    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/package-frame.html b/documentation/apidoc/miml/classifiers/miml/lazy/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/lazy/package-summary.html b/documentation/apidoc/miml/classifiers/miml/lazy/package-summary.html old mode 100755 new mode 100644 index 348fb58..be6c4bb --- a/documentation/apidoc/miml/classifiers/miml/lazy/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/lazy/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.lazy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Package miml.classifiers.miml.lazy

    + +
    +
    +
    +
    @@ -368,12 +426,13 @@

    Methods inherited from class java.lang.Object

    • +
        -
      • +
      • Field Detail

        - +
          @@ -387,7 +446,7 @@

          serialVersionUID

        - +
          @@ -397,7 +456,7 @@

          threshold

          Threshold for predictions.
        - +
          @@ -407,7 +466,7 @@

          seed

          Seed for randomization.
        - +
          @@ -418,7 +477,7 @@

          sampleWithReplacement

          default it is false.
        - +
          @@ -429,7 +488,7 @@

          useConfidences

          bipartition.
        - +
          @@ -439,7 +498,7 @@

          samplePercentage

          The size of the sample to build each base classifier.
        - +
          @@ -449,35 +508,37 @@

          numClassifiers

          Number of classifiers in the ensemble.
        - + - +
        • ensemble

          -
          protected IMIMLClassifier[] ensemble
          +
          protected IMIMLClassifier[] ensemble
          The ensemble of MultiLabelLearners. To be initialized by the builder method.
      +
      +
        -
      • +
      • Constructor Detail

        - +
          @@ -487,13 +548,13 @@

          MIMLBagging

          No-argument constructor for xml configuration.
        - +
        • MIMLBagging

          -
          public MIMLBagging(IMIMLClassifier baseLearner,
          +
          public MIMLBagging​(IMIMLClassifier baseLearner,
                              int numClassifiers)
          Constructor of the class. Its default setting is: @li sampleWithReplacement=false @li threshold=0.5.
          @@ -504,13 +565,13 @@

          MIMLBagging

        - +
        • MIMLBagging

          -
          public MIMLBagging(IMIMLClassifier baseLearner,
          +
          public MIMLBagging​(IMIMLClassifier baseLearner,
                              int numClassifiers,
                              double samplePercentage)
          Constructor of the class. Its default setting is: @li @@ -525,28 +586,30 @@

          MIMLBagging

      +
      +
        -
      • +
      • Method Detail

        - + - + - +
        • configure

          -
          public void configure(org.apache.commons.configuration2.Configuration configuration)
          -
          Description copied from interface: IConfiguration
          +
          public void configure​(org.apache.commons.configuration2.Configuration configuration)
          +
          Description copied from interface: IConfiguration
          Method to configure the class with the given configuration.
          Parameters:
          @@ -597,13 +660,13 @@

          configure

        - +
        • setSeed

          -
          public void setSeed(int seed)
          +
          public void setSeed​(int seed)
          Sets the seed value.
          Parameters:
          @@ -611,13 +674,13 @@

          setSeed

        - +
        • getNumClassifiers

          -
          public int getNumClassifiers()
          +
          public int getNumClassifiers()
          Returns the number of classifiers of the ensemble.
          Returns:
          @@ -625,13 +688,13 @@

          getNumClassifiers

        - +
        • getSamplePercentage

          -
          public double getSamplePercentage()
          +
          public double getSamplePercentage()
          Returns the percentage of instances used for sampling with replacement.
          Returns:
          @@ -639,13 +702,13 @@

          getSamplePercentage

        - +
        • setSamplePercentage

          -
          public void setSamplePercentage(double samplePercentage)
          +
          public void setSamplePercentage​(double samplePercentage)
          Sets the percentage of instances used for sampling with replacement*.
          Parameters:
          @@ -653,13 +716,13 @@

          setSamplePercentage

        - +
        • isSampleWithReplacement

          -
          public boolean isSampleWithReplacement()
          +
          public boolean isSampleWithReplacement()
          Returns true if the algorithm is configured with sampling and false otherwise.
          @@ -669,13 +732,13 @@

          isSampleWithReplacement

        - +
        • setSampleWithReplacement

          -
          public void setSampleWithReplacement(boolean sampleWithReplacement)
          +
          public void setSampleWithReplacement​(boolean sampleWithReplacement)
          Configure the classifier to use/not use sampling with replacement.
          Parameters:
          @@ -684,13 +747,13 @@

          setSampleWithReplacement

        - +
        • getThreshold

          -
          public double getThreshold()
          +
          public double getThreshold()
          Returns the value of the threshold.
          Returns:
          @@ -698,13 +761,13 @@

          getThreshold

        - +
        • setThreshold

          -
          public void setThreshold(double threshold)
          +
          public void setThreshold​(double threshold)
          Sets the value of the threshold.
          Parameters:
          @@ -712,13 +775,13 @@

          setThreshold

        - +
        • isUseConfidences

          -
          public boolean isUseConfidences()
          +
          public boolean isUseConfidences()
          Returns whether the classifier uses confidences of bipartitions to combine classifiers in the ensemble.
          @@ -727,13 +790,13 @@

          isUseConfidences

        - +
        • setUseConfidences

          -
          public void setUseConfidences(boolean useConfidences)
          +
          public void setUseConfidences​(boolean useConfidences)
          Stablishes whether confidences or bipartitions are used to combine classifiers in the ensemble.
          @@ -744,21 +807,25 @@

          setUseConfidences

      +
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/meta/MIMLBagging.svg b/documentation/apidoc/miml/classifiers/miml/meta/MIMLBagging.svg new file mode 100644 index 0000000..09f0708 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/meta/MIMLBagging.svg @@ -0,0 +1,55 @@ +MIMLBaggingmiml.classifiers.miml.metaserialVersionUID: longthreshold: doubleseed: intsampleWithReplacement: booleanuseConfidences: booleansamplePercentage: doublenumClassifiers: intbaseLearner: IMIMLClassifierensemble: IMIMLClassifier[]MIMLBagging()MIMLBagging(IMIMLClassifier, int)MIMLBagging(IMIMLClassifier, int, double)buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputconfigure(Configuration): voidsetSeed(int): voidgetNumClassifiers(): intgetSamplePercentage(): doublesetSamplePercentage(double): voidisSampleWithReplacement(): booleansetSampleWithReplacement(boolean): voidgetThreshold(): doublesetThreshold(double): voidisUseConfidences(): booleansetUseConfidences(boolean): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/meta/class-use/MIMLBagging.html b/documentation/apidoc/miml/classifiers/miml/meta/class-use/MIMLBagging.html old mode 100755 new mode 100644 index 1d9ada3..e0278e9 --- a/documentation/apidoc/miml/classifiers/miml/meta/class-use/MIMLBagging.html +++ b/documentation/apidoc/miml/classifiers/miml/meta/class-use/MIMLBagging.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.meta.MIMLBagging - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Uses of Class
    miml.classifiers.miml.meta.MIMLBagging

    No usage of miml.classifiers.miml.meta.MIMLBagging
    +
    + diff --git a/documentation/apidoc/miml/classifiers/miml/meta/package-frame.html b/documentation/apidoc/miml/classifiers/miml/meta/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/meta/package-summary.html b/documentation/apidoc/miml/classifiers/miml/meta/package-summary.html old mode 100755 new mode 100644 index 83590ec..684c270 --- a/documentation/apidoc/miml/classifiers/miml/meta/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/meta/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.meta - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
    + +
    +

    Package miml.classifiers.miml.meta

    • - +
      @@ -83,7 +108,7 @@

      Package miml.classifiers.miml.meta

      - +
      Class Summary 
      Class
      MIMLBaggingMIMLBagging
      MIMLBagging is the adaptation of the traditional bagging strategy of the machine learning [1] that does not need any previous transformation of the @@ -95,16 +120,19 @@

      Package miml.classifiers.miml.meta

      + + diff --git a/documentation/apidoc/miml/classifiers/miml/meta/package-tree.html b/documentation/apidoc/miml/classifiers/miml/meta/package-tree.html old mode 100755 new mode 100644 index bb377f0..868e2ac --- a/documentation/apidoc/miml/classifiers/miml/meta/package-tree.html +++ b/documentation/apidoc/miml/classifiers/miml/meta/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.meta Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Hierarchy For Package miml.classifiers.miml.meta

      Package Hierarchies: @@ -77,29 +102,34 @@

      Hierarchy For Package miml.classifiers.miml.meta

      +

      Class Hierarchy

      +
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/meta/package-use.html b/documentation/apidoc/miml/classifiers/miml/meta/package-use.html old mode 100755 new mode 100644 index bb5d61a..268f13c --- a/documentation/apidoc/miml/classifiers/miml/meta/package-use.html +++ b/documentation/apidoc/miml/classifiers/miml/meta/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.miml.meta - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Package
      miml.classifiers.miml.meta

      No usage of miml.classifiers.miml.meta
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/meta/package.svg b/documentation/apidoc/miml/classifiers/miml/meta/package.svg new file mode 100644 index 0000000..2676a7d --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/meta/package.svg @@ -0,0 +1,65 @@ +miml.classifiers.miml.metamiml.classifiers.mimlMIMLBaggingserialVersionUID: longthreshold: doubleseed: intsampleWithReplacement: booleanuseConfidences: booleansamplePercentage: doublenumClassifiers: intbaseLearner: IMIMLClassifierensemble: IMIMLClassifier[]MIMLBagging()MIMLBagging(IMIMLClassifier, int)MIMLBagging(IMIMLClassifier, int, double)buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputconfigure(Configuration): voidsetSeed(int): voidgetNumClassifiers(): intgetSamplePercentage(): doublesetSamplePercentage(double): voidisSampleWithReplacement(): booleansetSampleWithReplacement(boolean): voidgetThreshold(): doublesetThreshold(double): voidisUseConfidences(): booleansetUseConfidences(boolean): voidMIMLClassifierserialVersionUID: longisModelInitialized: booleannumLabels: intlabelIndices: int[]labelNames: String[]featureIndices: int[]isDebug: booleanbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.html old mode 100755 new mode 100644 index d17316f..7472813 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.html @@ -1,12 +1,22 @@ - + - + MIMLBinaryRelevance - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +
      -
      miml.classifiers.miml.mimlTOmi
      +

      Class MIMLBinaryRelevance

      @@ -118,10 +143,9 @@

      Class MIMLBinaryRelevance
      All Implemented Interfaces:
      -
      java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler
      +
      java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler

      -
      public class MIMLBinaryRelevance
       extends mulan.classifier.transformation.BinaryRelevance
      Wrapper for mulan BinaryRelevance to be used in MIML to MI algorithms.
      @@ -140,40 +164,43 @@

      Class MIMLBinaryRelevance
    • +
        -
      • +
      • Field Summary

        - +
        - + + - +
        Fields 
        Modifier and TypeField and DescriptionFieldDescription
        private static longserialVersionUID +serialVersionUID
        Generated Serial version UID.
          -
        • +
        • Fields inherited from class mulan.classifier.transformation.BinaryRelevance

          ensemble
          -
        • +
        • Fields inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner

          baseClassifier
          -
        • +
        • Fields inherited from class mulan.classifier.MultiLabelLearnerBase

          @@ -181,54 +208,60 @@

          Fields inherited from class mulan.classifier.MultiLabelLearnerBase

      +
      +
        -
      • +
      • Constructor Summary

        - +
        - + + - +
        Constructors 
        Constructor and DescriptionConstructorDescription
        MIMLBinaryRelevance(weka.classifiers.Classifier classifier) +MIMLBinaryRelevance​(weka.classifiers.Classifier classifier)
        Creates a new instance.
      +
      +
        -
      • +
      • Method Summary

          -
        • +
        • Methods inherited from class mulan.classifier.transformation.BinaryRelevance

          buildInternal, getModel, makePredictionInternal
          -
        • +
        • Methods inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner

          getBaseClassifier, getTechnicalInformation, globalInfo
          -
        • +
        • Methods inherited from class mulan.classifier.MultiLabelLearnerBase

          build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug
          -
        • +
        • Methods inherited from class java.lang.Object

          @@ -236,6 +269,7 @@

          Methods inherited from class java.lang.Object

      +
    • @@ -243,12 +277,13 @@

      Methods inherited from class java.lang.Object

      • +
          -
        • +
        • Field Detail

          - +
            @@ -264,19 +299,21 @@

            serialVersionUID

        +
        +
          -
        • +
        • Constructor Detail

          - +
          • MIMLBinaryRelevance

            -
            public MIMLBinaryRelevance(weka.classifiers.Classifier classifier)
            +
            public MIMLBinaryRelevance​(weka.classifiers.Classifier classifier)
            Creates a new instance.
            Parameters:
            @@ -287,21 +324,25 @@

            MIMLBinaryRelevance

        +
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.svg b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.svg new file mode 100644 index 0000000..1128653 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.svg @@ -0,0 +1,29 @@ +MIMLBinaryRelevancemiml.classifiers.miml.mimlTOmiserialVersionUID: longMIMLBinaryRelevance(Classifier)BinaryRelevancemulan.classifier.transformationUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.html old mode 100755 new mode 100644 index 2f76281..0185906 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.html @@ -1,12 +1,22 @@ - + - + MIMLClassifierToMI - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +
      -
      miml.classifiers.miml.mimlTOmi
      +

      Class MIMLClassifierToMI

      @@ -100,7 +125,7 @@

      Class MIMLClassifierToMI

    • java.lang.Object
    • +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.svg b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.svg new file mode 100644 index 0000000..ac32c16 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.svg @@ -0,0 +1,37 @@ +MIMLClassifierToMImiml.classifiers.miml.mimlTOmiserialVersionUID: longtransformationClassifier: MultiLabelLearnerMIMLClassifierToMI(MultiLabelLearner)MIMLClassifierToMI()buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputconfigure(Configuration): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.html old mode 100755 new mode 100644 index 97bd0a2..2cb9e49 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.html @@ -1,12 +1,22 @@ - + - + MIMLLabelPowerset - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +
      -
      miml.classifiers.miml.mimlTOmi
      +

      Class MIMLLabelPowerset

      @@ -124,10 +149,9 @@

      Class MIMLLabelPowerset

    • All Implemented Interfaces:
      -
      java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler
      +
      java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler

      -
      public class MIMLLabelPowerset
       extends mulan.classifier.transformation.LabelPowerset
      Wrapper for mulan LabelPowerset to be used in MIML to MI algorithms.
      @@ -146,40 +170,43 @@

      Class MIMLLabelPowerset

      • +
          -
        • +
        • Field Summary

          - +
          - + + - +
          Fields 
          Modifier and TypeField and DescriptionFieldDescription
          private static longserialVersionUID +serialVersionUID
          Generated Serial version UID.
            -
          • +
          • Fields inherited from class mulan.classifier.transformation.LabelPowerset

            makePredictionsBasedOnConfidences, Rand, threshold, transformation
            -
          • +
          • Fields inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner

            baseClassifier
            -
          • +
          • Fields inherited from class mulan.classifier.MultiLabelLearnerBase

            @@ -187,65 +214,73 @@

            Fields inherited from class mulan.classifier.MultiLabelLearnerBase

        +
        +
          -
        • +
        • Constructor Summary

          - +
          - + + - +
          Constructors 
          Constructor and DescriptionConstructorDescription
          MIMLLabelPowerset(weka.classifiers.Classifier classifier) +MIMLLabelPowerset​(weka.classifiers.Classifier classifier)
          Constructor that initializes the learner with a base classifier.
        +
        +
          -
        • +
        • Method Summary

          - +
          - + + - + +
          All Methods Instance Methods Concrete Methods 
          Modifier and TypeMethod and DescriptionMethodDescription
          protected voidbuildInternal(mulan.data.MultiLabelInstances mlData) buildInternal​(mulan.data.MultiLabelInstances mlData) 
            -
          • +
          • Methods inherited from class mulan.classifier.transformation.LabelPowerset

            makePredictionInternal, setConfidenceCalculationMethod, setMakePredictionsBasedOnConfidences, setSeed, setThreshold
            -
          • +
          • Methods inherited from class mulan.classifier.transformation.TransformationBasedMultiLabelLearner

            getBaseClassifier, getTechnicalInformation, globalInfo
            -
          • +
          • Methods inherited from class mulan.classifier.MultiLabelLearnerBase

            build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug
            -
          • +
          • Methods inherited from class java.lang.Object

            @@ -253,6 +288,7 @@

            Methods inherited from class java.lang.Object

        +
    • @@ -260,12 +296,13 @@

      Methods inherited from class java.lang.Object

      • +
          -
        • +
        • Field Detail

          - +
            @@ -281,19 +318,21 @@

            serialVersionUID

        +
        +
          -
        • +
        • Constructor Detail

          - +
          • MIMLLabelPowerset

            -
            public MIMLLabelPowerset(weka.classifiers.Classifier classifier)
            +
            public MIMLLabelPowerset​(weka.classifiers.Classifier classifier)
            Constructor that initializes the learner with a base classifier.
            Parameters:
            @@ -303,19 +342,21 @@

            MIMLLabelPowerset

        +
        +
          -
        • +
        • Method Detail

          - +
          • buildInternal

            -
            protected void buildInternal(mulan.data.MultiLabelInstances mlData)
            +
            protected void buildInternal​(mulan.data.MultiLabelInstances mlData)
                                   throws java.lang.Exception
            Overrides:
            @@ -327,21 +368,25 @@

            buildInternal

        +
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.svg b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.svg new file mode 100644 index 0000000..ee10c98 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.svg @@ -0,0 +1,30 @@ +MIMLLabelPowersetmiml.classifiers.miml.mimlTOmiserialVersionUID: longMIMLLabelPowerset(Classifier)buildInternal(MultiLabelInstances): voidLabelPowersetmulan.classifier.transformationUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLBinaryRelevance.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLBinaryRelevance.html old mode 100755 new mode 100644 index ced0966..c59c90c --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLBinaryRelevance.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLBinaryRelevance.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Class
      miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance

      No usage of miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLClassifierToMI.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLClassifierToMI.html old mode 100755 new mode 100644 index 591ca2a..ac144c8 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLClassifierToMI.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLClassifierToMI.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Class
      miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI

      No usage of miml.classifiers.miml.mimlTOmi.MIMLClassifierToMI
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLLabelPowerset.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLLabelPowerset.html old mode 100755 new mode 100644 index f084484..a5ebec8 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLLabelPowerset.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/class-use/MIMLLabelPowerset.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Class
      miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset

      No usage of miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-frame.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-summary.html b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-summary.html old mode 100755 new mode 100644 index d04c99c..fc153fb --- a/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOmi/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.mimlTOmi - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Package miml.classifiers.miml.mimlTOmi

      + +
        -
      • +
      • Constructor Summary

        - +
        - + + - + - +
        Constructors 
        Constructor and DescriptionConstructorDescription
        MIMLClassifierToML() +MIMLClassifierToML()
        No-argument constructor for xml configuration.
        MIMLClassifierToML(mulan.classifier.MultiLabelLearner baseClassifier, - MIMLtoML transformationMethod) +MIMLClassifierToML​(mulan.classifier.MultiLabelLearner baseClassifier, + MIMLtoML transformationMethod)
        Basic constructor to initialize the classifier.
      +
      +
      +
      @@ -276,12 +339,13 @@

      Methods inherited from class java.lang.Object

      • +
          -
        • +
        • Field Detail

          - +
            @@ -295,7 +359,7 @@

            serialVersionUID

          - +
            @@ -305,60 +369,64 @@

            baseClassifier

            A Generic MultiLabel classifier.
          - +
          • transformationMethod

            -
            protected MIMLtoML transformationMethod
            +
            protected MIMLtoML transformationMethod
            The transform method.
          - + - +
          • removeFilter

            -
            weka.filters.unsupervised.attribute.Remove removeFilter
            +
            protected weka.filters.unsupervised.attribute.Remove removeFilter
            +
            The filter that removes the bagId attribute
          - +
          • -

            mlDataSetWithBagId

            -
            mulan.data.MultiLabelInstances mlDataSetWithBagId
            +

            templateWithBagId

            +
            protected mulan.data.MultiLabelInstances templateWithBagId
            +
            An empty dataset used as template for prediction
        +
        +
          -
        • +
        • Constructor Detail

          - +
          • MIMLClassifierToML

            -
            public MIMLClassifierToML(mulan.classifier.MultiLabelLearner baseClassifier,
            -                          MIMLtoML transformationMethod)
            +
            public MIMLClassifierToML​(mulan.classifier.MultiLabelLearner baseClassifier,
            +                          MIMLtoML transformationMethod)
                                throws java.lang.Exception
            Basic constructor to initialize the classifier.
            @@ -371,7 +439,7 @@

            MIMLClassifierToML

          - +
            @@ -383,28 +451,48 @@

            MIMLClassifierToML

        +
        +
          -
        • +
        • Method Detail

          - + + + +
            +
          • +

            getBaseClassifier

            +
            public mulan.classifier.MultiLabelLearner getBaseClassifier()
            +
          • +
          + + + +
            +
          • +

            getTransformationMethod

            +
            public MIMLtoML getTransformationMethod()
            +
          • +
          + - + + + +
            +
          • +

            getRemoveFilter

            +
            public weka.filters.unsupervised.attribute.Remove getRemoveFilter()
            +
          • +
          + - +
          • configure

            -
            public void configure(org.apache.commons.configuration2.Configuration configuration)
            -
            Description copied from interface: IConfiguration
            +
            public void configure​(org.apache.commons.configuration2.Configuration configuration)
            +
            Description copied from interface: IConfiguration
            Method to configure the class with the given configuration.
            Parameters:
            @@ -456,21 +553,25 @@

            configure

        +
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.svg b/documentation/apidoc/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.svg new file mode 100644 index 0000000..1721ca1 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.svg @@ -0,0 +1,41 @@ +MIMLClassifierToMLmiml.classifiers.miml.mimlTOmlserialVersionUID: longbaseClassifier: MultiLabelLearnertransformationMethod: MIMLtoMLmimlDataset: MIMLInstancesremoveFilter: RemovemlDataSetWithBagId: MultiLabelInstancesMIMLClassifierToML(MultiLabelLearner, MIMLtoML)MIMLClassifierToML()buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputconfigure(Configuration): voidMIMLClassifiermiml.classifiers.mimlbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/class-use/MIMLClassifierToML.html b/documentation/apidoc/miml/classifiers/miml/mimlTOml/class-use/MIMLClassifierToML.html old mode 100755 new mode 100644 index 7ae47aa..54d0ab7 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOml/class-use/MIMLClassifierToML.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/class-use/MIMLClassifierToML.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.mimlTOml.MIMLClassifierToML - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Uses of Class
      miml.classifiers.miml.mimlTOml.MIMLClassifierToML

      No usage of miml.classifiers.miml.mimlTOml.MIMLClassifierToML
      +
      + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-frame.html b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-summary.html b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-summary.html old mode 100755 new mode 100644 index 5d593e8..5bb0063 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.mimlTOml - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
      + +
      +

      Package miml.classifiers.miml.mimlTOml

      • - +
        @@ -83,7 +108,7 @@

        Package miml.classifiers.miml.mimlTOml

        - +
        Class Summary 
        Class
        MIMLClassifierToMLMIMLClassifierToML
        Class implementing the transformation algorithm for MIML data to solve it @@ -95,16 +120,19 @@

        Package miml.classifiers.miml.mimlTOml

        + + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-tree.html b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-tree.html old mode 100755 new mode 100644 index 7b9634f..1ca70a5 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-tree.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.mimlTOml Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Hierarchy For Package miml.classifiers.miml.mimlTOml

        Package Hierarchies: @@ -77,29 +102,34 @@

        Hierarchy For Package miml.classifiers.miml.mimlTOml

        +

        Class Hierarchy

        +
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-use.html b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-use.html old mode 100755 new mode 100644 index 70754e2..71e94b0 --- a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-use.html +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.miml.mimlTOml - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Uses of Package
        miml.classifiers.miml.mimlTOml

        No usage of miml.classifiers.miml.mimlTOml
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/mimlTOml/package.svg b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package.svg new file mode 100644 index 0000000..05445f4 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/mimlTOml/package.svg @@ -0,0 +1,51 @@ +miml.classifiers.miml.mimlTOmlmiml.classifiers.mimlMIMLClassifierToMLserialVersionUID: longbaseClassifier: MultiLabelLearnertransformationMethod: MIMLtoMLmimlDataset: MIMLInstancesremoveFilter: RemovemlDataSetWithBagId: MultiLabelInstancesMIMLClassifierToML(MultiLabelLearner, MIMLtoML)MIMLClassifierToML()buildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputconfigure(Configuration): voidMIMLClassifierserialVersionUID: longisModelInitialized: booleannumLabels: intlabelIndices: int[]labelNames: String[]featureIndices: int[]isDebug: booleanbuildInternal(MIMLInstances): voidmakePredictionInternal(MIMLBag): MultiLabelOutputUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.html b/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.html old mode 100755 new mode 100644 index f893092..7a7932f --- a/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.html @@ -1,12 +1,22 @@ - + - + EnMIMLNNmetric - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +
        -
        miml.classifiers.miml.neural
        +

        Class EnMIMLNNmetric

        @@ -100,10 +125,10 @@

        Class EnMIMLNNmetric

      • java.lang.Object
      • - +
          @@ -397,7 +448,7 @@

          mu

          function.
        - +
          @@ -409,13 +460,15 @@

          seed

        + +
          -
        • +
        • Constructor Detail

          - +
            @@ -430,13 +483,13 @@

            EnMIMLNNmetric

          - +
          • EnMIMLNNmetric

            -
            public EnMIMLNNmetric(double ratio,
            +
            public EnMIMLNNmetric​(double ratio,
                                   double mu)
                            throws com.mathworks.toolbox.javabuilder.MWException
            Basic constructor to initialize the classifier.
            @@ -449,13 +502,13 @@

            EnMIMLNNmetric

          - +
          • EnMIMLNNmetric

            -
            public EnMIMLNNmetric(double ratio,
            +
            public EnMIMLNNmetric​(double ratio,
                                   double mu,
                                   int seed)
                            throws com.mathworks.toolbox.javabuilder.MWException
            @@ -472,36 +525,38 @@

            EnMIMLNNmetric

        +
        +
          -
        • +
        • Method Detail

          - +
          • dispose

            -
            public void dispose()
            -
            Description copied from class: MWClassifier
            +
            public void dispose()
            +
            Description copied from class: MWClassifier
            Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
            Specified by:
            -
            dispose in class MWClassifier
            +
            dispose in class MWClassifier
          - +
          • getRatio

            -
            public double getRatio()
            +
            public double getRatio()
            Returns the fraction parameter considered to build the classifier.
            Returns:
            @@ -509,13 +564,13 @@

            getRatio

          - +
          • setRatio

            -
            public void setRatio(double ratio)
            +
            public void setRatio​(double ratio)
            Sets the fraction parameter to build the classifier.
            Parameters:
            @@ -523,13 +578,13 @@

            setRatio

          - +
          • getMu

            -
            public double getMu()
            +
            public double getMu()
            Returns the scaling factor parameter considered to build the classifier.
            Returns:
            @@ -537,13 +592,13 @@

            getMu

          - +
          • setMu

            -
            public void setMu(double mu)
            +
            public void setMu​(double mu)
            Sets the scaling factor parameter to build the classifier.
            Parameters:
            @@ -551,13 +606,13 @@

            setMu

          - +
          • getSeed

            -
            public int getSeed()
            +
            public int getSeed()
            Returns the seed for kmedoids clustering considered to build the classifier.
            Returns:
            @@ -565,13 +620,13 @@

            getSeed

          - +
          • setSeed

            -
            public void setSeed(int seed)
            +
            public void setSeed​(int seed)
            Sets the seed for kmedoids clustering considered to build the classifier.
            Parameters:
            @@ -579,14 +634,14 @@

            setSeed

          - +
          • configure

            -
            public void configure(org.apache.commons.configuration2.Configuration configuration)
            -
            Description copied from interface: IConfiguration
            +
            public void configure​(org.apache.commons.configuration2.Configuration configuration)
            +
            Description copied from interface: IConfiguration
            Method to configure the class with the given configuration.
            Parameters:
            @@ -594,21 +649,21 @@

            configure

          - +
          • trainMWClassifier

            -
            protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
            +
            protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                              com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                       throws com.mathworks.toolbox.javabuilder.MWException
            -
            Description copied from class: MWClassifier
            +
            Description copied from class: MWClassifier
            Trains a Matlab classifier. Returns the classifier model in an array of Object.
            Specified by:
            -
            trainMWClassifier in class MWClassifier
            +
            trainMWClassifier in class MWClassifier
            Parameters:
            train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -624,21 +679,21 @@

            trainMWClassifier

          - +
          • predictMWClassifier

            -
            protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
            +
            protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                              com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                              com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                       throws com.mathworks.toolbox.javabuilder.MWException
            -
            Description copied from class: MWClassifier
            +
            Description copied from class: MWClassifier
            Performs a prediction on a test bag.
            Specified by:
            -
            predictMWClassifier in class MWClassifier
            +
            predictMWClassifier in class MWClassifier
            Parameters:
            train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -666,21 +721,25 @@

            predictMWClassifier

        +
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.svg b/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.svg new file mode 100644 index 0000000..f835571 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/neural/EnMIMLNNmetric.svg @@ -0,0 +1,49 @@ +EnMIMLNNmetricmiml.classifiers.miml.neuralserialVersionUID: longenmimlnn: MWEnMIMLNNmetricratio: doublemu: doubleseed: intEnMIMLNNmetric()EnMIMLNNmetric(double, double)EnMIMLNNmetric(double, double, int)dispose(): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidgetSeed(): intsetSeed(int): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.html b/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.html old mode 100755 new mode 100644 index 39bbf0a..9b6baa8 --- a/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.html @@ -1,12 +1,22 @@ - + - + MIMLNN - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +
        -
        miml.classifiers.miml.neural
        +

        Class MIMLNN

        @@ -100,10 +125,10 @@

        Class MIMLNN

      • java.lang.Object
        • -
        • miml.classifiers.miml.MIMLClassifier
        • +
        • miml.classifiers.miml.MIMLClassifier
          • -
          • miml.classifiers.miml.MWClassifier
          • +
          • miml.classifiers.miml.MWClassifier
            • miml.classifiers.miml.neural.MIMLNN
            • @@ -119,12 +144,11 @@

              Class MIMLNN

            • All Implemented Interfaces:
              -
              java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
              +
              java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner

              -
              public class MIMLNN
              -extends MWClassifier
              +extends MWClassifier

              Class to execute the MIMLNNalgorithm for @@ -147,191 +171,217 @@

              Class MIMLNN

              @@ -346,12 +397,13 @@

              Methods inherited from class java.lang.Object

              • +
                  -
                • +
                • Field Detail

                  - +
                    @@ -365,7 +417,7 @@

                    serialVersionUID

                  - +
                    @@ -375,7 +427,7 @@

                    mimlnn

                    A matlab object wrapping the EnMIMLNNmetric algorithm.
                  - +
                    @@ -385,7 +437,7 @@

                    ratio

                    The number of clusters is set to ratio*numberOfTrainingBags, default=0.4.
                  - +
                    @@ -395,7 +447,7 @@

                    lambda

                    The regularization parameter used to compute matrix inverse, default=1.
                  - +
                    @@ -407,13 +459,15 @@

                    seed

                +
                +
                  -
                • +
                • Constructor Detail

                  - +
                    @@ -428,13 +482,13 @@

                    MIMLNN

                  - +
                  • MIMLNN

                    -
                    public MIMLNN(double ratio,
                    +
                    public MIMLNN​(double ratio,
                                   double lambda)
                            throws com.mathworks.toolbox.javabuilder.MWException
                    Basic constructor to initialize the classifier.
                    @@ -447,13 +501,13 @@

                    MIMLNN

                  - +
                  • MIMLNN

                    -
                    public MIMLNN(double ratio,
                    +
                    public MIMLNN​(double ratio,
                                   double lambda,
                                   int seed)
                            throws com.mathworks.toolbox.javabuilder.MWException
                    @@ -470,36 +524,38 @@

                    MIMLNN

                +
                +
                  -
                • +
                • Method Detail

                  - +
                  • dispose

                    -
                    public void dispose()
                    -
                    Description copied from class: MWClassifier
                    +
                    public void dispose()
                    +
                    Description copied from class: MWClassifier
                    Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
                    Specified by:
                    -
                    dispose in class MWClassifier
                    +
                    dispose in class MWClassifier
                  - +
                  • getSeed

                    -
                    public int getSeed()
                    +
                    public int getSeed()
                    Returns the seed for kmedoids clustering considered to build the classifier.
                    Returns:
                    @@ -507,13 +563,13 @@

                    getSeed

                  - +
                  • setSeed

                    -
                    public void setSeed(int seed)
                    +
                    public void setSeed​(int seed)
                    Sets the seed for kmedoids clustering considered to build the classifier.
                    Parameters:
                    @@ -521,13 +577,13 @@

                    setSeed

                  - +
                  • getRatio

                    -
                    public double getRatio()
                    +
                    public double getRatio()
                    Returns the fraction parameter considered to determine the number of clusters to build the classifier.
                    @@ -537,13 +593,13 @@

                    getRatio

                  - +
                  • setRatio

                    -
                    public void setRatio(double ratio)
                    +
                    public void setRatio​(double ratio)
                    Sets the fraction parameter considered to determine the number of clusters to build the classifier.
                    @@ -553,13 +609,13 @@

                    setRatio

                  - +
                  • getLambda

                    -
                    public double getLambda()
                    +
                    public double getLambda()
                    Returns the regularization parameter used to compute matrix inverse.
                    Returns:
                    @@ -567,13 +623,13 @@

                    getLambda

                  - +
                  • setLambda

                    -
                    public void setLambda(double lambda)
                    +
                    public void setLambda​(double lambda)
                    Sets the fraction parameter considered to determine the number of clusters to build the classifier.
                    @@ -583,14 +639,14 @@

                    setLambda

                  - +
                  • configure

                    -
                    public void configure(org.apache.commons.configuration2.Configuration configuration)
                    -
                    Description copied from interface: IConfiguration
                    +
                    public void configure​(org.apache.commons.configuration2.Configuration configuration)
                    +
                    Description copied from interface: IConfiguration
                    Method to configure the class with the given configuration.
                    Parameters:
                    @@ -598,21 +654,21 @@

                    configure

                  - +
                  • trainMWClassifier

                    -
                    protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                    +
                    protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                      com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                               throws com.mathworks.toolbox.javabuilder.MWException
                    -
                    Description copied from class: MWClassifier
                    +
                    Description copied from class: MWClassifier
                    Trains a Matlab classifier. Returns the classifier model in an array of Object.
                    Specified by:
                    -
                    trainMWClassifier in class MWClassifier
                    +
                    trainMWClassifier in class MWClassifier
                    Parameters:
                    train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -628,21 +684,21 @@

                    trainMWClassifier

                  - +
                  • predictMWClassifier

                    -
                    protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                    +
                    protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                      com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                      com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                               throws com.mathworks.toolbox.javabuilder.MWException
                    -
                    Description copied from class: MWClassifier
                    +
                    Description copied from class: MWClassifier
                    Performs a prediction on a test bag.
                    Specified by:
                    -
                    predictMWClassifier in class MWClassifier
                    +
                    predictMWClassifier in class MWClassifier
                    Parameters:
                    train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -670,21 +726,25 @@

                    predictMWClassifier

                +
      • +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.svg b/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.svg new file mode 100644 index 0000000..570907d --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/neural/MIMLNN.svg @@ -0,0 +1,49 @@ +MIMLNNmiml.classifiers.miml.neuralserialVersionUID: longmimlnn: MWMIMLNNratio: doublelambda: doubleseed: intMIMLNN()MIMLNN(double, double)MIMLNN(double, double, int)dispose(): voidgetSeed(): intsetSeed(int): voidgetRatio(): doublesetRatio(double): voidgetLambda(): doublesetLambda(double): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.html b/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.html old mode 100755 new mode 100644 index 1c24ccb..2e793b3 --- a/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.html @@ -1,12 +1,22 @@ - + - + MIMLRBF - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +
        -
        miml.classifiers.miml.neural
        +

        Class MIMLRBF

        @@ -100,10 +125,10 @@

        Class MIMLRBF

      • java.lang.Object
      • - +
          @@ -396,7 +448,7 @@

          mu

          function.
        - +
          @@ -408,13 +460,15 @@

          seed

        + +
          -
        • +
        • Constructor Detail

          - +
            @@ -429,13 +483,13 @@

            MIMLRBF

          - +
          • MIMLRBF

            -
            public MIMLRBF(double ratio,
            +
            public MIMLRBF​(double ratio,
                            double mu)
                     throws com.mathworks.toolbox.javabuilder.MWException
            Basic constructor to initialize the classifier.
            @@ -448,13 +502,13 @@

            MIMLRBF

          - +
          • MIMLRBF

            -
            public MIMLRBF(double ratio,
            +
            public MIMLRBF​(double ratio,
                            double mu,
                            int seed)
                     throws com.mathworks.toolbox.javabuilder.MWException
            @@ -471,36 +525,38 @@

            MIMLRBF

        +
        +
          -
        • +
        • Method Detail

          - +
          • dispose

            -
            public void dispose()
            -
            Description copied from class: MWClassifier
            +
            public void dispose()
            +
            Description copied from class: MWClassifier
            Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
            Specified by:
            -
            dispose in class MWClassifier
            +
            dispose in class MWClassifier
          - +
          • getRatio

            -
            public double getRatio()
            +
            public double getRatio()
            Returns the fraction parameter considered to build the classifier.
            Returns:
            @@ -508,13 +564,13 @@

            getRatio

          - +
          • setRatio

            -
            public void setRatio(double ratio)
            +
            public void setRatio​(double ratio)
            Sets the fraction parameter to build the classifier.
            Parameters:
            @@ -522,13 +578,13 @@

            setRatio

          - +
          • getMu

            -
            public double getMu()
            +
            public double getMu()
            Returns the scaling factor parameter considered to build the classifier.
            Returns:
            @@ -536,13 +592,13 @@

            getMu

          - +
          • setMu

            -
            public void setMu(double mu)
            +
            public void setMu​(double mu)
            Sets the scaling factor parameter to build the classifier.
            Parameters:
            @@ -550,13 +606,13 @@

            setMu

          - +
          • getSeed

            -
            public int getSeed()
            +
            public int getSeed()
            Returns the seed for kmedoids clustering considered to build the classifier.
            Returns:
            @@ -564,13 +620,13 @@

            getSeed

          - +
          • setSeed

            -
            public void setSeed(int seed)
            +
            public void setSeed​(int seed)
            Returns the seed for kmedoids clustering considered to build the classifier.
            Parameters:
            @@ -578,14 +634,14 @@

            setSeed

          - +
          • configure

            -
            public void configure(org.apache.commons.configuration2.Configuration configuration)
            -
            Description copied from interface: IConfiguration
            +
            public void configure​(org.apache.commons.configuration2.Configuration configuration)
            +
            Description copied from interface: IConfiguration
            Method to configure the class with the given configuration.
            Parameters:
            @@ -593,21 +649,21 @@

            configure

          - +
          • trainMWClassifier

            -
            protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
            +
            protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                              com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                       throws com.mathworks.toolbox.javabuilder.MWException
            -
            Description copied from class: MWClassifier
            +
            Description copied from class: MWClassifier
            Trains a Matlab classifier. Returns the classifier model in an array of Object.
            Specified by:
            -
            trainMWClassifier in class MWClassifier
            +
            trainMWClassifier in class MWClassifier
            Parameters:
            train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -623,21 +679,21 @@

            trainMWClassifier

          - +
          • predictMWClassifier

            -
            protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
            +
            protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                              com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                              com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                       throws com.mathworks.toolbox.javabuilder.MWException
            -
            Description copied from class: MWClassifier
            +
            Description copied from class: MWClassifier
            Performs a prediction on a test bag.
            Specified by:
            -
            predictMWClassifier in class MWClassifier
            +
            predictMWClassifier in class MWClassifier
            Parameters:
            train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -665,21 +721,25 @@

            predictMWClassifier

        +
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.svg b/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.svg new file mode 100644 index 0000000..b21f9ce --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/neural/MIMLRBF.svg @@ -0,0 +1,49 @@ +MIMLRBFmiml.classifiers.miml.neuralserialVersionUID: longmimlrbf: MWMIMLRBFratio: doublemu: doubleseed: intMIMLRBF()MIMLRBF(double, double)MIMLRBF(double, double, int)dispose(): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidgetSeed(): intsetSeed(int): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/neural/class-use/EnMIMLNNmetric.html b/documentation/apidoc/miml/classifiers/miml/neural/class-use/EnMIMLNNmetric.html old mode 100755 new mode 100644 index 9806641..3944088 --- a/documentation/apidoc/miml/classifiers/miml/neural/class-use/EnMIMLNNmetric.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/class-use/EnMIMLNNmetric.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.neural.EnMIMLNNmetric - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Uses of Class
        miml.classifiers.miml.neural.EnMIMLNNmetric

        No usage of miml.classifiers.miml.neural.EnMIMLNNmetric
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLNN.html b/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLNN.html old mode 100755 new mode 100644 index e7bc5e5..88c5dc3 --- a/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLNN.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLNN.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.neural.MIMLNN - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Uses of Class
        miml.classifiers.miml.neural.MIMLNN

        No usage of miml.classifiers.miml.neural.MIMLNN
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLRBF.html b/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLRBF.html old mode 100755 new mode 100644 index c0422f7..6956cd7 --- a/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLRBF.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/class-use/MIMLRBF.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.neural.MIMLRBF - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Uses of Class
        miml.classifiers.miml.neural.MIMLRBF

        No usage of miml.classifiers.miml.neural.MIMLRBF
        +
        + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/package-frame.html b/documentation/apidoc/miml/classifiers/miml/neural/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/neural/package-summary.html b/documentation/apidoc/miml/classifiers/miml/neural/package-summary.html old mode 100755 new mode 100644 index 818eb7a..02faa66 --- a/documentation/apidoc/miml/classifiers/miml/neural/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.neural - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
        + +
        +

        Package miml.classifiers.miml.neural

        • - +
          @@ -83,16 +108,15 @@

          Package miml.classifiers.miml.neural

          - + - + - +
          Class Summary 
          Class
          EnMIMLNNmetricEnMIMLNNmetric
          - Class to execute the EnMIMLNNmetric + Class to execute the EnMIMLNNmetric algorithm for MIML data.
          MIMLNNMIMLNN
          Class to execute the @@ -101,7 +125,7 @@

          Package miml.classifiers.miml.neural

          MIMLRBFMIMLRBF
          Class to execute the @@ -114,16 +138,19 @@

          Package miml.classifiers.miml.neural

          + + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/package-tree.html b/documentation/apidoc/miml/classifiers/miml/neural/package-tree.html old mode 100755 new mode 100644 index f25f3b3..27edd32 --- a/documentation/apidoc/miml/classifiers/miml/neural/package-tree.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.neural Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Hierarchy For Package miml.classifiers.miml.neural

          Package Hierarchies: @@ -77,17 +102,18 @@

          Hierarchy For Package miml.classifiers.miml.neural

          +

          Class Hierarchy

          +
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/package-use.html b/documentation/apidoc/miml/classifiers/miml/neural/package-use.html old mode 100755 new mode 100644 index bfd01a4..57ec7fd --- a/documentation/apidoc/miml/classifiers/miml/neural/package-use.html +++ b/documentation/apidoc/miml/classifiers/miml/neural/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.miml.neural - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Uses of Package
          miml.classifiers.miml.neural

          No usage of miml.classifiers.miml.neural
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/neural/package.svg b/documentation/apidoc/miml/classifiers/miml/neural/package.svg new file mode 100644 index 0000000..56f3bbb --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/neural/package.svg @@ -0,0 +1,103 @@ +miml.classifiers.miml.neuralmiml.classifiers.mimlEnMIMLNNmetricserialVersionUID: longenmimlnn: MWEnMIMLNNmetricratio: doublemu: doubleseed: intEnMIMLNNmetric()EnMIMLNNmetric(double, double)EnMIMLNNmetric(double, double, int)dispose(): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidgetSeed(): intsetSeed(int): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MIMLNNserialVersionUID: longmimlnn: MWMIMLNNratio: doublelambda: doubleseed: intMIMLNN()MIMLNN(double, double)MIMLNN(double, double, int)dispose(): voidgetSeed(): intsetSeed(int): voidgetRatio(): doublesetRatio(double): voidgetLambda(): doublesetLambda(double): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MIMLRBFserialVersionUID: longmimlrbf: MWMIMLRBFratio: doublemu: doubleseed: intMIMLRBF()MIMLRBF(double, double)MIMLRBF(double, double, int)dispose(): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidgetSeed(): intsetSeed(int): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]MWClassifierserialVersionUID: longwrapper: MWTranslatorclassifier: Object[]trainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.html b/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.html old mode 100755 new mode 100644 index b3402a1..a583c75 --- a/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.html @@ -1,12 +1,22 @@ - + - + KiSar - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +
          -
          miml.classifiers.miml.optimization
          +

          Class KiSar

          @@ -100,10 +125,10 @@

          Class KiSar

        • java.lang.Object
          • -
          • miml.classifiers.miml.MIMLClassifier
          • +
          • miml.classifiers.miml.MIMLClassifier
            • -
            • miml.classifiers.miml.MWClassifier
            • +
            • miml.classifiers.miml.MWClassifier
              • miml.classifiers.miml.optimization.KiSar
              • @@ -119,12 +144,11 @@

                Class KiSar

              • All Implemented Interfaces:
                -
                java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
                +
                java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner

                -
                public class KiSar
                -extends MWClassifier
                +extends MWClassifier
                Wrapper for Matlab KiSar algorithm for MIML data.
                @@ -150,220 +174,253 @@

                Class KiSar

                @@ -378,12 +436,13 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -397,7 +456,7 @@

                      serialVersionUID

                    - +
                      @@ -407,7 +466,7 @@

                      kisar

                      A Matlab object wrapping the KiSar algorithm.
                    - +
                      @@ -417,7 +476,7 @@

                      C

                      Parameter set for liblinear.
                    - +
                      @@ -427,7 +486,7 @@

                      iteration

                      Maximum number of optimization iterations.
                    - +
                      @@ -437,7 +496,7 @@

                      epsilon

                      The epsilon parameter for the algorithm.
                    - +
                      @@ -447,7 +506,7 @@

                      K

                      Maximum number of prototypes for k_means clustering.
                    - +
                      @@ -471,13 +530,15 @@

                      relationMethod

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                      @@ -492,13 +553,13 @@

                      KiSar

                    - +
                    • KiSar

                      -
                      public KiSar(double c,
                      +
                      public KiSar​(double c,
                                    double iteration,
                                    double epsilon,
                                    double k,
                      @@ -519,37 +580,39 @@ 

                      KiSar

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • dispose

                      -
                      public void dispose()
                      -
                      Description copied from class: MWClassifier
                      +
                      public void dispose()
                      +
                      Description copied from class: MWClassifier
                      Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
                      Specified by:
                      -
                      dispose in class MWClassifier
                      +
                      dispose in class MWClassifier
                    - +
                    • configure

                      -
                      public void configure(org.apache.commons.configuration2.Configuration configuration)
                      -
                      Description copied from interface: IConfiguration
                      +
                      public void configure​(org.apache.commons.configuration2.Configuration configuration)
                      +
                      Description copied from interface: IConfiguration
                      Method to configure the class with the given configuration.
                      Parameters:
                      @@ -557,21 +620,21 @@

                      configure

                    - +
                    • trainMWClassifier

                      -
                      protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                      +
                      protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                        com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                                 throws com.mathworks.toolbox.javabuilder.MWException
                      -
                      Description copied from class: MWClassifier
                      +
                      Description copied from class: MWClassifier
                      Trains a Matlab classifier. Returns the classifier model in an array of Object.
                      Specified by:
                      -
                      trainMWClassifier in class MWClassifier
                      +
                      trainMWClassifier in class MWClassifier
                      Parameters:
                      train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -587,21 +650,21 @@

                      trainMWClassifier

                    - +
                    • predictMWClassifier

                      -
                      protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                      +
                      protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                        com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                        com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                                 throws com.mathworks.toolbox.javabuilder.MWException
                      -
                      Description copied from class: MWClassifier
                      +
                      Description copied from class: MWClassifier
                      Performs a prediction on a test bag.
                      Specified by:
                      -
                      predictMWClassifier in class MWClassifier
                      +
                      predictMWClassifier in class MWClassifier
                      Parameters:
                      train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -627,13 +690,13 @@

                      predictMWClassifier

                    - +
                    • getC

                      -
                      public double getC()
                      +
                      public double getC()
                      Gets the value of the C property.
                      Returns:
                      @@ -641,13 +704,13 @@

                      getC

                    - +
                    • setC

                      -
                      public void setC(double c)
                      +
                      public void setC​(double c)
                      Sets the value of the C property.
                      Parameters:
                      @@ -655,13 +718,13 @@

                      setC

                    - +
                    • getIteration

                      -
                      public double getIteration()
                      +
                      public double getIteration()
                      Gets the value of the iteration property.
                      Returns:
                      @@ -669,13 +732,13 @@

                      getIteration

                    - +
                    • setIteration

                      -
                      public void setIteration(double iteration)
                      +
                      public void setIteration​(double iteration)
                      Sets the value of the iteration property.
                      Parameters:
                      @@ -683,13 +746,13 @@

                      setIteration

                    - +
                    • getEpsilon

                      -
                      public double getEpsilon()
                      +
                      public double getEpsilon()
                      Gets the value of the epsilon property.
                      Returns:
                      @@ -697,13 +760,13 @@

                      getEpsilon

                    - +
                    • setEpsilon

                      -
                      public void setEpsilon(double epsilon)
                      +
                      public void setEpsilon​(double epsilon)
                      Sets the value of the epsilon property.
                      Parameters:
                      @@ -711,13 +774,13 @@

                      setEpsilon

                    - +
                    • getK

                      -
                      public double getK()
                      +
                      public double getK()
                      Gets the value of the K property.
                      Returns:
                      @@ -725,13 +788,13 @@

                      getK

                    - +
                    • setK

                      -
                      public void setK(double k)
                      +
                      public void setK​(double k)
                      Sets the value of the k property.
                      Parameters:
                      @@ -739,13 +802,13 @@

                      setK

                    - +
                    • getRelationMethod

                      -
                      public double getRelationMethod()
                      +
                      public double getRelationMethod()
                      Gets the value of the relationMethod property.
                      Returns:
                      @@ -753,13 +816,13 @@

                      getRelationMethod

                    - +
                    • setRelationMethod

                      -
                      public void setRelationMethod(double relationMethod)
                      +
                      public void setRelationMethod​(double relationMethod)
                      Sets the value of the relationMethod property.
                      Parameters:
                      @@ -769,21 +832,25 @@

                      setRelationMethod

                  +
        • +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.svg b/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.svg new file mode 100644 index 0000000..1b90868 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/optimization/KiSar.svg @@ -0,0 +1,54 @@ +KiSarmiml.classifiers.miml.optimizationserialVersionUID: longkisar: MWKiSarC: doubleiteration: doubleepsilon: doubleK: doublerelationMethod: doubleKiSar()KiSar(double, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getC(): doublesetC(double): voidgetIteration(): doublesetIteration(double): voidgetEpsilon(): doublesetEpsilon(double): voidgetK(): doublesetK(double): voidgetRelationMethod(): doublesetRelationMethod(double): voidMWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.html b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.html old mode 100755 new mode 100644 index b6e3a31..4618fc7 --- a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.html @@ -1,12 +1,22 @@ - + - + MIMLFast - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +
          -
          miml.classifiers.miml.optimization
          +

          Class MIMLFast

          @@ -100,10 +125,10 @@

          Class MIMLFast

        • java.lang.Object
          • -
          • miml.classifiers.miml.MIMLClassifier
          • +
          • miml.classifiers.miml.MIMLClassifier
            • -
            • miml.classifiers.miml.MWClassifier
            • +
            • miml.classifiers.miml.MWClassifier
              • miml.classifiers.miml.optimization.MIMLFast
              • @@ -119,12 +144,11 @@

                Class MIMLFast

              • All Implemented Interfaces:
                -
                java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner
                +
                java.io.Serializable, IMIMLClassifier, IConfiguration, mulan.classifier.MultiLabelLearner

                -
                public class MIMLFast
                -extends MWClassifier
                +extends MWClassifier
                Wrapper for Matlab MIMLFast algorithm for MIML data.
                @@ -146,112 +170,129 @@

                Class MIMLFast

                @@ -453,12 +522,13 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -472,7 +542,7 @@

                      serialVersionUID

                    - +
                      @@ -482,7 +552,7 @@

                      mimlfast

                      A matlab object wrapping the MIMLFast algorithm.
                    - +
                      @@ -492,7 +562,7 @@

                      D

                      Dimension of the shared space.
                    - +
                      @@ -502,7 +572,7 @@

                      norm_up

                      Norm of each vector.
                    - +
                      @@ -512,7 +582,7 @@

                      maxiter

                      Number of iterations.
                    - +
                      @@ -522,7 +592,7 @@

                      step_size

                      Step size of SGD (stochastic gradient descent).
                    - +
                      @@ -532,7 +602,7 @@

                      lambda

                      Lambda.
                    - +
                      @@ -542,7 +612,7 @@

                      num_sub

                      Number of sub concepts.
                    - +
                      @@ -551,7 +621,7 @@

                      opts_norm

                      int opts_norm
                    - +
                      @@ -560,7 +630,7 @@

                      opts_average_size

                      int opts_average_size
                    - +
                      @@ -571,13 +641,15 @@

                      opts_average_begin

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                      @@ -592,13 +664,13 @@

                      MIMLFast

                    - +
                    • MIMLFast

                      -
                      public MIMLFast(int d,
                      +
                      public MIMLFast​(int d,
                                       int norm_up,
                                       int maxiter,
                                       double step_size,
                      @@ -617,13 +689,13 @@ 

                      MIMLFast

                    - +
                    • MIMLFast

                      -
                      public MIMLFast(int d,
                      +
                      public MIMLFast​(int d,
                                       int norm_up,
                                       int maxiter,
                                       double step_size,
                      @@ -652,37 +724,39 @@ 

                      MIMLFast

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • dispose

                      -
                      public void dispose()
                      -
                      Description copied from class: MWClassifier
                      +
                      public void dispose()
                      +
                      Description copied from class: MWClassifier
                      Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
                      Specified by:
                      -
                      dispose in class MWClassifier
                      +
                      dispose in class MWClassifier
                    - +
                    • configure

                      -
                      public void configure(org.apache.commons.configuration2.Configuration configuration)
                      -
                      Description copied from interface: IConfiguration
                      +
                      public void configure​(org.apache.commons.configuration2.Configuration configuration)
                      +
                      Description copied from interface: IConfiguration
                      Method to configure the class with the given configuration.
                      Parameters:
                      @@ -690,21 +764,21 @@

                      configure

                    - +
                    • trainMWClassifier

                      -
                      protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                      +
                      protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                        com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                                 throws com.mathworks.toolbox.javabuilder.MWException
                      -
                      Description copied from class: MWClassifier
                      +
                      Description copied from class: MWClassifier
                      Trains a Matlab classifier. Returns the classifier model in an array of Object.
                      Specified by:
                      -
                      trainMWClassifier in class MWClassifier
                      +
                      trainMWClassifier in class MWClassifier
                      Parameters:
                      train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -720,21 +794,21 @@

                      trainMWClassifier

                    - +
                    • predictMWClassifier

                      -
                      protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                      +
                      protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                        com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                        com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                                 throws com.mathworks.toolbox.javabuilder.MWException
                      -
                      Description copied from class: MWClassifier
                      +
                      Description copied from class: MWClassifier
                      Performs a prediction on a test bag.
                      Specified by:
                      -
                      predictMWClassifier in class MWClassifier
                      +
                      predictMWClassifier in class MWClassifier
                      Parameters:
                      train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -760,13 +834,13 @@

                      predictMWClassifier

                    - +
                    • getD

                      -
                      public int getD()
                      +
                      public int getD()
                      Gets the value of the D property.
                      Returns:
                      @@ -774,13 +848,13 @@

                      getD

                    - +
                    • setD

                      -
                      public void setD(int d)
                      +
                      public void setD​(int d)
                      Sets the value of the D property.
                      Parameters:
                      @@ -788,13 +862,13 @@

                      setD

                    - +
                    • getNorm_up

                      -
                      public int getNorm_up()
                      +
                      public int getNorm_up()
                      Gets the value of the norm_up property.
                      Returns:
                      @@ -802,13 +876,13 @@

                      getNorm_up

                    - +
                    • setNorm_up

                      -
                      public void setNorm_up(int norm_up)
                      +
                      public void setNorm_up​(int norm_up)
                      Sets the value of the norm_up property.
                      Parameters:
                      @@ -816,13 +890,13 @@

                      setNorm_up

                    - +
                    • getMaxiter

                      -
                      public int getMaxiter()
                      +
                      public int getMaxiter()
                      Gets the value of the maxiter property.
                      Returns:
                      @@ -830,13 +904,13 @@

                      getMaxiter

                    - +
                    • setMaxiter

                      -
                      public void setMaxiter(int maxiter)
                      +
                      public void setMaxiter​(int maxiter)
                      Sets the value of the maxiter property.
                      Parameters:
                      @@ -844,13 +918,13 @@

                      setMaxiter

                    - +
                    • getStep_size

                      -
                      public double getStep_size()
                      +
                      public double getStep_size()
                      Gets the value of the step_size property.
                      Returns:
                      @@ -858,13 +932,13 @@

                      getStep_size

                    - +
                    • setStep_size

                      -
                      public void setStep_size(double step_size)
                      +
                      public void setStep_size​(double step_size)
                      Sets the value of the step_size property.
                      Parameters:
                      @@ -872,13 +946,13 @@

                      setStep_size

                    - +
                    • getLambda

                      -
                      public double getLambda()
                      +
                      public double getLambda()
                      Gets the value of the lambda property.
                      Returns:
                      @@ -886,13 +960,13 @@

                      getLambda

                    - +
                    • setLambda

                      -
                      public void setLambda(double lambda)
                      +
                      public void setLambda​(double lambda)
                      Sets the value of the lambda property.
                      Parameters:
                      @@ -900,13 +974,13 @@

                      setLambda

                    - +
                    • getNum_sub

                      -
                      public int getNum_sub()
                      +
                      public int getNum_sub()
                      Gets the value of the num_sub property.
                      Returns:
                      @@ -914,13 +988,13 @@

                      getNum_sub

                    - +
                    • setNum_sub

                      -
                      public void setNum_sub(int num_sub)
                      +
                      public void setNum_sub​(int num_sub)
                      Sets the value of the num_sub property.
                      Parameters:
                      @@ -928,13 +1002,13 @@

                      setNum_sub

                    - +
                    • getOpts_norm

                      -
                      public int getOpts_norm()
                      +
                      public int getOpts_norm()
                      Gets the value of the opts_norm property.
                      Returns:
                      @@ -942,13 +1016,13 @@

                      getOpts_norm

                    - +
                    • setOpts_norm

                      -
                      public void setOpts_norm(int opts_norm)
                      +
                      public void setOpts_norm​(int opts_norm)
                      Sets the value of the opts_norm property.
                      Parameters:
                      @@ -956,13 +1030,13 @@

                      setOpts_norm

                    - +
                    • getOpts_average_size

                      -
                      public int getOpts_average_size()
                      +
                      public int getOpts_average_size()
                      Gets the value of the opts_average_size property.
                      Returns:
                      @@ -970,13 +1044,13 @@

                      getOpts_average_size

                    - +
                    • setOpts_average_size

                      -
                      public void setOpts_average_size(int opts_average_size)
                      +
                      public void setOpts_average_size​(int opts_average_size)
                      Sets the value of the opts_average_size property.
                      Parameters:
                      @@ -984,13 +1058,13 @@

                      setOpts_average_size

                    - +
                    • getOpts_average_begin

                      -
                      public int getOpts_average_begin()
                      +
                      public int getOpts_average_begin()
                      Gets the value of the opts_average_begin property.
                      Returns:
                      @@ -998,13 +1072,13 @@

                      getOpts_average_begin

                    - +
                    • setOpts_average_begin

                      -
                      public void setOpts_average_begin(int opts_average_begin)
                      +
                      public void setOpts_average_begin​(int opts_average_begin)
                      Sets the value of the opts_average_begin property.
                      Parameters:
                      @@ -1014,21 +1088,25 @@

                      setOpts_average_begin

                  +
        • +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.svg b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.svg new file mode 100644 index 0000000..4c66956 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLFast.svg @@ -0,0 +1,67 @@ +MIMLFastmiml.classifiers.miml.optimizationserialVersionUID: longmimlfast: MWMIMLFastD: intnorm_up: intmaxiter: intstep_size: doublelambda: doublenum_sub: intopts_norm: intopts_average_size: intopts_average_begin: intMIMLFast()MIMLFast(int, int, int, double, int)MIMLFast(int, int, int, double, double, int, int, int, int)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getD(): intsetD(int): voidgetNorm_up(): intsetNorm_up(int): voidgetMaxiter(): intsetMaxiter(int): voidgetStep_size(): doublesetStep_size(double): voidgetLambda(): doublesetLambda(double): voidgetNum_sub(): intsetNum_sub(int): voidgetOpts_norm(): intsetOpts_norm(int): voidgetOpts_average_size(): intsetOpts_average_size(int): voidgetOpts_average_begin(): intsetOpts_average_begin(int): voidMWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.html b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.html old mode 100755 new mode 100644 index 6977ad5..4e79844 --- a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.html @@ -1,12 +1,22 @@ - + - + MIMLSVM - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +
          -
          miml.classifiers.miml.optimization
          +

          Class MIMLSVM

          @@ -100,10 +125,10 @@

          Class MIMLSVM

        • java.lang.Object
        • - +
            @@ -459,7 +522,7 @@

            para

          - +
            @@ -469,7 +532,7 @@

            cost

            The cost parameter used for the base svm classifier.
          - +
            @@ -479,7 +542,7 @@

            h

            Whether to use the shrinking heuristics, 0 or 1 (default 1).
          - +
            @@ -489,7 +552,7 @@

            ratio

            Parameter k is set to be 20% of the number of training bags.
          - +
            @@ -501,13 +564,15 @@

            seed

          + +
            -
          • +
          • Constructor Detail

            - +
              @@ -522,13 +587,13 @@

              MIMLSVM

            - +
            • MIMLSVM

              -
              public MIMLSVM(java.lang.String type,
              +
              public MIMLSVM​(java.lang.String type,
                              java.lang.String para,
                              double cost,
                              double h,
              @@ -551,37 +616,39 @@ 

              MIMLSVM

          +
          +
            -
          • +
          • Method Detail

            - +
            • dispose

              -
              public void dispose()
              -
              Description copied from class: MWClassifier
              +
              public void dispose()
              +
              Description copied from class: MWClassifier
              Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
              Specified by:
              -
              dispose in class MWClassifier
              +
              dispose in class MWClassifier
            - +
            • configure

              -
              public void configure(org.apache.commons.configuration2.Configuration configuration)
              -
              Description copied from interface: IConfiguration
              +
              public void configure​(org.apache.commons.configuration2.Configuration configuration)
              +
              Description copied from interface: IConfiguration
              Method to configure the class with the given configuration.
              Parameters:
              @@ -589,21 +656,21 @@

              configure

            - +
            • trainMWClassifier

              -
              protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
              +
              protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                         throws com.mathworks.toolbox.javabuilder.MWException
              -
              Description copied from class: MWClassifier
              +
              Description copied from class: MWClassifier
              Trains a Matlab classifier. Returns the classifier model in an array of Object.
              Specified by:
              -
              trainMWClassifier in class MWClassifier
              +
              trainMWClassifier in class MWClassifier
              Parameters:
              train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -619,21 +686,21 @@

              trainMWClassifier

            - +
            • predictMWClassifier

              -
              protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
              +
              protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                         throws com.mathworks.toolbox.javabuilder.MWException
              -
              Description copied from class: MWClassifier
              +
              Description copied from class: MWClassifier
              Performs a prediction on a test bag.
              Specified by:
              -
              predictMWClassifier in class MWClassifier
              +
              predictMWClassifier in class MWClassifier
              Parameters:
              train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -659,13 +726,13 @@

              predictMWClassifier

            - +
            • getType

              -
              public java.lang.String getType()
              +
              public java.lang.String getType()
              Gets the value of the type property.
              Returns:
              @@ -673,13 +740,13 @@

              getType

            - +
            • setType

              -
              public void setType(java.lang.String type)
              +
              public void setType​(java.lang.String type)
              Sets the value of the type property.
              Parameters:
              @@ -687,13 +754,13 @@

              setType

            - +
            • getPara

              -
              public java.lang.String getPara()
              +
              public java.lang.String getPara()
              Gets the value of the para property.
              Returns:
              @@ -701,13 +768,13 @@

              getPara

            - +
            • setPara

              -
              public void setPara(java.lang.String para)
              +
              public void setPara​(java.lang.String para)
              Sets the value of the para property.
              Parameters:
              @@ -715,13 +782,13 @@

              setPara

            - +
            • getCost

              -
              public double getCost()
              +
              public double getCost()
              Gets the value of the cost property.
              Returns:
              @@ -729,13 +796,13 @@

              getCost

            - +
            • setCost

              -
              public void setCost(double cost)
              +
              public void setCost​(double cost)
              Sets the value of the cost property.
              Parameters:
              @@ -743,13 +810,13 @@

              setCost

            - +
            • getH

              -
              public double getH()
              +
              public double getH()
              Gets the value of the h property.
              Returns:
              @@ -757,13 +824,13 @@

              getH

            - +
            • setH

              -
              public void setH(double h)
              +
              public void setH​(double h)
              Sets the value of the h property.
              Parameters:
              @@ -771,13 +838,13 @@

              setH

            - +
            • getRatio

              -
              public double getRatio()
              +
              public double getRatio()
              Gets the value of the ratio property.
              Returns:
              @@ -785,13 +852,13 @@

              getRatio

            - +
            • setRatio

              -
              public void setRatio(double ratio)
              +
              public void setRatio​(double ratio)
              Sets the value of the ratio property.
              Parameters:
              @@ -799,13 +866,13 @@

              setRatio

            - +
            • getSeed

              -
              public double getSeed()
              +
              public double getSeed()
              Gets the value of the seed property.
              Returns:
              @@ -813,13 +880,13 @@

              getSeed

            - +
            • setSeed

              -
              public void setSeed(double seed)
              +
              public void setSeed​(double seed)
              Sets the value of the seed property.
              Parameters:
              @@ -829,21 +896,25 @@

              setSeed

          +
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.svg b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.svg new file mode 100644 index 0000000..b12c3ef --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLSVM.svg @@ -0,0 +1,57 @@ +MIMLSVMmiml.classifiers.miml.optimizationserialVersionUID: longmimlsvm: MWMIMLSVMtype: Stringpara: Stringcost: doubleh: doubleratio: doubleseed: doubleMIMLSVM()MIMLSVM(String, String, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getType(): StringsetType(String): voidgetPara(): StringsetPara(String): voidgetCost(): doublesetCost(double): voidgetH(): doublesetH(double): voidgetRatio(): doublesetRatio(double): voidgetSeed(): doublesetSeed(double): voidMWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.html b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.html old mode 100755 new mode 100644 index cd5f7f0..1dd9780 --- a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.html @@ -1,12 +1,22 @@ - + - + MIMLWel - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +
          -
          miml.classifiers.miml.optimization
          +

          Class MIMLWel

          @@ -100,10 +125,10 @@

          Class MIMLWel

        • java.lang.Object
        • - +
            @@ -475,7 +538,7 @@

            opts_beta

            Controls the similarity between training_bags and their prototypes.
          - +
            @@ -485,7 +548,7 @@

            opts_iteration

            Iteration number.
          - +
            @@ -495,7 +558,7 @@

            opts_epsilon

            Value for epsilon.
          - +
            @@ -506,7 +569,7 @@

            ratio

            the number of train bags with label i.
          - +
            @@ -519,13 +582,15 @@

            mu

          + +
            -
          • +
          • Constructor Detail

            - +
              @@ -540,13 +605,13 @@

              MIMLWel

            - +
            • MIMLWel

              -
              public MIMLWel(double opts_C,
              +
              public MIMLWel​(double opts_C,
                              double opts_m,
                              double opts_beta,
                              double opts_iteration,
              @@ -571,37 +636,39 @@ 

              MIMLWel

          +
          +
            -
          • +
          • Method Detail

            - +
            • dispose

              -
              public void dispose()
              -
              Description copied from class: MWClassifier
              +
              public void dispose()
              +
              Description copied from class: MWClassifier
              Disposes native MW classifier. This method should be called if the classifier is not been used anymore in the program in order to free the memory that the MW classifier was using.
              Specified by:
              -
              dispose in class MWClassifier
              +
              dispose in class MWClassifier
            - +
            • configure

              -
              public void configure(org.apache.commons.configuration2.Configuration configuration)
              -
              Description copied from interface: IConfiguration
              +
              public void configure​(org.apache.commons.configuration2.Configuration configuration)
              +
              Description copied from interface: IConfiguration
              Method to configure the class with the given configuration.
              Parameters:
              @@ -609,21 +676,21 @@

              configure

            - +
            • trainMWClassifier

              -
              protected void trainMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
              +
              protected void trainMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                com.mathworks.toolbox.javabuilder.MWNumericArray train_targets)
                                         throws com.mathworks.toolbox.javabuilder.MWException
              -
              Description copied from class: MWClassifier
              +
              Description copied from class: MWClassifier
              Trains a Matlab classifier. Returns the classifier model in an array of Object.
              Specified by:
              -
              trainMWClassifier in class MWClassifier
              +
              trainMWClassifier in class MWClassifier
              Parameters:
              train_bags - bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -639,21 +706,21 @@

              trainMWClassifier

            - +
            • predictMWClassifier

              -
              protected java.lang.Object[] predictMWClassifier(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
              +
              protected java.lang.Object[] predictMWClassifier​(com.mathworks.toolbox.javabuilder.MWCellArray train_bags,
                                                                com.mathworks.toolbox.javabuilder.MWNumericArray train_targets,
                                                                com.mathworks.toolbox.javabuilder.MWNumericArray test_bag)
                                                         throws com.mathworks.toolbox.javabuilder.MWException
              -
              Description copied from class: MWClassifier
              +
              Description copied from class: MWClassifier
              Performs a prediction on a test bag.
              Specified by:
              -
              predictMWClassifier in class MWClassifier
              +
              predictMWClassifier in class MWClassifier
              Parameters:
              train_bags - Bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in @@ -679,13 +746,13 @@

              predictMWClassifier

            - +
            • getOpts_C

              -
              public double getOpts_C()
              +
              public double getOpts_C()
              Gets the value of the opts_C property.
              Returns:
              @@ -693,13 +760,13 @@

              getOpts_C

            - +
            • setOpts_C

              -
              public void setOpts_C(int opts_C)
              +
              public void setOpts_C​(int opts_C)
              Sets the value of the opts_C property.
              Parameters:
              @@ -707,13 +774,13 @@

              setOpts_C

            - +
            • getOpts_m

              -
              public double getOpts_m()
              +
              public double getOpts_m()
              Gets the value of the opts_m property.
              Returns:
              @@ -721,13 +788,13 @@

              getOpts_m

            - +
            • setOpts_m

              -
              public void setOpts_m(double opts_m)
              +
              public void setOpts_m​(double opts_m)
              Sets the value of the opts_m property.
              Parameters:
              @@ -735,13 +802,13 @@

              setOpts_m

            - +
            • getOpts_beta

              -
              public double getOpts_beta()
              +
              public double getOpts_beta()
              Gets the value of the opts_beta property.
              Returns:
              @@ -749,13 +816,13 @@

              getOpts_beta

            - +
            • setOpts_beta

              -
              public void setOpts_beta(double opts_beta)
              +
              public void setOpts_beta​(double opts_beta)
              Sets the value of the beta property.
              Parameters:
              @@ -763,13 +830,13 @@

              setOpts_beta

            - +
            • getOpts_iteration

              -
              public double getOpts_iteration()
              +
              public double getOpts_iteration()
              Gets the value of the opts_iteration property.
              Returns:
              @@ -777,13 +844,13 @@

              getOpts_iteration

            - +
            • setOpts_iteration

              -
              public void setOpts_iteration(int opts_iteration)
              +
              public void setOpts_iteration​(int opts_iteration)
              Sets the value of the opts_iteration property.
              Parameters:
              @@ -791,13 +858,13 @@

              setOpts_iteration

            - +
            • getOpts_epsilon

              -
              public double getOpts_epsilon()
              +
              public double getOpts_epsilon()
              Gets the value of the opts_epsilon property.
              Returns:
              @@ -805,13 +872,13 @@

              getOpts_epsilon

            - +
            • setOpts_epsilon

              -
              public void setOpts_epsilon(double opts_epsilon)
              +
              public void setOpts_epsilon​(double opts_epsilon)
              Sets the value of the opts_epsilon property.
              Parameters:
              @@ -819,13 +886,13 @@

              setOpts_epsilon

            - +
            • getRatio

              -
              public double getRatio()
              +
              public double getRatio()
              Gets the value of the ratio property.
              Returns:
              @@ -833,13 +900,13 @@

              getRatio

            - +
            • setRatio

              -
              public void setRatio(double ratio)
              +
              public void setRatio​(double ratio)
              Sets the value of the ratio property.
              Parameters:
              @@ -847,13 +914,13 @@

              setRatio

            - +
            • getMu

              -
              public double getMu()
              +
              public double getMu()
              Gets the value of the mu property.
              Returns:
              @@ -861,13 +928,13 @@

              getMu

            - +
            • setMu

              -
              public void setMu(double mu)
              +
              public void setMu​(double mu)
              Sets the value of the mu property.
              Parameters:
              @@ -877,21 +944,25 @@

              setMu

          +
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.svg b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.svg new file mode 100644 index 0000000..50cf18d --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/optimization/MIMLWel.svg @@ -0,0 +1,60 @@ +MIMLWelmiml.classifiers.miml.optimizationserialVersionUID: longmimlwel: MWMIMLWelopts_C: doubleopts_m: doubleopts_beta: doubleopts_iteration: doubleopts_epsilon: doubleratio: doublemu: doubleMIMLWel()MIMLWel(double, double, double, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getOpts_C(): doublesetOpts_C(int): voidgetOpts_m(): doublesetOpts_m(double): voidgetOpts_beta(): doublesetOpts_beta(double): voidgetOpts_iteration(): doublesetOpts_iteration(int): voidgetOpts_epsilon(): doublesetOpts_epsilon(double): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidMWClassifiermiml.classifiers.mimltrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/KiSar.html b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/KiSar.html old mode 100755 new mode 100644 index e27de7e..898d112 --- a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/KiSar.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/KiSar.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.optimization.KiSar - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Uses of Class
          miml.classifiers.miml.optimization.KiSar

          No usage of miml.classifiers.miml.optimization.KiSar
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLFast.html b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLFast.html old mode 100755 new mode 100644 index 2c513c5..5c00998 --- a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLFast.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLFast.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.optimization.MIMLFast - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Uses of Class
          miml.classifiers.miml.optimization.MIMLFast

          No usage of miml.classifiers.miml.optimization.MIMLFast
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLSVM.html b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLSVM.html old mode 100755 new mode 100644 index bcaad4b..15e1f49 --- a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLSVM.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLSVM.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.optimization.MIMLSVM - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Uses of Class
          miml.classifiers.miml.optimization.MIMLSVM

          No usage of miml.classifiers.miml.optimization.MIMLSVM
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLWel.html b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLWel.html old mode 100755 new mode 100644 index 3d571cf..62027b9 --- a/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLWel.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/class-use/MIMLWel.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.miml.optimization.MIMLWel - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Uses of Class
          miml.classifiers.miml.optimization.MIMLWel

          No usage of miml.classifiers.miml.optimization.MIMLWel
          +
          + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/package-frame.html b/documentation/apidoc/miml/classifiers/miml/optimization/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/package-summary.html b/documentation/apidoc/miml/classifiers/miml/optimization/package-summary.html old mode 100755 new mode 100644 index 33ce9e6..61584a2 --- a/documentation/apidoc/miml/classifiers/miml/optimization/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.optimization - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
          + +
          +

          Package miml.classifiers.miml.optimization

          • - +
            @@ -83,35 +108,39 @@

            Package miml.classifiers.miml.optimizatio

            - + - + - + - + @@ -119,16 +148,19 @@

            Package miml.classifiers.miml.optimizatio + + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/package-tree.html b/documentation/apidoc/miml/classifiers/miml/optimization/package-tree.html old mode 100755 new mode 100644 index 31772d1..3605464 --- a/documentation/apidoc/miml/classifiers/miml/optimization/package-tree.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml.optimization Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Hierarchy For Package miml.classifiers.miml.optimization

            Package Hierarchies: @@ -77,18 +102,19 @@

            Hierarchy For Package miml.classifiers.miml.optimization

            +

            Class Hierarchy

            +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/package-use.html b/documentation/apidoc/miml/classifiers/miml/optimization/package-use.html old mode 100755 new mode 100644 index 765ec26..46a8712 --- a/documentation/apidoc/miml/classifiers/miml/optimization/package-use.html +++ b/documentation/apidoc/miml/classifiers/miml/optimization/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.miml.optimization - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Package
            miml.classifiers.miml.optimization

            No usage of miml.classifiers.miml.optimization
            +
            + diff --git a/documentation/apidoc/miml/classifiers/miml/optimization/package.svg b/documentation/apidoc/miml/classifiers/miml/optimization/package.svg new file mode 100644 index 0000000..6f3e16d --- /dev/null +++ b/documentation/apidoc/miml/classifiers/miml/optimization/package.svg @@ -0,0 +1,169 @@ +miml.classifiers.miml.optimizationmiml.classifiers.mimlKiSarserialVersionUID: longkisar: MWKiSarC: doubleiteration: doubleepsilon: doubleK: doublerelationMethod: doubleKiSar()KiSar(double, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getC(): doublesetC(double): voidgetIteration(): doublesetIteration(double): voidgetEpsilon(): doublesetEpsilon(double): voidgetK(): doublesetK(double): voidgetRelationMethod(): doublesetRelationMethod(double): voidMIMLFastserialVersionUID: longmimlfast: MWMIMLFastD: intnorm_up: intmaxiter: intstep_size: doublelambda: doublenum_sub: intopts_norm: intopts_average_size: intopts_average_begin: intMIMLFast()MIMLFast(int, int, int, double, int)MIMLFast(int, int, int, double, double, int, int, int, int)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getD(): intsetD(int): voidgetNorm_up(): intsetNorm_up(int): voidgetMaxiter(): intsetMaxiter(int): voidgetStep_size(): doublesetStep_size(double): voidgetLambda(): doublesetLambda(double): voidgetNum_sub(): intsetNum_sub(int): voidgetOpts_norm(): intsetOpts_norm(int): voidgetOpts_average_size(): intsetOpts_average_size(int): voidgetOpts_average_begin(): intsetOpts_average_begin(int): voidMIMLSVMserialVersionUID: longmimlsvm: MWMIMLSVMtype: Stringpara: Stringcost: doubleh: doubleratio: doubleseed: doubleMIMLSVM()MIMLSVM(String, String, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getType(): StringsetType(String): voidgetPara(): StringsetPara(String): voidgetCost(): doublesetCost(double): voidgetH(): doublesetH(double): voidgetRatio(): doublesetRatio(double): voidgetSeed(): doublesetSeed(double): voidMIMLWelserialVersionUID: longmimlwel: MWMIMLWelopts_C: doubleopts_m: doubleopts_beta: doubleopts_iteration: doubleopts_epsilon: doubleratio: doublemu: doubleMIMLWel()MIMLWel(double, double, double, double, double, double, double)dispose(): voidconfigure(Configuration): voidtrainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]getOpts_C(): doublesetOpts_C(int): voidgetOpts_m(): doublesetOpts_m(double): voidgetOpts_beta(): doublesetOpts_beta(double): voidgetOpts_iteration(): doublesetOpts_iteration(int): voidgetOpts_epsilon(): doublesetOpts_epsilon(double): voidgetRatio(): doublesetRatio(double): voidgetMu(): doublesetMu(double): voidMWClassifierserialVersionUID: longwrapper: MWTranslatorclassifier: Object[]trainMWClassifier(MWCellArray, MWNumericArray): voidpredictMWClassifier(MWCellArray, MWNumericArray, MWNumericArray): Object[]dispose(): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/miml/package-frame.html b/documentation/apidoc/miml/classifiers/miml/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/miml/package-summary.html b/documentation/apidoc/miml/classifiers/miml/package-summary.html old mode 100755 new mode 100644 index 2d2a005..167af31 --- a/documentation/apidoc/miml/classifiers/miml/package-summary.html +++ b/documentation/apidoc/miml/classifiers/miml/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Package miml.classifiers.miml

            • -

            Class Summary 
            Class
            KiSarKiSar
            Wrapper for Matlab KiSar algorithm for - MIML data.
            + MIML data.
            + For more information see: Y.
            MIMLFastMIMLFast
            Wrapper for Matlab MIMLFast - algorithm for MIML data.
            + algorithm for MIML data.
            + See: S.
            MIMLSVMMIMLSVM
            Wrapper for Matlab MIMLSVM algorithm - for MIML data.
            + for MIML data.
            + See: Z.
            MIMLWelMIMLWel
            Wrapper for Matlab MIMLFast - algorithm for MIML data.
            + algorithm for MIML data.
            + See: S.
            +
            @@ -83,7 +108,7 @@

            Package miml.classifiers.miml

            - + @@ -92,7 +117,7 @@

            Package miml.classifiers.miml

            Interface Summary 
            Interface
            IMIMLClassifierIMIMLClassifier
            Common interface for MIML classifiers.
          • - +
            @@ -100,7 +125,7 @@

            Package miml.classifiers.miml

            - + - +
            Class Summary 
            Class
            MIMLClassifierMIMLClassifier
            This java class is based on the mulan.data.Statistics.java class provided in the Mulan java framework for multi-label learning Tsoumakas, G., Katakis, @@ -109,7 +134,7 @@

            Package miml.classifiers.miml

            MWClassifierMWClassifier
            Class to execute Matlab MIML classifiers.
            @@ -120,16 +145,19 @@

            Package miml.classifiers.miml

            + + diff --git a/documentation/apidoc/miml/classifiers/miml/package-tree.html b/documentation/apidoc/miml/classifiers/miml/package-tree.html old mode 100755 new mode 100644 index 46c5819..a5eb1bb --- a/documentation/apidoc/miml/classifiers/miml/package-tree.html +++ b/documentation/apidoc/miml/classifiers/miml/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.miml Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Hierarchy For Package miml.classifiers.miml

            Package Hierarchies: @@ -77,42 +102,49 @@

            Hierarchy For Package miml.classifiers.miml

            +

            Class Hierarchy

            +
            +

            Interface Hierarchy

              -
            • mulan.classifier.MultiLabelLearner +
            • mulan.classifier.MultiLabelLearner
                -
              • miml.classifiers.miml.IMIMLClassifier (also extends java.io.Serializable)
              • +
              • miml.classifiers.miml.IMIMLClassifier (also extends java.io.Serializable)
            • -
            • java.io.Serializable +
            • java.io.Serializable
                -
              • miml.classifiers.miml.IMIMLClassifier (also extends mulan.classifier.MultiLabelLearner)
              • +
              • miml.classifiers.miml.IMIMLClassifier (also extends mulan.classifier.MultiLabelLearner)
            +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/miml/package-use.html b/documentation/apidoc/miml/classifiers/miml/package-use.html old mode 100755 new mode 100644 index c6e86b5..6ddd1c3 --- a/documentation/apidoc/miml/classifiers/miml/package-use.html +++ b/documentation/apidoc/miml/classifiers/miml/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.miml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Package
            miml.classifiers.miml

            + +
              -
            • +
            • Constructor Summary

              - +
              - + + - + +
              Constructors 
              Constructor and DescriptionConstructorDescription
              LinearNNESearch(weka.core.Instances insts) LinearNNESearch​(weka.core.Instances insts) 
            +
            +
              -
            • +
            • Method Summary

              - +
              - + + - + +
              All Methods Instance Methods Concrete Methods 
              Modifier and TypeMethod and DescriptionMethodDescription
              int[]kNearestNeighboursIndices(weka.core.Instance target, - int kNN) kNearestNeighboursIndices​(weka.core.Instance target, + int kNN) 
                -
              • +
              • Methods inherited from class weka.core.neighboursearch.LinearNNSearch

                addInstanceInfo, getDistances, getOptions, getRevision, getSkipIdentical, globalInfo, kNearestNeighbours, listOptions, nearestNeighbour, setInstances, setOptions, setSkipIdentical, skipIdenticalTipText, update
                -
              • +
              • Methods inherited from class weka.core.neighboursearch.NearestNeighbourSearch

                combSort11, distanceFunctionTipText, enumerateMeasures, getDistanceFunction, getInstances, getMeasure, getMeasurePerformance, getPerformanceStats, measurePerformanceTipText, partition, quickSort, setDistanceFunction, setMeasurePerformance
                -
              • +
              • Methods inherited from class java.lang.Object

                @@ -243,6 +280,7 @@

                Methods inherited from class java.lang.Object

            +
            @@ -250,12 +288,13 @@

            Methods inherited from class java.lang.Object

            • +
                -
              • +
              • Field Detail

                - +
                  @@ -271,19 +310,21 @@

                  serialVersionUID

              +
              +
                -
              • +
              • Constructor Detail

                - +
                • LinearNNESearch

                  -
                  public LinearNNESearch(weka.core.Instances insts)
                  +
                  public LinearNNESearch​(weka.core.Instances insts)
                                   throws java.lang.Exception
                  Throws:
                  @@ -293,19 +334,21 @@

                  LinearNNESearch

              +
              +
                -
              • +
              • Method Detail

                - +
                • kNearestNeighboursIndices

                  -
                  public int[] kNearestNeighboursIndices(weka.core.Instance target,
                  +
                  public int[] kNearestNeighboursIndices​(weka.core.Instance target,
                                                          int kNN)
                                                   throws java.lang.Exception
                  @@ -316,21 +359,25 @@

                  kNearestNeighboursIndices

              +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/MLDGC.LinearNNESearch.svg b/documentation/apidoc/miml/classifiers/ml/MLDGC.LinearNNESearch.svg new file mode 100644 index 0000000..3786121 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/ml/MLDGC.LinearNNESearch.svg @@ -0,0 +1,34 @@ +MLDGC.LinearNNESearchmiml.classifiers.mlserialVersionUID: longLinearNNESearch(Instances)kNearestNeighboursIndices(Instance, int): int[]LinearNNSearchweka.core.neighboursearchMLDGCmiml.classifiers.mlUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/ml/MLDGC.html b/documentation/apidoc/miml/classifiers/ml/MLDGC.html old mode 100755 new mode 100644 index e5a6014..a02204e --- a/documentation/apidoc/miml/classifiers/ml/MLDGC.html +++ b/documentation/apidoc/miml/classifiers/ml/MLDGC.html @@ -1,12 +1,22 @@ - + - + MLDGC - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.classifiers.ml
            +

            Class MLDGC

            @@ -119,14 +144,13 @@

            Class MLDGC

          • All Implemented Interfaces:
            -
            java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler
            +
            java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler

            -
            public class MLDGC
             extends mulan.classifier.lazy.MultiLabelKNN
            Implementation of MLDGC (Multi-Label Data Gravitation Model) algorithm. For - more information see: Oscar Reyes, Carlos Morell, Sebastián Ventura + more information see: Oscar Reyes, Carlos Morell, Sebastián Ventura (2016). Effective lazy learning algorithm based on a data gravitation model for multi-label learning. Information Sciences. Vol 340, issue C.
            @@ -144,93 +168,107 @@

            Class MLDGC

            • +
              +
              +
                -
              • +
              • Field Summary

                - +
                - + + - + - - + + - + - + - + - + - + + - +
                Fields 
                Modifier and TypeField and DescriptionFieldDescription
                protected double[]densities +densities
                Densities
                protected MLDGC.LinearNNESearchelnn +protected MLDGC.LinearNNESearchelnn
                Searching of neighborhood
                (package private) booleanextNeigh +extNeigh
                Whether neighborhood is extended with all the neighbors with the same distance.
                protected double[]NGC +NGC
                Neighborhood-based Gravitation Coefficient for each training example
                private static longserialVersionUID +serialVersionUID
                For serialization
                protected doubleweight_max +weight_max
                Values used to normalize weights
                protected doubleweight_min weight_min 
                protected double[]weights +weights
                Weights
                  -
                • +
                • Fields inherited from class mulan.classifier.lazy.MultiLabelKNN

                  dfunc, distanceWeighting, lnn, numOfNeighbors, train, WEIGHT_INVERSE, WEIGHT_NONE, WEIGHT_SIMILARITY
                  -
                • +
                • Fields inherited from class mulan.classifier.MultiLabelLearnerBase

                  @@ -238,105 +276,121 @@

                  Fields inherited from class mulan.classifier.MultiLabelLearnerBase

              +
              +
                -
              • +
              • Constructor Summary

                - +
                - + + - + - + - +
                Constructors 
                Constructor and DescriptionConstructorDescription
                MLDGC() +MLDGC()
                The default constructor.
                MLDGC(int numOfNeighbors) +MLDGC​(int numOfNeighbors)
                Constructor initializing the number of neighbors.
                MLDGC(int numOfNeighbors, - weka.core.DistanceFunction dfunc) +MLDGC​(int numOfNeighbors, + weka.core.DistanceFunction dfunc)
                Constructor initializing the number of neighbors and the distance function.
              +
              +
                -
              • +
              • Method Summary

                - +
                - + + - + + - + - + + - + - + - + + - +
                All Methods Instance Methods Concrete Methods 
                Modifier and TypeMethod and DescriptionMethodDescription
                protected voidbuildInternal(mulan.data.MultiLabelInstances trainSet) buildInternal​(mulan.data.MultiLabelInstances trainSet) 
                protected voidcomputeWeightDensity(weka.core.Instances knn, +computeWeightDensity​(weka.core.Instances knn, weka.core.Instance instance, - int index) + int index)
                Given a neighborhood and an instance, computes neighborhood-weight and neighborhood-density.
                weka.core.TechnicalInformationgetTechnicalInformation() getTechnicalInformation() 
                booleanisExtNeigh() +isExtNeigh()
                Gets the value of the property isExtNeigh.
                protected doublelabelDistance(weka.core.Instance instance1, - weka.core.Instance instance2) +labelDistance​(weka.core.Instance instance1, + weka.core.Instance instance2)
                Computes the label distance between two instances.
                protected mulan.classifier.MultiLabelOutputmakePredictionInternal(weka.core.Instance instance) makePredictionInternal​(weka.core.Instance instance) 
                voidsetExtNeigh(boolean extNeigh) +setExtNeigh​(boolean extNeigh)
                Sets the value of the property isExtNeigh.
                  -
                • +
                • Methods inherited from class mulan.classifier.lazy.MultiLabelKNN

                  isUpdatable, setDfunc, setDistanceWeighting
                  -
                • +
                • Methods inherited from class mulan.classifier.MultiLabelLearnerBase

                  build, debug, getDebug, isModelInitialized, makeCopy, makePrediction, setDebug
                  -
                • +
                • Methods inherited from class java.lang.Object

                  @@ -344,6 +398,7 @@

                  Methods inherited from class java.lang.Object

              +
          • @@ -351,12 +406,13 @@

            Methods inherited from class java.lang.Object

            • +
                -
              • +
              • Field Detail

                - +
                  @@ -370,7 +426,7 @@

                  serialVersionUID

                - +
                  @@ -380,7 +436,7 @@

                  NGC

                  Neighborhood-based Gravitation Coefficient for each training example
                - +
                  @@ -390,7 +446,7 @@

                  densities

                  Densities
                - +
                  @@ -400,17 +456,17 @@

                  weights

                  Weights
                - + - +
                  @@ -421,7 +477,7 @@

                  extNeigh

                  distance. The default value is false.
                - +
                  @@ -431,7 +487,7 @@

                  weight_max

                  Values used to normalize weights
                - +
                  @@ -442,13 +498,15 @@

                  weight_min

              +
              +
                -
              • +
              • Constructor Detail

                - +
                  @@ -458,13 +516,13 @@

                  MLDGC

                  The default constructor. By default 10 neighbors and Euclidean distance.
                - +
                • MLDGC

                  -
                  public MLDGC(int numOfNeighbors)
                  +
                  public MLDGC​(int numOfNeighbors)
                  Constructor initializing the number of neighbors. By default Euclidean Distance.
                  @@ -473,13 +531,13 @@

                  MLDGC

                - +
                • MLDGC

                  -
                  public MLDGC(int numOfNeighbors,
                  +
                  public MLDGC​(int numOfNeighbors,
                                weka.core.DistanceFunction dfunc)
                  Constructor initializing the number of neighbors and the distance function.
                  @@ -491,19 +549,21 @@

                  MLDGC

              +
              +
                -
              • +
              • Method Detail

                - +
                • buildInternal

                  -
                  protected void buildInternal(mulan.data.MultiLabelInstances trainSet)
                  +
                  protected void buildInternal​(mulan.data.MultiLabelInstances trainSet)
                                         throws java.lang.Exception
                  Overrides:
                  @@ -513,15 +573,16 @@

                  buildInternal

                - +
                • labelDistance

                  -
                  protected double labelDistance(weka.core.Instance instance1,
                  +
                  protected double labelDistance​(weka.core.Instance instance1,
                                                  weka.core.Instance instance2)
                  -
                  Computes the label distance between two instances.
                  +
                  Computes the label distance between two instances. The distance considered is + the Hamming loss.
                  Parameters:
                  instance1 - the first instance.
                  @@ -531,13 +592,13 @@

                  labelDistance

                - +
                • computeWeightDensity

                  -
                  protected void computeWeightDensity(weka.core.Instances knn,
                  +
                  protected void computeWeightDensity​(weka.core.Instances knn,
                                                       weka.core.Instance instance,
                                                       int index)
                  Given a neighborhood and an instance, computes neighborhood-weight and @@ -551,13 +612,13 @@

                  computeWeightDensity

                - +
                • makePredictionInternal

                  -
                  protected mulan.classifier.MultiLabelOutput makePredictionInternal(weka.core.Instance instance)
                  +
                  protected mulan.classifier.MultiLabelOutput makePredictionInternal​(weka.core.Instance instance)
                                                                               throws java.lang.Exception
                  Specified by:
                  @@ -567,13 +628,13 @@

                  makePredictionInternal

                - +
                • isExtNeigh

                  -
                  public boolean isExtNeigh()
                  +
                  public boolean isExtNeigh()
                  Gets the value of the property isExtNeigh.
                  Returns:
                  @@ -581,13 +642,13 @@

                  isExtNeigh

                - +
                • setExtNeigh

                  -
                  public void setExtNeigh(boolean extNeigh)
                  +
                  public void setExtNeigh​(boolean extNeigh)
                  Sets the value of the property isExtNeigh.
                  Parameters:
                  @@ -595,13 +656,13 @@

                  setExtNeigh

                - +
                • getTechnicalInformation

                  -
                  public weka.core.TechnicalInformation getTechnicalInformation()
                  +
                  public weka.core.TechnicalInformation getTechnicalInformation()
                  Specified by:
                  getTechnicalInformation in interface weka.core.TechnicalInformationHandler
                  @@ -612,21 +673,25 @@

                  getTechnicalInformation

              +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/MLDGC.svg b/documentation/apidoc/miml/classifiers/ml/MLDGC.svg new file mode 100644 index 0000000..7c8011b --- /dev/null +++ b/documentation/apidoc/miml/classifiers/ml/MLDGC.svg @@ -0,0 +1,49 @@ +MLDGCmiml.classifiers.mlserialVersionUID: longNGC: double[]densities: double[]weights: double[]elnn: LinearNNESearchextNeigh: booleanweight_max: doubleweight_min: doubleMLDGC()MLDGC(int)MLDGC(int, DistanceFunction)buildInternal(MultiLabelInstances): voidlabelDistance(Instance, Instance): doublecomputeWeightDensity(Instances, Instance, int): voidmakePredictionInternal(Instance): MultiLabelOutputisExtNeigh(): booleansetExtNeigh(boolean): voidgetTechnicalInformation(): TechnicalInformationMultiLabelKNNmulan.classifier.lazyMLDGC.LinearNNESearchmiml.classifiers.mlUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/classifiers/ml/RFPCT.html b/documentation/apidoc/miml/classifiers/ml/RFPCT.html new file mode 100644 index 0000000..5137d38 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/ml/RFPCT.html @@ -0,0 +1,634 @@ + + + + + +RFPCT + + + + + + + + + + + + + + + +
            + +
            + +
            +
            + +

            Class RFPCT

            +
            +
            +
              +
            • java.lang.Object
            • +
            • +
                +
              • mulan.classifier.MultiLabelLearnerBase
              • +
              • +
                  +
                • mulan.classifier.clus.ClusWrapperClassification
                • +
                • +
                    +
                  • miml.classifiers.ml.RFPCT
                  • +
                  +
                • +
                +
              • +
              +
            • +
            +
            +
              +
            • +
              +
              All Implemented Interfaces:
              +
              java.io.Serializable, mulan.classifier.MultiLabelLearner, weka.core.TechnicalInformationHandler
              +
              +
              +
              public class RFPCT
              +extends mulan.classifier.clus.ClusWrapperClassification
              +
              This class is a wrapper for RFPCT implemented in the clus library + CLUS library.
              +
              +
              Version:
              +
              2013.04.01
              +
              Author:
              +
              Eleftherios Spyromitros-Xioufis
              +
              See Also:
              +
              Serialized Form
              +
              +
            • +
            +
            +
            +
              +
            • + +
              +
                +
              • + + +

                Field Summary

                + + + + + + + + + + + + + + + + + + + + + + +
                Fields 
                Modifier and TypeFieldDescription
                private intnumTrees +
                The number of random trees in the ensemble.
                +
                private longseed +
                A seed for randomization.
                +
                private static longserialVersionUID +
                For serialization.
                +
                +
                  +
                • + + +

                  Fields inherited from class mulan.classifier.clus.ClusWrapperClassification

                  +clusWorkingDir, datasetName, isEnsemble, isRuleBased, settingsFilePath
                • +
                +
                  +
                • + + +

                  Fields inherited from class mulan.classifier.MultiLabelLearnerBase

                  +featureIndices, labelIndices, labelNames, numLabels
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Constructor Summary

                + + + + + + + + + + + + + + + + + + +
                Constructors 
                ConstructorDescription
                RFPCT() +
                No-argument constructor for xml configuration.
                +
                RFPCT​(java.lang.String clusWorkingDir) +
                Constructor.
                +
                RFPCT​(java.lang.String clusWorkingDir, + java.lang.String clusDatasetName, + int numTrees, + long seed) +
                Constructor.
                +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Method Summary

                + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                All Methods Instance Methods Concrete Methods 
                Modifier and TypeMethodDescription
                protected voidbuildInternal​(mulan.data.MultiLabelInstances trainingSet) 
                private voidcreateSettingsFile() +
                This method creates a CLUS settings file that corresponds to the MORF + algorithm and writes it in clusWorkingDir.
                +
                java.lang.StringgetClusDatasetName() +
                Gets the clus datasetName
                +
                intgetNumTrees() +
                Returns the number of trees in the forest.
                +
                longgetSeed() +
                Gets the seed used by the random generator.
                +
                voidsetNumTrees​(int numTrees) +
                Sets the number of trees in the forest.
                +
                voidsetSeed​(long seed) +
                Sets the seed used by the random generator.
                +
                +
                  +
                • + + +

                  Methods inherited from class mulan.classifier.clus.ClusWrapperClassification

                  +getClusWorkingDir, getDatasetName, getTechnicalInformation, isEnsemble, isRuleBased, makeClusCompliant, makePredictionInternal, setEnsemble, setRuleBased
                • +
                +
                  +
                • + + +

                  Methods inherited from class mulan.classifier.MultiLabelLearnerBase

                  +build, debug, getDebug, isModelInitialized, isUpdatable, makeCopy, makePrediction, setDebug
                • +
                +
                  +
                • + + +

                  Methods inherited from class java.lang.Object

                  +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                • +
                +
              • +
              +
              +
            • +
            +
            +
            +
              +
            • + +
              +
                +
              • + + +

                Field Detail

                + + + +
                  +
                • +

                  serialVersionUID

                  +
                  private static final long serialVersionUID
                  +
                  For serialization.
                  +
                  +
                  See Also:
                  +
                  Constant Field Values
                  +
                  +
                • +
                + + + +
                  +
                • +

                  numTrees

                  +
                  private int numTrees
                  +
                  The number of random trees in the ensemble.
                  +
                • +
                + + + +
                  +
                • +

                  seed

                  +
                  private long seed
                  +
                  A seed for randomization.
                  +
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Constructor Detail

                + + + +
                  +
                • +

                  RFPCT

                  +
                  public RFPCT()
                  +
                  No-argument constructor for xml configuration.
                  +
                • +
                + + + +
                  +
                • +

                  RFPCT

                  +
                  public RFPCT​(java.lang.String clusWorkingDir)
                  +
                  Constructor.
                  +
                  +
                  Parameters:
                  +
                  clusWorkingDir - The directory where all temporary files needed or + generated by CLUS library are written.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  RFPCT

                  +
                  public RFPCT​(java.lang.String clusWorkingDir,
                  +             java.lang.String clusDatasetName,
                  +             int numTrees,
                  +             long seed)
                  +
                  Constructor.
                  +
                  +
                  Parameters:
                  +
                  clusWorkingDir - The directory where all temporary files needed or + generated by CLUS library are written.
                  +
                  clusDatasetName - The dataset name that will be used for training, test + and settings files.
                  +
                  numTrees - the number of trees.
                  +
                  seed - The seed of random generator.
                  +
                  +
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Method Detail

                + + + +
                  +
                • +

                  getNumTrees

                  +
                  public int getNumTrees()
                  +
                  Returns the number of trees in the forest.
                  +
                  +
                  Returns:
                  +
                  int
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setNumTrees

                  +
                  public void setNumTrees​(int numTrees)
                  +
                  Sets the number of trees in the forest.
                  +
                  +
                  Parameters:
                  +
                  numTrees - The number of trees.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getSeed

                  +
                  public long getSeed()
                  +
                  Gets the seed used by the random generator.
                  +
                  +
                  Returns:
                  +
                  int
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setSeed

                  +
                  public void setSeed​(long seed)
                  +
                  Sets the seed used by the random generator.
                  +
                  +
                  Parameters:
                  +
                  seed - The seed.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getClusDatasetName

                  +
                  public java.lang.String getClusDatasetName()
                  +
                  Gets the clus datasetName
                  +
                  +
                  Returns:
                  +
                  String
                  +
                  +
                • +
                + + + +
                  +
                • +

                  buildInternal

                  +
                  protected void buildInternal​(mulan.data.MultiLabelInstances trainingSet)
                  +                      throws java.lang.Exception
                  +
                  +
                  Overrides:
                  +
                  buildInternal in class mulan.classifier.clus.ClusWrapperClassification
                  +
                  Throws:
                  +
                  java.lang.Exception
                  +
                  +
                • +
                + + + +
                  +
                • +

                  createSettingsFile

                  +
                  private void createSettingsFile()
                  +                         throws java.lang.Exception
                  +
                  This method creates a CLUS settings file that corresponds to the MORF + algorithm and writes it in clusWorkingDir.
                  +
                  +
                  Throws:
                  +
                  java.lang.Exception - Potential exception thrown. To be handled in an upper + level.
                  +
                  +
                • +
                +
              • +
              +
              +
            • +
            +
            +
            +
            + + + + diff --git a/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.LinearNNESearch.html b/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.LinearNNESearch.html old mode 100755 new mode 100644 index 8373990..9a03980 --- a/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.LinearNNESearch.html +++ b/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.LinearNNESearch.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.ml.MLDGC.LinearNNESearch - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Class
            miml.classifiers.ml.MLDGC.LinearNNESearch

            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.html b/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.html old mode 100755 new mode 100644 index d376b4c..eaf8056 --- a/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.html +++ b/documentation/apidoc/miml/classifiers/ml/class-use/MLDGC.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.classifiers.ml.MLDGC - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Class
            miml.classifiers.ml.MLDGC

            No usage of miml.classifiers.ml.MLDGC
            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/class-use/RFPCT.html b/documentation/apidoc/miml/classifiers/ml/class-use/RFPCT.html new file mode 100644 index 0000000..d596ae2 --- /dev/null +++ b/documentation/apidoc/miml/classifiers/ml/class-use/RFPCT.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.classifiers.ml.RFPCT + + + + + + + + + + + + + + + +
            + +
            +
            +
            +

            Uses of Class
            miml.classifiers.ml.RFPCT

            +
            +
            No usage of miml.classifiers.ml.RFPCT
            +
            + + + diff --git a/documentation/apidoc/miml/classifiers/ml/package-frame.html b/documentation/apidoc/miml/classifiers/ml/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/classifiers/ml/package-summary.html b/documentation/apidoc/miml/classifiers/ml/package-summary.html old mode 100755 new mode 100644 index 073391f..3adb7d2 --- a/documentation/apidoc/miml/classifiers/ml/package-summary.html +++ b/documentation/apidoc/miml/classifiers/ml/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.ml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Package miml.classifiers.ml

            • - +
              @@ -83,26 +108,36 @@

              Package miml.classifiers.ml

              - + + + + +
              Class Summary 
              Class
              MLDGCMLDGC
              Implementation of MLDGC (Multi-Label Data Gravitation Model) algorithm.
              RFPCT +
              This class is a wrapper for RFPCT implemented in the clus library + CLUS library.
              +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/package-tree.html b/documentation/apidoc/miml/classifiers/ml/package-tree.html old mode 100755 new mode 100644 index 74e1c59..5358bfb --- a/documentation/apidoc/miml/classifiers/ml/package-tree.html +++ b/documentation/apidoc/miml/classifiers/ml/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.classifiers.ml Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Hierarchy For Package miml.classifiers.ml

            Package Hierarchies: @@ -77,24 +102,30 @@

            Hierarchy For Package miml.classifiers.ml

            +

            Class Hierarchy

              -
            • java.lang.Object +
            • java.lang.Object +
                +
              • mulan.classifier.MultiLabelLearnerBase (implements mulan.classifier.MultiLabelLearner, java.io.Serializable, weka.core.TechnicalInformationHandler)
                  -
                • mulan.classifier.MultiLabelLearnerBase (implements mulan.classifier.MultiLabelLearner, java.io.Serializable, weka.core.TechnicalInformationHandler) +
                • mulan.classifier.clus.ClusWrapperClassification
                    -
                  • mulan.classifier.lazy.MultiLabelKNN +
                  • miml.classifiers.ml.RFPCT
                  • +
                  +
                • +
                • mulan.classifier.lazy.MultiLabelKNN
                    -
                  • miml.classifiers.ml.MLDGC
                  • +
                  • miml.classifiers.ml.MLDGC
              • -
              • weka.core.neighboursearch.NearestNeighbourSearch (implements weka.core.AdditionalMeasureProducer, weka.core.OptionHandler, weka.core.RevisionHandler, java.io.Serializable) +
              • weka.core.neighboursearch.NearestNeighbourSearch (implements weka.core.AdditionalMeasureProducer, weka.core.OptionHandler, weka.core.RevisionHandler, java.io.Serializable) @@ -102,17 +133,21 @@

                Class Hierarchy

            +
            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/package-use.html b/documentation/apidoc/miml/classifiers/ml/package-use.html old mode 100755 new mode 100644 index 8bbf054..c39a068 --- a/documentation/apidoc/miml/classifiers/ml/package-use.html +++ b/documentation/apidoc/miml/classifiers/ml/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.classifiers.ml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Package
            miml.classifiers.ml

            +
            + diff --git a/documentation/apidoc/miml/classifiers/ml/package.svg b/documentation/apidoc/miml/classifiers/ml/package.svg new file mode 100644 index 0000000..cb5ae8e --- /dev/null +++ b/documentation/apidoc/miml/classifiers/ml/package.svg @@ -0,0 +1,79 @@ +miml.classifiers.mlmulan.classifier.lazyweka.core.neighboursearchMLDGCserialVersionUID: longNGC: double[]densities: double[]weights: double[]extNeigh: booleanweight_max: doubleweight_min: doubleMLDGC()MLDGC(int)MLDGC(int, DistanceFunction)buildInternal(MultiLabelInstances): voidlabelDistance(Instance, Instance): doublecomputeWeightDensity(Instances, Instance, int): voidmakePredictionInternal(Instance): MultiLabelOutputisExtNeigh(): booleansetExtNeigh(boolean): voidgetTechnicalInformation(): TechnicalInformationMLDGC.LinearNNESearchserialVersionUID: longLinearNNESearch(Instances)kNearestNeighboursIndices(Instance, int): int[]MultiLabelKNNdistanceWeighting: intWEIGHT_NONE: intWEIGHT_INVERSE: intWEIGHT_SIMILARITY: intnumOfNeighbors: intlnn: LinearNNSearchdfunc: DistanceFunctiontrain: InstancesLinearNNSearchserialVersionUID: longm_Distances: double[]m_SkipIdentical: booleanelnnUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/clusterers/KMedoids.html b/documentation/apidoc/miml/clusterers/KMedoids.html new file mode 100644 index 0000000..f8b0f00 --- /dev/null +++ b/documentation/apidoc/miml/clusterers/KMedoids.html @@ -0,0 +1,1350 @@ + + + + + +KMedoids + + + + + + + + + + + + + + + +
            + +
            + +
            +
            + +

            Class KMedoids

            +
            +
            +
              +
            • java.lang.Object
            • +
            • +
                +
              • weka.clusterers.AbstractClusterer
              • +
              • +
                  +
                • weka.clusterers.RandomizableClusterer
                • +
                • +
                    +
                  • miml.clusterers.KMedoids
                  • +
                  +
                • +
                +
              • +
              +
            • +
            +
            +
              +
            • +
              +
              All Implemented Interfaces:
              +
              java.io.Serializable, java.lang.Cloneable, weka.clusterers.Clusterer, weka.core.CapabilitiesHandler, weka.core.OptionHandler, weka.core.Randomizable, weka.core.RevisionHandler
              +
              +
              +
              public class KMedoids
              +extends weka.clusterers.RandomizableClusterer
              +implements weka.clusterers.Clusterer
              +
              Class implementing the PAM (Partitioning Around Medoids) approximation [1] to + kMedoids for multi-instance data. + + [1] Kaufman, L. and Rousseeuw, P.J. (1990). Partitioning Around Medoids + (Program PAM). In Finding Groups in Data (eds L. Kaufman and P.J. Rousseeuw). + https://doi.org/10.1002/9780470316801.ch2
              +
              +
              Version:
              +
              20230412
              +
              Author:
              +
              Eva Gibaja
              +
              See Also:
              +
              Serialized Form
              +
              +
            • +
            +
            +
            +
              +
            • + +
              +
                +
              • + + +

                Field Summary

                + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                Fields 
                Modifier and TypeFieldDescription
                protected int[]clusterAssignment +
                The assignment of instances to medoids.
                +
                protected doubleconfigurationCost +
                Final cost of the clustering configuration.
                +
                protected double[][]distancesMatrix +
                Distance between instances.
                +
                protected intmaxIterations +
                The maximum number of iterations the algorithm is allowed to run.
                +
                protected int[]medoidIndices +
                The medoid indices.
                +
                protected weka.core.Instance[]medoidInstances +
                The medoid instances.
                +
                protected IDistancemetric +
                Distance function.
                +
                protected booleanminimize +
                Whether the metric is maximized o minimized.
                +
                protected intnumClusters +
                Number of clusters to generate.
                +
                protected intnumInstances +
                Number of instances in the dataset.
                +
                protected doublenumIterations +
                Final number of iterations to perform clustering.
                +
                protected booleanrandomInitialization +
                Whether the initialization of medoids is random o applying the BUILD method + of PAM algorithm.
                +
                private static longserialVersionUID +
                For serialization.
                +
                +
                  +
                • + + +

                  Fields inherited from class weka.clusterers.RandomizableClusterer

                  +m_Seed, m_SeedDefault
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Constructor Summary

                + + + + + + + + + + + + + + + + + + + + + + + + + + +
                Constructors 
                ConstructorDescription
                KMedoids() +
                Creates a new instance of the k-medoids algorithm with default parameters.
                +
                KMedoids​(int numClusters) +
                Creates a new instance of the k-medoids algorithm with with the specified + parameters.
                +
                KMedoids​(int numClusters, + int maxIterations, + IDistance metric) +
                Creates a new instance of the k-medoids algorithm with the specified + parameters.
                +
                KMedoids​(int numClusters, + IDistance metric) +
                Creates a new instance of the k-medoids algorithm with the specified + parameters.
                +
                KMedoids​(IDistance metric) +
                Creates a new instance of the k-medoids algorithm with the specified dist + measure.
                +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Method Summary

                + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                All Methods Instance Methods Concrete Methods 
                Modifier and TypeMethodDescription
                protected int[]assignInstancesToMedoids​(int[] medoidIndices) +
                Assign all instances from the data set to the medoids.
                +
                voidbuildClusterer​(weka.core.Instances data) 
                protected voidbuildInitialization() +
                Performs an initialization of medoids based on the BUILD step of PAM + algorithm.
                +
                intclusterInstance​(weka.core.Instance instance) 
                protected booleancompare​(double metricValue1, + double metricValue2) +
                Allows to maximize or minimize the metric according to the value of minimize + property.
                +
                protected doublecomputeCost​(int[] assignment) +
                Computes the cost of a configuration.
                +
                protected voidcomputeDistances​(weka.core.Instances data) +
                Computes distances between instances.
                +
                double[]distanceToMedoids​(int index) +
                Returns the distance of an instance in the training dataset referenced by its + index to each medoid.
                +
                double[]distanceToMedoids​(weka.core.Instance instance) +
                Returns the distance of an instance to each medoid.
                +
                double[]distributionForInstance​(weka.core.Instance instance) 
                int[]getAssignment() +
                Gets the assignment of instances to clusters.
                +
                weka.core.CapabilitiesgetCapabilities() 
                doublegetConfigurationCost() +
                Gets final the cost of the configuration after applying clustering.
                +
                IDistancegetDistanceFunction() +
                Gets the distance function used by clusterer.
                +
                double[][]getDistances() +
                Returns a matrix the distances between all instances being distances[i][j] + the distance between the instances with indices i and j.
                +
                intgetMaxIterations() +
                Gets the maximum number of iterations used by clusterer.
                +
                weka.core.Instance[]getMedoidInstances() +
                Gets the medoids obtained after performing clustering.
                +
                doublegetNumIterations() +
                Gets the number of iterations performed in the clustering process.
                +
                booleangetRandomInitialization() +
                Gets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering.
                +
                protected booleanisMedoid​(int instanceIndex) +
                Determines if an instance is being considered as medoid.
                +
                protected intmedoidIndex​(int instanceIndex) +
                Determines if an instance is being considered as medoid.
                +
                intnumberOfClusters() 
                protected voidrandomInitialization() +
                Performs a random initialization of medoids.
                +
                voidsetDistanceFunction​(IDistance distanceFunction) +
                Sets the distance function to use for clustering.
                +
                voidsetMaxIterations​(int maxIterations) +
                Sets the maximum number of iterations for clustering.
                +
                voidsetNumClusters​(int numClusters) +
                Sets the number of clusters to perform clustering.
                +
                voidsetRandomInitialization​(boolean randomInitialization) +
                Sets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering.
                +
                +
                  +
                • + + +

                  Methods inherited from class weka.clusterers.RandomizableClusterer

                  +getOptions, getSeed, listOptions, seedTipText, setOptions, setSeed
                • +
                +
                  +
                • + + +

                  Methods inherited from class weka.clusterers.AbstractClusterer

                  +forName, getRevision, makeCopies, makeCopy, runClusterer
                • +
                +
                  +
                • + + +

                  Methods inherited from class java.lang.Object

                  +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                • +
                +
              • +
              +
              +
            • +
            +
            +
            +
              +
            • + +
              +
                +
              • + + +

                Field Detail

                + + + +
                  +
                • +

                  serialVersionUID

                  +
                  private static final long serialVersionUID
                  +
                  For serialization.
                  +
                  +
                  See Also:
                  +
                  Constant Field Values
                  +
                  +
                • +
                + + + +
                  +
                • +

                  metric

                  +
                  protected IDistance metric
                  +
                  Distance function. By default MaximalHausdorff distance is used
                  +
                • +
                + + + +
                  +
                • +

                  numClusters

                  +
                  protected int numClusters
                  +
                  Number of clusters to generate. By default 10 clusters.
                  +
                • +
                + + + +
                  +
                • +

                  numInstances

                  +
                  protected int numInstances
                  +
                  Number of instances in the dataset.
                  +
                • +
                + + + +
                  +
                • +

                  maxIterations

                  +
                  protected int maxIterations
                  +
                  The maximum number of iterations the algorithm is allowed to run. By default + 100 iterations
                  +
                • +
                + + + +
                  +
                • +

                  medoidIndices

                  +
                  protected int[] medoidIndices
                  +
                  The medoid indices. Element k contains the index of the instance being the k + medoid, a value in (0, numInstances).
                  +
                • +
                + + + +
                  +
                • +

                  medoidInstances

                  +
                  protected weka.core.Instance[] medoidInstances
                  +
                  The medoid instances. Element k contains the instance being the k medoid
                  +
                • +
                + + + +
                  +
                • +

                  clusterAssignment

                  +
                  protected int[] clusterAssignment
                  +
                  The assignment of instances to medoids. Element i contains the number of + medoid assigned to instance i, a value in (0, nClusters-1).
                  +
                • +
                + + + +
                  +
                • +

                  distancesMatrix

                  +
                  protected double[][] distancesMatrix
                  +
                  Distance between instances.
                  +
                • +
                + + + +
                  +
                • +

                  minimize

                  +
                  protected boolean minimize
                  +
                  Whether the metric is maximized o minimized. By default the metric is + minimized.
                  +
                • +
                + + + +
                  +
                • +

                  randomInitialization

                  +
                  protected boolean randomInitialization
                  +
                  Whether the initialization of medoids is random o applying the BUILD method + of PAM algorithm. By default random initialization is performed.
                  +
                • +
                + + + +
                  +
                • +

                  configurationCost

                  +
                  protected double configurationCost
                  +
                  Final cost of the clustering configuration.
                  +
                • +
                + + + +
                  +
                • +

                  numIterations

                  +
                  protected double numIterations
                  +
                  Final number of iterations to perform clustering.
                  +
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Constructor Detail

                + + + +
                  +
                • +

                  KMedoids

                  +
                  public KMedoids()
                  +         throws java.lang.Exception
                  +
                  Creates a new instance of the k-medoids algorithm with default parameters.
                  +
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  KMedoids

                  +
                  public KMedoids​(int numClusters)
                  +         throws java.lang.Exception
                  +
                  Creates a new instance of the k-medoids algorithm with with the specified + parameters.
                  +
                  +
                  Parameters:
                  +
                  numClusters - The number of clusters.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  KMedoids

                  +
                  public KMedoids​(IDistance metric)
                  +         throws java.lang.Exception
                  +
                  Creates a new instance of the k-medoids algorithm with the specified dist + measure.
                  +
                  +
                  Parameters:
                  +
                  metric - The distance metric to use for measuring the distance between + instances.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  KMedoids

                  +
                  public KMedoids​(int numClusters,
                  +                IDistance metric)
                  +         throws java.lang.Exception
                  +
                  Creates a new instance of the k-medoids algorithm with the specified + parameters.
                  +
                  +
                  Parameters:
                  +
                  numClusters - The number of clusters to generate.
                  +
                  metric - The distance metric to use for measuring the distance + between instances.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  KMedoids

                  +
                  public KMedoids​(int numClusters,
                  +                int maxIterations,
                  +                IDistance metric)
                  +         throws java.lang.Exception
                  +
                  Creates a new instance of the k-medoids algorithm with the specified + parameters.
                  +
                  +
                  Parameters:
                  +
                  numClusters - The number of clusters to generate.
                  +
                  maxIterations - The maximum number of iteration the algorithm is allowed + to run.
                  +
                  metric - The distance metric to use for measuring the distance + between instances.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                +
              • +
              +
              + +
              +
                +
              • + + +

                Method Detail

                + + + +
                  +
                • +

                  compare

                  +
                  protected boolean compare​(double metricValue1,
                  +                          double metricValue2)
                  +
                  Allows to maximize or minimize the metric according to the value of minimize + property.
                  +
                  +
                  Parameters:
                  +
                  metricValue1 - A metric value.
                  +
                  metricValue2 - Another metric value.
                  +
                  Returns:
                  +
                  If minimize==true it returns metricValue1<=metricValue2 other case + it returns metricValue1>=metricValue2.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  randomInitialization

                  +
                  protected void randomInitialization()
                  +
                  Performs a random initialization of medoids.
                  +
                • +
                + + + +
                  +
                • +

                  buildInitialization

                  +
                  protected void buildInitialization()
                  +
                  Performs an initialization of medoids based on the BUILD step of PAM + algorithm.
                  +
                • +
                + + + +
                  +
                • +

                  buildClusterer

                  +
                  public void buildClusterer​(weka.core.Instances data)
                  +                    throws java.lang.Exception
                  +
                  +
                  Specified by:
                  +
                  buildClusterer in interface weka.clusterers.Clusterer
                  +
                  Specified by:
                  +
                  buildClusterer in class weka.clusterers.AbstractClusterer
                  +
                  Throws:
                  +
                  java.lang.Exception
                  +
                  +
                • +
                + + + +
                  +
                • +

                  computeDistances

                  +
                  protected void computeDistances​(weka.core.Instances data)
                  +                         throws java.lang.Exception
                  +
                  Computes distances between instances.
                  +
                  +
                  Parameters:
                  +
                  data - The dataset.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  assignInstancesToMedoids

                  +
                  protected int[] assignInstancesToMedoids​(int[] medoidIndices)
                  +
                  Assign all instances from the data set to the medoids.
                  +
                  +
                  Parameters:
                  +
                  medoidIndices - Candidate medoids.
                  +
                  Returns:
                  +
                  An array with the best cluster number for each instance in the data + set.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  computeCost

                  +
                  protected double computeCost​(int[] assignment)
                  +
                  Computes the cost of a configuration.
                  +
                  +
                  Parameters:
                  +
                  assignment - Array containing in element i the index of the medoid + assigned to instance i.
                  +
                  Returns:
                  +
                  The sum of the distances to medoids of all instances.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  isMedoid

                  +
                  protected boolean isMedoid​(int instanceIndex)
                  +
                  Determines if an instance is being considered as medoid.
                  +
                  +
                  Parameters:
                  +
                  instanceIndex - The index of the instance.
                  +
                  Returns:
                  +
                  A true value if the instance is being considered as medoid.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  medoidIndex

                  +
                  protected int medoidIndex​(int instanceIndex)
                  +
                  Determines if an instance is being considered as medoid. If true, the index + of the medoid is returned, a value in (0, nClusters-1)
                  +
                  +
                  Parameters:
                  +
                  instanceIndex - The index of the instance.
                  +
                  Returns:
                  +
                  A true value if the instance is being considered as medoid.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  distanceToMedoids

                  +
                  public double[] distanceToMedoids​(weka.core.Instance instance)
                  +                           throws java.lang.Exception
                  +
                  Returns the distance of an instance to each medoid.
                  +
                  +
                  Parameters:
                  +
                  instance - An instance. It can be either an instance of the dataset or a + new instance.
                  +
                  Returns:
                  +
                  The distance of the instance to each medoid.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  distanceToMedoids

                  +
                  public double[] distanceToMedoids​(int index)
                  +                           throws java.lang.Exception
                  +
                  Returns the distance of an instance in the training dataset referenced by its + index to each medoid.
                  +
                  +
                  Parameters:
                  +
                  index - It must be a valid instance index in the dataset used for + clustering.
                  +
                  Returns:
                  +
                  The distance of the instance to each medoid.
                  +
                  Throws:
                  +
                  java.lang.Exception - To be handled in an upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  distributionForInstance

                  +
                  public double[] distributionForInstance​(weka.core.Instance instance)
                  +                                 throws java.lang.Exception
                  +
                  +
                  Specified by:
                  +
                  distributionForInstance in interface weka.clusterers.Clusterer
                  +
                  Overrides:
                  +
                  distributionForInstance in class weka.clusterers.AbstractClusterer
                  +
                  Throws:
                  +
                  java.lang.Exception
                  +
                  +
                • +
                + + + +
                  +
                • +

                  clusterInstance

                  +
                  public int clusterInstance​(weka.core.Instance instance)
                  +                    throws java.lang.Exception
                  +
                  +
                  Specified by:
                  +
                  clusterInstance in interface weka.clusterers.Clusterer
                  +
                  Overrides:
                  +
                  clusterInstance in class weka.clusterers.AbstractClusterer
                  +
                  Throws:
                  +
                  java.lang.Exception
                  +
                  +
                • +
                + + + +
                  +
                • +

                  numberOfClusters

                  +
                  public int numberOfClusters()
                  +                     throws java.lang.Exception
                  +
                  +
                  Specified by:
                  +
                  numberOfClusters in interface weka.clusterers.Clusterer
                  +
                  Specified by:
                  +
                  numberOfClusters in class weka.clusterers.AbstractClusterer
                  +
                  Throws:
                  +
                  java.lang.Exception
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getCapabilities

                  +
                  public weka.core.Capabilities getCapabilities()
                  +
                  +
                  Specified by:
                  +
                  getCapabilities in interface weka.core.CapabilitiesHandler
                  +
                  Specified by:
                  +
                  getCapabilities in interface weka.clusterers.Clusterer
                  +
                  Overrides:
                  +
                  getCapabilities in class weka.clusterers.AbstractClusterer
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getMedoidInstances

                  +
                  public weka.core.Instance[] getMedoidInstances()
                  +
                  Gets the medoids obtained after performing clustering.
                  +
                  +
                  Returns:
                  +
                  An array of instances corresponding to medoids.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getDistanceFunction

                  +
                  public IDistance getDistanceFunction()
                  +
                  Gets the distance function used by clusterer.
                  +
                  +
                  Returns:
                  +
                  The distance function used by clusterer.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setDistanceFunction

                  +
                  public void setDistanceFunction​(IDistance distanceFunction)
                  +
                  Sets the distance function to use for clustering. This method must be called + before clustering.
                  +
                  +
                  Parameters:
                  +
                  distanceFunction - The distance function used for clustering.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setNumClusters

                  +
                  public void setNumClusters​(int numClusters)
                  +
                  Sets the number of clusters to perform clustering. This method must be called + before clustering.
                  +
                  +
                  Parameters:
                  +
                  numClusters - A number of clusters.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getMaxIterations

                  +
                  public int getMaxIterations()
                  +
                  Gets the maximum number of iterations used by clusterer.
                  +
                  +
                  Returns:
                  +
                  The maximum number of iterations.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setMaxIterations

                  +
                  public void setMaxIterations​(int maxIterations)
                  +
                  Sets the maximum number of iterations for clustering. This method must be + called before clustering.
                  +
                  +
                  Parameters:
                  +
                  maxIterations - The maximum number of iterations for clustering.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getRandomInitialization

                  +
                  public boolean getRandomInitialization()
                  +
                  Gets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering.
                  +
                  +
                  Returns:
                  +
                  A true value if a random initialization of medoids is performed and + false if the initialization is based on the build step of PAM + selecting as medoids, the instances that minimizes the sum of + distances to the rest.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setRandomInitialization

                  +
                  public void setRandomInitialization​(boolean randomInitialization)
                  +
                  Sets whether a random initialization of medoids or a initialization based on + the BUILD step of PAM is considered for clustering. This method must be + called before clustering.
                  +
                  +
                  Parameters:
                  +
                  randomInitialization - If true a random initialization of medoids is + performed. Otherwise the initialization is based + on the build step of PAM selecting as medoids, + the instances that minimizes the sum of distances + to the rest.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getAssignment

                  +
                  public int[] getAssignment()
                  +
                  Gets the assignment of instances to clusters. This method must be called + after clustering.
                  +
                  +
                  Returns:
                  +
                  An array. Element i contains a value in (0, numCusters-1), the + cluster number assigned to instance i.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getConfigurationCost

                  +
                  public double getConfigurationCost()
                  +
                  Gets final the cost of the configuration after applying clustering. This + method must be called after clustering.
                  +
                  +
                  Returns:
                  +
                  The final cost of the clustering.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getNumIterations

                  +
                  public double getNumIterations()
                  +
                  Gets the number of iterations performed in the clustering process. This + method must be called after clustering.
                  +
                  +
                  Returns:
                  +
                  The number of iterations performed.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  getDistances

                  +
                  public double[][] getDistances()
                  +
                  Returns a matrix the distances between all instances being distances[i][j] + the distance between the instances with indices i and j.
                  +
                  +
                  Returns:
                  +
                  double[][]
                  +
                  +
                • +
                +
              • +
              +
              +
            • +
            +
            +
            +
            + + + + diff --git a/documentation/apidoc/miml/clusterers/class-use/KMedoids.html b/documentation/apidoc/miml/clusterers/class-use/KMedoids.html new file mode 100644 index 0000000..323163e --- /dev/null +++ b/documentation/apidoc/miml/clusterers/class-use/KMedoids.html @@ -0,0 +1,212 @@ + + + + + +Uses of Class miml.clusterers.KMedoids + + + + + + + + + + + + + + + +
            + +
            +
            +
            +

            Uses of Class
            miml.clusterers.KMedoids

            +
            +
            + +
            +
            + + + diff --git a/documentation/apidoc/miml/clusterers/package-summary.html b/documentation/apidoc/miml/clusterers/package-summary.html new file mode 100644 index 0000000..e335421 --- /dev/null +++ b/documentation/apidoc/miml/clusterers/package-summary.html @@ -0,0 +1,170 @@ + + + + + +miml.clusterers + + + + + + + + + + + + + + + +
            + +
            +
            +
            +

            Package miml.clusterers

            +
            +
            +
              +
            • + + + + + + + + + + + + +
              Class Summary 
              ClassDescription
              KMedoids +
              Class implementing the PAM (Partitioning Around Medoids) approximation [1] to + kMedoids for multi-instance data
              +
              +
            • +
            +
            +
            +
            + +
            + + diff --git a/documentation/apidoc/miml/clusterers/package-tree.html b/documentation/apidoc/miml/clusterers/package-tree.html new file mode 100644 index 0000000..f686de9 --- /dev/null +++ b/documentation/apidoc/miml/clusterers/package-tree.html @@ -0,0 +1,172 @@ + + + + + +miml.clusterers Class Hierarchy + + + + + + + + + + + + + + + +
            + +
            +
            +
            +

            Hierarchy For Package miml.clusterers

            +Package Hierarchies: + +
            +
            +
            +

            Class Hierarchy

            +
              +
            • java.lang.Object +
                +
              • weka.clusterers.AbstractClusterer (implements weka.core.CapabilitiesHandler, java.lang.Cloneable, weka.clusterers.Clusterer, weka.core.RevisionHandler, java.io.Serializable) +
                  +
                • weka.clusterers.RandomizableClusterer (implements weka.core.OptionHandler, weka.core.Randomizable) +
                    +
                  • miml.clusterers.KMedoids (implements weka.clusterers.Clusterer)
                  • +
                  +
                • +
                +
              • +
              +
            • +
            +
            +
            +
            +
            + +
            + + diff --git a/documentation/apidoc/miml/clusterers/package-use.html b/documentation/apidoc/miml/clusterers/package-use.html new file mode 100644 index 0000000..fd78638 --- /dev/null +++ b/documentation/apidoc/miml/clusterers/package-use.html @@ -0,0 +1,187 @@ + + + + + +Uses of Package miml.clusterers + + + + + + + + + + + + + + + +
            + +
            +
            +
            +

            Uses of Package
            miml.clusterers

            +
            +
            + +
            +
            + + + diff --git a/documentation/apidoc/miml/core/ConfigLoader.html b/documentation/apidoc/miml/core/ConfigLoader.html old mode 100755 new mode 100644 index 9746ee6..456a134 --- a/documentation/apidoc/miml/core/ConfigLoader.html +++ b/documentation/apidoc/miml/core/ConfigLoader.html @@ -1,12 +1,22 @@ - + - + ConfigLoader - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.core
            +
            Package miml.core

            Class ConfigLoader

            @@ -108,7 +133,6 @@

            Class ConfigLoader


            • -
              public class ConfigLoader
               extends java.lang.Object
              Class used to read a xml file and configure an experiment.
              @@ -125,90 +149,105 @@

              Class ConfigLoader

            @@ -223,12 +263,13 @@

            Methods inherited from class java.lang.Object

            • +
                -
              • +
              • Field Detail

                - +
                  @@ -240,19 +281,21 @@

                  configuration

              +
              +
                -
              • +
              • Constructor Detail

                - +
                • ConfigLoader

                  -
                  public ConfigLoader(java.lang.String path)
                  +
                  public ConfigLoader​(java.lang.String path)
                                throws org.apache.commons.configuration2.ex.ConfigurationException
                  Constructor that sets the configuration file
                  @@ -266,19 +309,21 @@

                  ConfigLoader

              +
              +
                -
              • +
              • Method Detail

                - +
                • getConfiguration

                  -
                  public org.apache.commons.configuration2.Configuration getConfiguration()
                  +
                  public org.apache.commons.configuration2.Configuration getConfiguration()
                  Gets the experiment's configuration.
                  Returns:
                  @@ -286,13 +331,13 @@

                  getConfiguration

                - +
                • setConfiguration

                  -
                  public void setConfiguration(org.apache.commons.configuration2.Configuration configuration)
                  +
                  public void setConfiguration​(org.apache.commons.configuration2.Configuration configuration)
                  Sets the configuration for the experiment.
                  Parameters:
                  @@ -300,13 +345,13 @@

                  setConfiguration

                - +
                • loadClassifier

                  -
                  public IMIMLClassifier loadClassifier()
                  +
                  public IMIMLClassifier loadClassifier()
                                                  throws java.lang.Exception
                  Read current configuration to load and configure the classifier.
                  @@ -317,13 +362,13 @@

                  loadClassifier

                - +
                • loadEvaluator

                  -
                  public IEvaluator loadEvaluator()
                  +
                  public IEvaluator loadEvaluator()
                                            throws java.lang.Exception
                  Read current configuration to load and configure the evaluator.
                  @@ -334,13 +379,13 @@

                  loadEvaluator

                - +
                • loadReport

                  -
                  public IReport loadReport()
                  +
                  public IReport loadReport()
                                      throws java.lang.Exception
                  Read current configuration to load and configure the report.
                  @@ -353,21 +398,25 @@

                  loadReport

              +
            +
            + diff --git a/documentation/apidoc/miml/core/ConfigLoader.svg b/documentation/apidoc/miml/core/ConfigLoader.svg new file mode 100644 index 0000000..61f0c3d --- /dev/null +++ b/documentation/apidoc/miml/core/ConfigLoader.svg @@ -0,0 +1,28 @@ +ConfigLoadermiml.coreconfiguration: ConfigurationConfigLoader(String)getConfiguration(): ConfigurationsetConfiguration(Configuration): voidloadClassifier(): IMIMLClassifierloadEvaluator(): IEvaluatorloadReport(): IReportUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/ConfigParameters.html b/documentation/apidoc/miml/core/ConfigParameters.html old mode 100755 new mode 100644 index 413f2a7..ff1ca50 --- a/documentation/apidoc/miml/core/ConfigParameters.html +++ b/documentation/apidoc/miml/core/ConfigParameters.html @@ -1,12 +1,22 @@ - + - + ConfigParameters - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.core
            +
            Package miml.core

            Class ConfigParameters

            @@ -108,7 +133,6 @@

            Class ConfigParameters

            @@ -294,12 +346,13 @@

            Methods inherited from class java.lang.Object

            • +
                -
              • +
              • Field Detail

                - +
                  @@ -309,7 +362,7 @@

                  algorithmName

                  The algorithm used in the experimentation.
                - +
                  @@ -319,7 +372,7 @@

                  configFileName

                  The configuration filename used in the experimentation.
                - +
                  @@ -329,7 +382,7 @@

                  dataFileName

                  The name of data file used in the experimentation.
                - +
                  @@ -339,7 +392,7 @@

                  classifierName

                  The classifier used in the experimentation.
                - +
                  @@ -350,7 +403,7 @@

                  transformationMethod

                  method.
                - +
                  @@ -362,13 +415,15 @@

                  isTransformation

              +
              +
                -
              • +
              • Constructor Detail

                - +
                  @@ -379,19 +434,21 @@

                  ConfigParameters

              +
              +
                -
              • +
              • Method Detail

                - +
                • getAlgorithmName

                  -
                  public static java.lang.String getAlgorithmName()
                  +
                  public static java.lang.String getAlgorithmName()
                  Gets the algorithm name.
                  Returns:
                  @@ -399,13 +456,13 @@

                  getAlgorithmName

                - +
                • setAlgorithmName

                  -
                  public static void setAlgorithmName(java.lang.String algorithmName)
                  +
                  public static void setAlgorithmName​(java.lang.String algorithmName)
                  Sets the algorithm name.
                  Parameters:
                  @@ -413,13 +470,13 @@

                  setAlgorithmName

                - +
                • getConfigFileName

                  -
                  public static java.lang.String getConfigFileName()
                  +
                  public static java.lang.String getConfigFileName()
                  Gets the configuration file name.
                  Returns:
                  @@ -427,13 +484,13 @@

                  getConfigFileName

                - +
                • setConfigFileName

                  -
                  public static void setConfigFileName(java.lang.String configFileName)
                  +
                  public static void setConfigFileName​(java.lang.String configFileName)
                  Sets the configuration file name.
                  Parameters:
                  @@ -441,13 +498,13 @@

                  setConfigFileName

                - +
                • getDataFileName

                  -
                  public static java.lang.String getDataFileName()
                  +
                  public static java.lang.String getDataFileName()
                  Gets the name of data file.
                  Returns:
                  @@ -455,13 +512,13 @@

                  getDataFileName

                - +
                • setDataFileName

                  -
                  public static void setDataFileName(java.lang.String dataFileName)
                  +
                  public static void setDataFileName​(java.lang.String dataFileName)
                  Sets the data file name.
                  Parameters:
                  @@ -469,13 +526,13 @@

                  setDataFileName

                - +
                • getClassifierName

                  -
                  public static java.lang.String getClassifierName()
                  +
                  public static java.lang.String getClassifierName()
                  Gets the classifier name.
                  Returns:
                  @@ -483,13 +540,13 @@

                  getClassifierName

                - +
                • setClassifierName

                  -
                  public static void setClassifierName(java.lang.String classifierName)
                  +
                  public static void setClassifierName​(java.lang.String classifierName)
                  Sets the classifier name.
                  Parameters:
                  @@ -497,13 +554,13 @@

                  setClassifierName

                - +
                • getTransformationMethod

                  -
                  public static java.lang.String getTransformationMethod()
                  +
                  public static java.lang.String getTransformationMethod()
                  Gets the transformation method used in the experiment.
                  Returns:
                  @@ -511,13 +568,13 @@

                  getTransformationMethod

                - +
                • setTransformationMethod

                  -
                  public static void setTransformationMethod(java.lang.String transformationMethod)
                  +
                  public static void setTransformationMethod​(java.lang.String transformationMethod)
                  Sets the transformation method used in the experiment.
                  Parameters:
                  @@ -525,13 +582,13 @@

                  setTransformationMethod

                - +
                • getIsTransformation

                  -
                  public static java.lang.Boolean getIsTransformation()
                  +
                  public static java.lang.Boolean getIsTransformation()
                  Gets if the method used is transformation.
                  Returns:
                  @@ -539,13 +596,13 @@

                  getIsTransformation

                - +
                • setIsTransformation

                  -
                  public static void setIsTransformation(java.lang.Boolean isTransformation)
                  +
                  public static void setIsTransformation​(java.lang.Boolean isTransformation)
                  Sets if the method used is transformation.
                  Parameters:
                  @@ -555,21 +612,25 @@

                  setIsTransformation

              +
            +
            + diff --git a/documentation/apidoc/miml/core/ConfigParameters.svg b/documentation/apidoc/miml/core/ConfigParameters.svg new file mode 100644 index 0000000..ceb7c54 --- /dev/null +++ b/documentation/apidoc/miml/core/ConfigParameters.svg @@ -0,0 +1,39 @@ +ConfigParametersmiml.corealgorithmName: StringconfigFileName: StringdataFileName: StringclassifierName: StringtransformationMethod: StringisTransformation: BooleangetAlgorithmName(): StringsetAlgorithmName(String): voidgetConfigFileName(): StringsetConfigFileName(String): voidgetDataFileName(): StringsetDataFileName(String): voidgetClassifierName(): StringsetClassifierName(String): voidgetTransformationMethod(): StringsetTransformationMethod(String): voidgetIsTransformation(): BooleansetIsTransformation(Boolean): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/IConfiguration.html b/documentation/apidoc/miml/core/IConfiguration.html old mode 100755 new mode 100644 index cf7e13c..f440d09 --- a/documentation/apidoc/miml/core/IConfiguration.html +++ b/documentation/apidoc/miml/core/IConfiguration.html @@ -1,12 +1,22 @@ - + - + IConfiguration - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.core
            +
            Package miml.core

            Interface IConfiguration

            @@ -101,10 +126,9 @@

            Interface IConfiguration

          • All Known Implementing Classes:
            -
            BaseMIMLReport, DMIMLkNN, EnMIMLNNmetric, EvaluatorCV, EvaluatorHoldout, KiSar, MIMLBagging, MIMLBRkNN, MIMLClassifier, MIMLClassifierToMI, MIMLClassifierToML, MIMLDGC, MIMLFast, MIMLFuzzykNN, MIMLIBLR, MIMLkNN, MIMLMAPkNN, MIMLNN, MIMLRBF, MIMLReport, MIMLSVM, MIMLWel, MultiInstanceMultiLabelKNN, MWClassifier
            +
            BaseMIMLReport, DMIMLkNN, EnMIMLNNmetric, EvaluatorCV, EvaluatorHoldout, EvaluatorHoldoutClus, KiSar, MIMLBagging, MIMLBRkNN, MIMLClassifier, MIMLClassifierToMI, MIMLClassifierToML, MIMLDGC, MIMLFast, MIMLFuzzykNN, MIMLIBLR, MIMLkNN, MIMLMAPkNN, MIMLNN, MIMLRBF, MIMLReport, MIMLSVM, MIMLWel, MultiInstanceMultiLabelKNN, MWClassifier

            -
            public interface IConfiguration
            Interface used to indicate that a class can be configured.
            @@ -120,26 +144,30 @@

            Interface IConfiguration

            • +
                -
              • +
              • Method Summary

                - +
                - + + - +
                All Methods Instance Methods Abstract Methods 
                Modifier and TypeMethod and DescriptionMethodDescription
                voidconfigure(org.apache.commons.configuration2.Configuration configuration) +configure​(org.apache.commons.configuration2.Configuration configuration)
                Method to configure the class with the given configuration.
              +
          • @@ -147,18 +175,19 @@

            Method Summary

            • +
                -
              • +
              • Method Detail

                - +
                • configure

                  -
                  void configure(org.apache.commons.configuration2.Configuration configuration)
                  +
                  void configure​(org.apache.commons.configuration2.Configuration configuration)
                  Method to configure the class with the given configuration.
                  Parameters:
                  @@ -168,21 +197,25 @@

                  configure

              +
            +
            + diff --git a/documentation/apidoc/miml/core/IConfiguration.svg b/documentation/apidoc/miml/core/IConfiguration.svg new file mode 100644 index 0000000..edd6427 --- /dev/null +++ b/documentation/apidoc/miml/core/IConfiguration.svg @@ -0,0 +1,22 @@ +IConfigurationmiml.coreconfigure(Configuration): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/Params.html b/documentation/apidoc/miml/core/Params.html old mode 100755 new mode 100644 index e0689b7..ba96e55 --- a/documentation/apidoc/miml/core/Params.html +++ b/documentation/apidoc/miml/core/Params.html @@ -1,12 +1,22 @@ - + - + Params - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.core
            +
            Package miml.core

            Class Params

            @@ -108,7 +133,6 @@

            Class Params


            • -
              public class Params
               extends java.lang.Object
              This class contains the list of classes and objects needed to create a new @@ -126,83 +150,98 @@

              Class Params

              • +
                  -
                • +
                • Field Summary

                  - +
                  - + + - + - +
                  Fields 
                  Modifier and TypeField and DescriptionFieldDescription
                  private java.lang.Class<?>[]classes +classes
                  List of classes needed by the Multi Label classifier's constructor.
                  private java.lang.Object[]objects +objects
                  List of the values for the classes array
                +
                +
                  -
                • +
                • Constructor Summary

                  - +
                  - + + - +
                  Constructors 
                  Constructor and DescriptionConstructorDescription
                  Params(java.lang.Class<?>[] classes, - java.lang.Object[] objects) +Params​(java.lang.Class<?>[] classes, + java.lang.Object[] objects)
                  Generic constructor
                +
                +
                +
              @@ -217,12 +257,13 @@

              Methods inherited from class java.lang.Object

              • +
                  -
                • +
                • Field Detail

                  - +
                    @@ -232,7 +273,7 @@

                    classes

                    List of classes needed by the Multi Label classifier's constructor.
                  - +
                    @@ -244,19 +285,21 @@

                    objects

                +
                +
                  -
                • +
                • Constructor Detail

                  - +
                  • Params

                    -
                    public Params(java.lang.Class<?>[] classes,
                    +
                    public Params​(java.lang.Class<?>[] classes,
                                   java.lang.Object[] objects)
                    Generic constructor
                    @@ -269,58 +312,60 @@

                    Params

                +
                +
                  -
                • +
                • Method Detail

                  - +
                  • getClasses

                    -
                    public java.lang.Class<?>[] getClasses()
                    +
                    public java.lang.Class<?>[] getClasses()
                    Returns:
                    the classes
                  - +
                  • setClasses

                    -
                    public void setClasses(java.lang.Class<?>[] classes)
                    +
                    public void setClasses​(java.lang.Class<?>[] classes)
                    Parameters:
                    classes - the classes to set
                  - +
                  • getObjects

                    -
                    public java.lang.Object[] getObjects()
                    +
                    public java.lang.Object[] getObjects()
                    Returns:
                    the objects
                  - +
                  • setObjects

                    -
                    public void setObjects(java.lang.Object[] objects)
                    +
                    public void setObjects​(java.lang.Object[] objects)
                    Parameters:
                    objects - the objects to set
                    @@ -329,21 +374,25 @@

                    setObjects

                +
            +
            + diff --git a/documentation/apidoc/miml/core/Params.svg b/documentation/apidoc/miml/core/Params.svg new file mode 100644 index 0000000..72e2b12 --- /dev/null +++ b/documentation/apidoc/miml/core/Params.svg @@ -0,0 +1,28 @@ +Paramsmiml.coreclasses: Class<?>[]objects: Object[]Params(Class<?>[], Object[])getClasses(): Class<?>[]setClasses(Class<?>[]): voidgetObjects(): Object[]setObjects(Object[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/Utils.html b/documentation/apidoc/miml/core/Utils.html old mode 100755 new mode 100644 index 4669967..3dfbdd8 --- a/documentation/apidoc/miml/core/Utils.html +++ b/documentation/apidoc/miml/core/Utils.html @@ -1,12 +1,22 @@ - + - + Utils - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +
            -
            miml.core
            +
            Package miml.core

            Class Utils

            @@ -108,7 +133,6 @@

            Class Utils


            • -
              public final class Utils
               extends java.lang.Object
              This class has utilies that can be used anywhere in the library.
              @@ -125,53 +149,61 @@

              Class Utils

              • +
                  -
                • +
                • Constructor Summary

                  - +
                  - + + - + +
                  Constructors 
                  Constructor and DescriptionConstructorDescription
                  Utils() Utils() 
                +
                +
                  -
                • +
                • Method Summary

                  - +
                  - + + - - + + - +
                  All Methods Static Methods Concrete Methods 
                  Modifier and TypeMethod and DescriptionMethodDescription
                  static ParamsreadMultiLabelLearnerParams(org.apache.commons.configuration2.Configuration configuration) +static ParamsreadMultiLabelLearnerParams​(org.apache.commons.configuration2.Configuration configuration)
                  Read the configuration parameters for a specific Multi Label classifier's constructor
                  static weka.core.Instancesresample(weka.core.Instances data, +resample​(weka.core.Instances data, double percentage, boolean sampleWithReplacement, - int seed) + int seed)
                  Obtains a sample of the original data.
                    -
                  • +
                  • Methods inherited from class java.lang.Object

                    @@ -179,6 +211,7 @@

                    Methods inherited from class java.lang.Object

                +
            @@ -186,12 +219,13 @@

            Methods inherited from class java.lang.Object

            • +
                -
              • +
              • Constructor Detail

                - +
                  @@ -202,19 +236,21 @@

                  Utils

              +
              +
                -
              • +
              • Method Detail

                - +
                • resample

                  -
                  public static weka.core.Instances resample(weka.core.Instances data,
                  +
                  public static weka.core.Instances resample​(weka.core.Instances data,
                                                              double percentage,
                                                              boolean sampleWithReplacement,
                                                              int seed)
                  @@ -236,13 +272,13 @@ 

                  resample

                - +
                • readMultiLabelLearnerParams

                  -
                  public static Params readMultiLabelLearnerParams(org.apache.commons.configuration2.Configuration configuration)
                  +
                  public static Params readMultiLabelLearnerParams​(org.apache.commons.configuration2.Configuration configuration)
                  Read the configuration parameters for a specific Multi Label classifier's constructor
                  @@ -256,21 +292,25 @@

                  readMultiLabelLearnerParams

              +
            +
            + diff --git a/documentation/apidoc/miml/core/Utils.svg b/documentation/apidoc/miml/core/Utils.svg new file mode 100644 index 0000000..7cf4211 --- /dev/null +++ b/documentation/apidoc/miml/core/Utils.svg @@ -0,0 +1,23 @@ +Utilsmiml.coreresample(Instances, double, boolean, int): InstancesreadMultiLabelLearnerParams(Configuration): ParamsUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/class-use/ConfigLoader.html b/documentation/apidoc/miml/core/class-use/ConfigLoader.html old mode 100755 new mode 100644 index d4a7d83..ae57e83 --- a/documentation/apidoc/miml/core/class-use/ConfigLoader.html +++ b/documentation/apidoc/miml/core/class-use/ConfigLoader.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.ConfigLoader - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Class
            miml.core.ConfigLoader

            No usage of miml.core.ConfigLoader
            +
            + diff --git a/documentation/apidoc/miml/core/class-use/ConfigParameters.html b/documentation/apidoc/miml/core/class-use/ConfigParameters.html old mode 100755 new mode 100644 index f479aec..5d88423 --- a/documentation/apidoc/miml/core/class-use/ConfigParameters.html +++ b/documentation/apidoc/miml/core/class-use/ConfigParameters.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.ConfigParameters - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Class
            miml.core.ConfigParameters

            No usage of miml.core.ConfigParameters
            +
            + diff --git a/documentation/apidoc/miml/core/class-use/IConfiguration.html b/documentation/apidoc/miml/core/class-use/IConfiguration.html old mode 100755 new mode 100644 index 5284d67..87e6a93 --- a/documentation/apidoc/miml/core/class-use/IConfiguration.html +++ b/documentation/apidoc/miml/core/class-use/IConfiguration.html @@ -1,12 +1,22 @@ - + - + Uses of Interface miml.core.IConfiguration - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
            + +
            +

            Uses of Interface
            miml.core.IConfiguration

            • - - +
              Packages that use IConfiguration 
              + - + - + - + - + - + - + - + - + - + @@ -123,20 +148,23 @@

              Uses of Int
            • Packages that use IConfiguration 
              Package Description
              miml.classifiers.mimlmiml.classifiers.miml  
              miml.classifiers.miml.lazymiml.classifiers.miml.lazy  
              miml.classifiers.miml.metamiml.classifiers.miml.meta  
              miml.classifiers.miml.mimlTOmimiml.classifiers.miml.mimlTOmi  
              miml.classifiers.miml.mimlTOmlmiml.classifiers.miml.mimlTOml  
              miml.classifiers.miml.neuralmiml.classifiers.miml.neural  
              miml.classifiers.miml.optimizationmiml.classifiers.miml.optimization  
              miml.evaluationmiml.evaluation  
              miml.reportmiml.report  
              - +

              Uses of IConfiguration in miml.classifiers.miml

              +
              Classes in miml.classifiers.miml that implement IConfiguration 
              + - + + - + - +
              Classes in miml.classifiers.miml that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class MIMLClassifier +MIMLClassifier
              This java class is based on the mulan.data.Statistics.java class provided in the Mulan java framework for multi-label learning Tsoumakas, G., Katakis, I., Vlahavas, I. (2010) "Mining Multi-label Data", Data Mining and Knowledge @@ -145,93 +173,109 @@

              Uses of

              class MWClassifier +MWClassifier
              Class to execute Matlab MIML classifiers.
              +
            • -
            • +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.lazy

              - - +

              Uses of IConfiguration in miml.classifiers.miml.lazy

              +
              Classes in miml.classifiers.miml.lazy that implement IConfiguration 
              + - + + - + - + - + - + + - + - + - + - +
              Classes in miml.classifiers.miml.lazy that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class DMIMLkNN +DMIMLkNN
              DMIMLkNN is the adaptation to the MIML framework of the DMLkNN[1] multi-label algorithm.
              class MIMLBRkNN +MIMLBRkNN
              MIMLBRkNN is the adaptation to the MIML framework of the BRkNN[1] multi-label algorithm.
              class MIMLDGC +MIMLDGC
              MIMLDGC is the adaptation to the MIML framework of the MLDGC[1] multi-label algorithm.
              class MIMLFuzzykNN MIMLFuzzykNN 
              class MIMLIBLR +MIMLIBLR
              MIMLIBLR is the adaptation to the MIML framework of the IBLR_ML[1] multi-label algorithm.
              class MIMLkNN +MIMLkNN
              Class implementing the MIMLkNN algorithm for MIML data.
              class MIMLMAPkNN +MIMLMAPkNN
              MIMLMAPkNN is the adaptation to the MIML framework of the MLkNN[1] multi-label algorithm.
              class MultiInstanceMultiLabelKNN +MultiInstanceMultiLabelKNN
              Wrapper for class MultiLabelKNN of Mulan to work with MIML data
              +
            • -
            • +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.meta

              - - +

              Uses of IConfiguration in miml.classifiers.miml.meta

              +
              Classes in miml.classifiers.miml.meta that implement IConfiguration 
              + - + + - +
              Classes in miml.classifiers.miml.meta that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class MIMLBagging +MIMLBagging
              MIMLBagging is the adaptation of the traditional bagging strategy of the machine learning [1] that does not need any previous transformation of the problem.
              @@ -239,21 +283,25 @@

              Uses of +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.mimlTOmi

              - - +

              Uses of IConfiguration in miml.classifiers.miml.mimlTOmi

              +
              Classes in miml.classifiers.miml.mimlTOmi that implement IConfiguration 
              + - + + - +
              Classes in miml.classifiers.miml.mimlTOmi that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class MIMLClassifierToMI +MIMLClassifierToMI
              Class implementing the transformation algorithm for MIML data to solve it with MI learning.
              @@ -261,21 +309,25 @@

              Uses of +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.mimlTOml

              - - +

              Uses of IConfiguration in miml.classifiers.miml.mimlTOml

              +
              Classes in miml.classifiers.miml.mimlTOml that implement IConfiguration 
              + - + + - +
              Classes in miml.classifiers.miml.mimlTOml that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class MIMLClassifierToML +MIMLClassifierToML
              Class implementing the transformation algorithm for MIML data to solve it with ML learning.
              @@ -283,30 +335,34 @@

              Uses of +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.neural

              - - +

              Uses of IConfiguration in miml.classifiers.miml.neural

              +
              Classes in miml.classifiers.miml.neural that implement IConfiguration 
              + - + + - + - + - +
              Classes in miml.classifiers.miml.neural that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class EnMIMLNNmetric +EnMIMLNNmetric
              - Class to execute the EnMIMLNNmetric + Class to execute the EnMIMLNNmetric algorithm for MIML data.
              class MIMLNN +MIMLNN
              Class to execute the MIMLNNalgorithm for @@ -315,7 +371,8 @@

              Uses of

              class MIMLRBF +MIMLRBF
              Class to execute the MIMLRBF algorithm @@ -324,122 +381,155 @@

              Uses of +
            • +
              -

              Uses of IConfiguration in miml.classifiers.miml.optimization

              - - +

              Uses of IConfiguration in miml.classifiers.miml.optimization

              +
              Classes in miml.classifiers.miml.optimization that implement IConfiguration 
              + - + + - + - + - + - +
              Classes in miml.classifiers.miml.optimization that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class KiSar +KiSar
              Wrapper for Matlab KiSar algorithm for - MIML data.
              + MIML data.
              + For more information see: Y.
              class MIMLFast +MIMLFast
              Wrapper for Matlab MIMLFast - algorithm for MIML data.
              + algorithm for MIML data.
              + See: S.
              class MIMLSVM +MIMLSVM
              Wrapper for Matlab MIMLSVM algorithm - for MIML data.
              + for MIML data.
              + See: Z.
              class MIMLWel +MIMLWel
              Wrapper for Matlab MIMLFast - algorithm for MIML data.
              + algorithm for MIML data.
              + See: S.
              +
            • -
            • +
            • +
              -

              Uses of IConfiguration in miml.evaluation

              - - +

              Uses of IConfiguration in miml.evaluation

              +
              Classes in miml.evaluation that implement IConfiguration 
              + - + + - + - + + + + + +
              Classes in miml.evaluation that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class EvaluatorCV +EvaluatorCV
              Class that allow evaluate an algorithm applying a cross-validation method with random partitioning.
              class EvaluatorHoldout +EvaluatorHoldout
              Class that allow evaluate an algorithm applying a holdout method.
              class EvaluatorHoldoutClus +
              Class that allow evaluate a classifier applying a holdout method with the + clus System.
              +
              +
            • -
            • +
            • +
              -

              Uses of IConfiguration in miml.report

              - - +

              Uses of IConfiguration in miml.report

              +
              Classes in miml.report that implement IConfiguration 
              + - + + - + - +
              Classes in miml.report that implement IConfiguration 
              Modifier and TypeClass and DescriptionClassDescription
              class BaseMIMLReport +BaseMIMLReport
              Class used to generate reports with the format specified.
              class MIMLReport +MIMLReport
              Abstract class for a MIMLReport.
              +
            • + + diff --git a/documentation/apidoc/miml/core/class-use/Params.html b/documentation/apidoc/miml/core/class-use/Params.html old mode 100755 new mode 100644 index 5919006..e377f7c --- a/documentation/apidoc/miml/core/class-use/Params.html +++ b/documentation/apidoc/miml/core/class-use/Params.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.Params - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.Params

              +
              + diff --git a/documentation/apidoc/miml/core/class-use/Utils.html b/documentation/apidoc/miml/core/class-use/Utils.html old mode 100755 new mode 100644 index fdd5be7..b5cb346 --- a/documentation/apidoc/miml/core/class-use/Utils.html +++ b/documentation/apidoc/miml/core/class-use/Utils.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.Utils - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.Utils

              No usage of miml.core.Utils
              +
              + diff --git a/documentation/apidoc/miml/core/distance/AverageHausdorff.html b/documentation/apidoc/miml/core/distance/AverageHausdorff.html old mode 100755 new mode 100644 index 2de38b3..4a2bf23 --- a/documentation/apidoc/miml/core/distance/AverageHausdorff.html +++ b/documentation/apidoc/miml/core/distance/AverageHausdorff.html @@ -1,12 +1,22 @@ - + - + AverageHausdorff - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +
              -
              miml.core.distance
              +

              Class AverageHausdorff

              @@ -100,7 +125,7 @@

              Class AverageHausdorff

            • java.lang.Object
            • @@ -227,12 +264,13 @@

              Methods inherited from class java.lang.Object

              • +
                  -
                • +
                • Field Detail

                  - +
                    @@ -248,13 +286,15 @@

                    serialVersionUID

                +
                +
                  -
                • +
                • Constructor Detail

                  - +
                    @@ -263,13 +303,13 @@

                    AverageHausdorff

                    public AverageHausdorff()
                  - +
                  • AverageHausdorff

                    -
                    public AverageHausdorff(MIMLInstances bags)
                    +
                    public AverageHausdorff​(MIMLInstances bags)
                                      throws java.lang.Exception
                    Throws:
                    @@ -279,22 +319,24 @@

                    AverageHausdorff

                +
                +
                  -
                • +
                • Method Detail

                  - +
                  • distance

                    -
                    public double distance(weka.core.Instances first,
                    +
                    public double distance​(weka.core.Instances first,
                                            weka.core.Instances second)
                                     throws java.lang.Exception
                    -
                    Description copied from interface: IDistance
                    +
                    Description copied from interface: IDistance
                    Get the distance between two bags in the form of a set of Instances.
                    Parameters:
                    @@ -309,21 +351,25 @@

                    distance

                +
              +
              + diff --git a/documentation/apidoc/miml/core/distance/AverageHausdorff.svg b/documentation/apidoc/miml/core/distance/AverageHausdorff.svg new file mode 100644 index 0000000..772365d --- /dev/null +++ b/documentation/apidoc/miml/core/distance/AverageHausdorff.svg @@ -0,0 +1,31 @@ +AverageHausdorffmiml.core.distanceserialVersionUID: longAverageHausdorff()AverageHausdorff(MIMLInstances)distance(Instances, Instances): doubleHausdorffDistancemiml.core.distanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/distance/HausdorffDistance.html b/documentation/apidoc/miml/core/distance/HausdorffDistance.html old mode 100755 new mode 100644 index 7e812eb..03d98cd --- a/documentation/apidoc/miml/core/distance/HausdorffDistance.html +++ b/documentation/apidoc/miml/core/distance/HausdorffDistance.html @@ -1,12 +1,22 @@ - + - + HausdorffDistance - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +
              -
              miml.core.distance
              +

              Class HausdorffDistance

              @@ -109,17 +134,16 @@

              Class HausdorffDistance

            • All Implemented Interfaces:
              -
              java.io.Serializable, IDistance
              +
              java.io.Serializable, IDistance
              Direct Known Subclasses:
              -
              AverageHausdorff, MaximalHausdorff, MinimalHausdorff
              +
              AverageHausdorff, MaximalHausdorff, MinimalHausdorff

              -
              public abstract class HausdorffDistance
               extends java.lang.Object
              -implements IDistance
              +implements IDistance
              See Also:
              Serialized Form
              @@ -131,100 +155,148 @@

              Class HausdorffDistance

            • @@ -232,12 +304,13 @@

              Methods inherited from interface miml.core.distance.
            • +
                -
              • +
              • Field Detail

                - +
                  @@ -250,7 +323,7 @@

                  serialVersionUID

                - +
                  @@ -259,7 +332,7 @@

                  dfun

                  weka.core.DistanceFunction dfun
                - +
                  @@ -270,13 +343,15 @@

                  dataSet

              +
              +
                -
              • +
              • Constructor Detail

                - +
                  @@ -285,13 +360,13 @@

                  HausdorffDistance

                  public HausdorffDistance()
                - +
                • HausdorffDistance

                  -
                  public HausdorffDistance(MIMLInstances bags)
                  +
                  public HausdorffDistance​(MIMLInstances bags)
                                     throws java.lang.Exception
                  Throws:
                  @@ -301,35 +376,37 @@

                  HausdorffDistance

              +
              +
                -
              • +
              • Method Detail

                - +
                • hasInstances

                  -
                  public boolean hasInstances()
                  +
                  public boolean hasInstances()
                - +
                • distance

                  -
                  public double distance(MIMLBag first,
                  -                       MIMLBag second)
                  +
                  public double distance​(MIMLBag first,
                  +                       MIMLBag second)
                                   throws java.lang.Exception
                  -
                  Description copied from interface: IDistance
                  -
                  Get the distance between two MIMLBag.
                  +
                  Description copied from interface: IDistance
                  +
                  Get the distance between two MIMLBag.
                  Specified by:
                  -
                  distance in interface IDistance
                  +
                  distance in interface IDistance
                  Parameters:
                  first - First bag.
                  second - Second bag.
                  @@ -340,51 +417,135 @@

                  distance

                - + + + +
                  +
                • +

                  distance

                  +
                  public double distance​(weka.core.Instance bag1,
                  +                       weka.core.Instance bag2)
                  +                throws java.lang.Exception
                  +
                  Description copied from interface: IDistance
                  +
                  Get the distance between two bags in the form of a set of Instance + with relational attribute.
                  +
                  +
                  Specified by:
                  +
                  distance in interface IDistance
                  +
                  Parameters:
                  +
                  bag1 - First bag as Instance with relational attribute.
                  +
                  bag2 - Second Bag as Instance with relational attribute.
                  +
                  Returns:
                  +
                  Distance between two bags.
                  +
                  Throws:
                  +
                  java.lang.Exception - if occurred an error during distance calculation.
                  +
                  +
                • +
                +
                • setInstances

                  -
                  public void setInstances(MIMLInstances bags)
                  +
                  public void setInstances​(MIMLInstances bags)
                                     throws java.lang.Exception
                  +
                  Description copied from interface: IDistance
                  +
                  Sets the Intances in the form of MIMLBags.
                  +
                  Specified by:
                  +
                  setInstances in interface IDistance
                  +
                  Parameters:
                  +
                  bags - The instances to be set.
                  Throws:
                  -
                  java.lang.Exception
                  +
                  java.lang.Exception - to be handled in upper level.
                  +
                  +
                • +
                + + + +
                  +
                • +

                  setInstances

                  +
                  public void setInstances​(weka.core.Instances bags)
                  +                  throws java.lang.Exception
                  +
                  Description copied from interface: IDistance
                  +
                  Sets the Intances in the form of a set of Instances with relational + attribute.
                  +
                  +
                  Specified by:
                  +
                  setInstances in interface IDistance
                  +
                  Parameters:
                  +
                  bags - The instances to be set.
                  +
                  Throws:
                  +
                  java.lang.Exception - to be handled in upper level.
                - + + + +
                  +
                • +

                  update

                  +
                  public void update​(MIMLBag bag)
                  +            throws java.lang.Exception
                  +
                  Description copied from interface: IDistance
                  +
                  Update the distance function (if necessary) for the newly added instance in + the form of MIMLBag.
                  +
                  +
                  Specified by:
                  +
                  update in interface IDistance
                  +
                  Parameters:
                  +
                  bag - The bag.
                  +
                  Throws:
                  +
                  java.lang.Exception - to be handled in upper level.
                  +
                  +
                • +
                +
                • update

                  -
                  public void update(MIMLBag bag)
                  +
                  public void update​(weka.core.Instance bag)
                               throws java.lang.Exception
                  +
                  Description copied from interface: IDistance
                  +
                  Update the distance function (if necessary) for the newly added instance in + the form of Instance with relational attribute.
                  +
                  Specified by:
                  +
                  update in interface IDistance
                  +
                  Parameters:
                  +
                  bag - The bag.
                  Throws:
                  -
                  java.lang.Exception
                  +
                  java.lang.Exception - to be handled in upper level.
              +
            • +

              + diff --git a/documentation/apidoc/miml/core/distance/HausdorffDistance.svg b/documentation/apidoc/miml/core/distance/HausdorffDistance.svg new file mode 100644 index 0000000..7636e02 --- /dev/null +++ b/documentation/apidoc/miml/core/distance/HausdorffDistance.svg @@ -0,0 +1,39 @@ +HausdorffDistancemiml.core.distanceserialVersionUID: longdfun: DistanceFunctiondataSet: InstancesHausdorffDistance()HausdorffDistance(MIMLInstances)hasInstances(): booleandistance(MIMLBag, MIMLBag): doublesetInstances(MIMLInstances): voidupdate(MIMLBag): voidIDistancemiml.core.distancedistance(MIMLBag, MIMLBag): doubledistance(Instances, Instances): doubleUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/distance/IDistance.html b/documentation/apidoc/miml/core/distance/IDistance.html old mode 100755 new mode 100644 index 6e6d3cc..5afdb0c --- a/documentation/apidoc/miml/core/distance/IDistance.html +++ b/documentation/apidoc/miml/core/distance/IDistance.html @@ -1,12 +1,22 @@ - + - + IDistance - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +
              -
              miml.core.distance
              +

              Interface IDistance

              @@ -101,21 +126,20 @@

              Interface IDistance

            • All Superinterfaces:
              -
              java.io.Serializable
              +
              java.io.Serializable
              All Known Implementing Classes:
              -
              AverageHausdorff, HausdorffDistance, MaximalHausdorff, MinimalHausdorff
              +
              AverageHausdorff, HausdorffDistance, MaximalHausdorff, MinimalHausdorff

              -
              public interface IDistance
               extends java.io.Serializable
              Interface to implement the metrics used to measure the distance between - MIMLBag of a data sets.
              + MIMLBag of a data sets.
            • Version:
              -
              20180619
              +
              20230418
              Author:
              Alvaro A. Belmonte, Amelia Zafra, Eva Gigaja
              @@ -126,34 +150,79 @@

              Interface IDistance

              • +
                  -
                • +
                • Method Summary

                  - +
                  - + + - + - + + + + + + + + + + + + + + + + + + + + + + + + + +
                  All Methods Instance Methods Abstract Methods 
                  Modifier and TypeMethod and DescriptionMethodDescription
                  doubledistance(weka.core.Instances first, - weka.core.Instances second) -
                  Get the distance between two bags in the form of a set of Instances.
                  +
                  distance​(MIMLBag first, + MIMLBag second) +
                  Get the distance between two MIMLBag.
                  doubledistance(MIMLBag first, - MIMLBag second) -
                  Get the distance between two MIMLBag.
                  +
                  distance​(weka.core.Instance first, + weka.core.Instance second) +
                  Get the distance between two bags in the form of a set of Instance + with relational attribute.
                  +
                  doubledistance​(weka.core.Instances first, + weka.core.Instances second) +
                  Get the distance between two bags in the form of a set of Instances.
                  +
                  voidsetInstances​(MIMLInstances bags) +
                  Sets the Intances in the form of MIMLBags.
                  +
                  voidsetInstances​(weka.core.Instances bags) +
                  Sets the Intances in the form of a set of Instances with relational + attribute.
                  +
                  voidupdate​(MIMLBag bag) +
                  Update the distance function (if necessary) for the newly added instance in + the form of MIMLBag.
                  +
                  voidupdate​(weka.core.Instance bag) +
                  Update the distance function (if necessary) for the newly added instance in + the form of Instance with relational attribute.
                +
              @@ -161,21 +230,22 @@

              Method Summary

              • +
                  -
                • +
                • Method Detail

                  - +
                  • distance

                    -
                    double distance(MIMLBag first,
                    -                MIMLBag second)
                    +
                    double distance​(MIMLBag first,
                    +                MIMLBag second)
                              throws java.lang.Exception
                    -
                    Get the distance between two MIMLBag.
                    +
                    Get the distance between two MIMLBag.
                    Parameters:
                    first - First bag.
                    @@ -187,13 +257,13 @@

                    distance

                  - + -
                    +
                    • distance

                      -
                      double distance(weka.core.Instances first,
                      +
                      double distance​(weka.core.Instances first,
                                       weka.core.Instances second)
                                throws java.lang.Exception
                      Get the distance between two bags in the form of a set of Instances.
                      @@ -208,23 +278,120 @@

                      distance

                    + + + +
                      +
                    • +

                      distance

                      +
                      double distance​(weka.core.Instance first,
                      +                weka.core.Instance second)
                      +         throws java.lang.Exception
                      +
                      Get the distance between two bags in the form of a set of Instance + with relational attribute.
                      +
                      +
                      Parameters:
                      +
                      first - First bag as Instance with relational attribute.
                      +
                      second - Second Bag as Instance with relational attribute.
                      +
                      Returns:
                      +
                      Distance between two bags.
                      +
                      Throws:
                      +
                      java.lang.Exception - if occurred an error during distance calculation.
                      +
                    + + + +
                      +
                    • +

                      setInstances

                      +
                      void setInstances​(MIMLInstances bags)
                      +           throws java.lang.Exception
                      +
                      Sets the Intances in the form of MIMLBags.
                      +
                      +
                      Parameters:
                      +
                      bags - The instances to be set.
                      +
                      Throws:
                      +
                      java.lang.Exception - to be handled in upper level.
                      +
                      +
                    • +
                    + + + +
                      +
                    • +

                      setInstances

                      +
                      void setInstances​(weka.core.Instances bags)
                      +           throws java.lang.Exception
                      +
                      Sets the Intances in the form of a set of Instances with relational + attribute.
                      +
                      +
                      Parameters:
                      +
                      bags - The instances to be set.
                      +
                      Throws:
                      +
                      java.lang.Exception - to be handled in upper level.
                      +
                      +
                    • +
                    + + + +
                      +
                    • +

                      update

                      +
                      void update​(MIMLBag bag)
                      +     throws java.lang.Exception
                      +
                      Update the distance function (if necessary) for the newly added instance in + the form of MIMLBag.
                      +
                      +
                      Parameters:
                      +
                      bag - The bag.
                      +
                      Throws:
                      +
                      java.lang.Exception - to be handled in upper level.
                      +
                      +
                    • +
                    + + + +
                      +
                    • +

                      update

                      +
                      void update​(weka.core.Instance bag)
                      +     throws java.lang.Exception
                      +
                      Update the distance function (if necessary) for the newly added instance in + the form of Instance with relational attribute.
                      +
                      +
                      Parameters:
                      +
                      bag - The bag.
                      +
                      Throws:
                      +
                      java.lang.Exception - to be handled in upper level.
                      +
                      +
                    • +
                    + +
                  +
              +
              + diff --git a/documentation/apidoc/miml/core/distance/IDistance.svg b/documentation/apidoc/miml/core/distance/IDistance.svg new file mode 100644 index 0000000..4bb3373 --- /dev/null +++ b/documentation/apidoc/miml/core/distance/IDistance.svg @@ -0,0 +1,29 @@ +IDistancemiml.core.distancedistance(MIMLBag, MIMLBag): doubledistance(Instances, Instances): doubleSerializablejava.ioUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/distance/MaximalHausdorff.html b/documentation/apidoc/miml/core/distance/MaximalHausdorff.html old mode 100755 new mode 100644 index b6b61e4..ea0953a --- a/documentation/apidoc/miml/core/distance/MaximalHausdorff.html +++ b/documentation/apidoc/miml/core/distance/MaximalHausdorff.html @@ -1,12 +1,22 @@ - + - + MaximalHausdorff - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +
              -
              miml.core.distance
              +

              Class MaximalHausdorff

              @@ -100,7 +125,7 @@

              Class MaximalHausdorff

            • java.lang.Object
            • @@ -227,12 +264,13 @@

              Methods inherited from class java.lang.Object

              • +
                  -
                • +
                • Field Detail

                  - +
                    @@ -248,13 +286,15 @@

                    serialVersionUID

                +
                +
                  -
                • +
                • Constructor Detail

                  - +
                    @@ -263,13 +303,13 @@

                    MaximalHausdorff

                    public MaximalHausdorff()
                  - +
                  • MaximalHausdorff

                    -
                    public MaximalHausdorff(MIMLInstances bags)
                    +
                    public MaximalHausdorff​(MIMLInstances bags)
                                      throws java.lang.Exception
                    Throws:
                    @@ -279,22 +319,24 @@

                    MaximalHausdorff

                +
                +
                  -
                • +
                • Method Detail

                  - +
                  • distance

                    -
                    public double distance(weka.core.Instances first,
                    +
                    public double distance​(weka.core.Instances first,
                                            weka.core.Instances second)
                                     throws java.lang.Exception
                    -
                    Description copied from interface: IDistance
                    +
                    Description copied from interface: IDistance
                    Get the distance between two bags in the form of a set of Instances.
                    Parameters:
                    @@ -309,21 +351,25 @@

                    distance

                +
              +
              + diff --git a/documentation/apidoc/miml/core/distance/MaximalHausdorff.svg b/documentation/apidoc/miml/core/distance/MaximalHausdorff.svg new file mode 100644 index 0000000..97e8541 --- /dev/null +++ b/documentation/apidoc/miml/core/distance/MaximalHausdorff.svg @@ -0,0 +1,31 @@ +MaximalHausdorffmiml.core.distanceserialVersionUID: longMaximalHausdorff()MaximalHausdorff(MIMLInstances)distance(Instances, Instances): doubleHausdorffDistancemiml.core.distanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/distance/MinimalHausdorff.html b/documentation/apidoc/miml/core/distance/MinimalHausdorff.html old mode 100755 new mode 100644 index a323b91..1b04e28 --- a/documentation/apidoc/miml/core/distance/MinimalHausdorff.html +++ b/documentation/apidoc/miml/core/distance/MinimalHausdorff.html @@ -1,12 +1,22 @@ - + - + MinimalHausdorff - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +
              -
              miml.core.distance
              +

              Class MinimalHausdorff

              @@ -100,7 +125,7 @@

              Class MinimalHausdorff

            • java.lang.Object
            • @@ -227,12 +264,13 @@

              Methods inherited from class java.lang.Object

              • +
                  -
                • +
                • Field Detail

                  - +
                    @@ -248,13 +286,15 @@

                    serialVersionUID

                +
                +
                  -
                • +
                • Constructor Detail

                  - +
                    @@ -263,13 +303,13 @@

                    MinimalHausdorff

                    public MinimalHausdorff()
                  - +
                  • MinimalHausdorff

                    -
                    public MinimalHausdorff(MIMLInstances bags)
                    +
                    public MinimalHausdorff​(MIMLInstances bags)
                                      throws java.lang.Exception
                    Throws:
                    @@ -279,22 +319,24 @@

                    MinimalHausdorff

                +
                +
                  -
                • +
                • Method Detail

                  - +
                  • distance

                    -
                    public double distance(weka.core.Instances first,
                    +
                    public double distance​(weka.core.Instances first,
                                            weka.core.Instances second)
                                     throws java.lang.Exception
                    -
                    Description copied from interface: IDistance
                    +
                    Description copied from interface: IDistance
                    Get the distance between two bags in the form of a set of Instances.
                    Parameters:
                    @@ -309,21 +351,25 @@

                    distance

                +
              +
              + diff --git a/documentation/apidoc/miml/core/distance/MinimalHausdorff.svg b/documentation/apidoc/miml/core/distance/MinimalHausdorff.svg new file mode 100644 index 0000000..946c035 --- /dev/null +++ b/documentation/apidoc/miml/core/distance/MinimalHausdorff.svg @@ -0,0 +1,31 @@ +MinimalHausdorffmiml.core.distanceserialVersionUID: longMinimalHausdorff()MinimalHausdorff(MIMLInstances)distance(Instances, Instances): doubleHausdorffDistancemiml.core.distanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/core/distance/class-use/AverageHausdorff.html b/documentation/apidoc/miml/core/distance/class-use/AverageHausdorff.html old mode 100755 new mode 100644 index f7a709d..f014dfc --- a/documentation/apidoc/miml/core/distance/class-use/AverageHausdorff.html +++ b/documentation/apidoc/miml/core/distance/class-use/AverageHausdorff.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.distance.AverageHausdorff - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.distance.AverageHausdorff

              No usage of miml.core.distance.AverageHausdorff
              +
              + diff --git a/documentation/apidoc/miml/core/distance/class-use/HausdorffDistance.html b/documentation/apidoc/miml/core/distance/class-use/HausdorffDistance.html old mode 100755 new mode 100644 index a741de3..cb7591d --- a/documentation/apidoc/miml/core/distance/class-use/HausdorffDistance.html +++ b/documentation/apidoc/miml/core/distance/class-use/HausdorffDistance.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.distance.HausdorffDistance - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.distance.HausdorffDistance

              +
              + diff --git a/documentation/apidoc/miml/core/distance/class-use/IDistance.html b/documentation/apidoc/miml/core/distance/class-use/IDistance.html old mode 100755 new mode 100644 index 71e16c7..33e31be --- a/documentation/apidoc/miml/core/distance/class-use/IDistance.html +++ b/documentation/apidoc/miml/core/distance/class-use/IDistance.html @@ -1,12 +1,22 @@ - + - + Uses of Interface miml.core.distance.IDistance - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Interface
              miml.core.distance.IDistance

              +
              + diff --git a/documentation/apidoc/miml/core/distance/class-use/MaximalHausdorff.html b/documentation/apidoc/miml/core/distance/class-use/MaximalHausdorff.html old mode 100755 new mode 100644 index 8bee1bc..660433e --- a/documentation/apidoc/miml/core/distance/class-use/MaximalHausdorff.html +++ b/documentation/apidoc/miml/core/distance/class-use/MaximalHausdorff.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.distance.MaximalHausdorff - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.distance.MaximalHausdorff

              No usage of miml.core.distance.MaximalHausdorff
              +
              + diff --git a/documentation/apidoc/miml/core/distance/class-use/MinimalHausdorff.html b/documentation/apidoc/miml/core/distance/class-use/MinimalHausdorff.html old mode 100755 new mode 100644 index 8e80da2..d79448a --- a/documentation/apidoc/miml/core/distance/class-use/MinimalHausdorff.html +++ b/documentation/apidoc/miml/core/distance/class-use/MinimalHausdorff.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.core.distance.MinimalHausdorff - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Uses of Class
              miml.core.distance.MinimalHausdorff

              No usage of miml.core.distance.MinimalHausdorff
              +
              + diff --git a/documentation/apidoc/miml/core/distance/package-frame.html b/documentation/apidoc/miml/core/distance/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/core/distance/package-summary.html b/documentation/apidoc/miml/core/distance/package-summary.html old mode 100755 new mode 100644 index e6c6bea..3f534be --- a/documentation/apidoc/miml/core/distance/package-summary.html +++ b/documentation/apidoc/miml/core/distance/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.core.distance - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
              + +
              +

              Package miml.core.distance

              • - +
                @@ -83,17 +108,17 @@

                Package miml.core.distance

                - +
                Interface Summary 
                Interface
                IDistanceIDistance
                Interface to implement the metrics used to measure the distance between - MIMLBag of a data sets.
                + MIMLBag of a data sets.
              • - +
                @@ -101,25 +126,25 @@

                Package miml.core.distance

                - + - + - + - +
                Class Summary 
                Class
                AverageHausdorffAverageHausdorff
                Class that implements Average Hausdorff metric to measure the distance between 2 bags of a data set.
                HausdorffDistanceHausdorffDistance  
                MaximalHausdorffMaximalHausdorff
                Class that implements Maximal Hausdorff metric to measure the distance between 2 bags of a data set.
                MinimalHausdorffMinimalHausdorff
                Class that implements Minimal Hausdorff metric to measure the distance between 2 bags of a data set.
                @@ -130,16 +155,19 @@

                Package miml.core.distance

                + + diff --git a/documentation/apidoc/miml/core/distance/package-tree.html b/documentation/apidoc/miml/core/distance/package-tree.html old mode 100755 new mode 100644 index 76bad6c..b9032f5 --- a/documentation/apidoc/miml/core/distance/package-tree.html +++ b/documentation/apidoc/miml/core/distance/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.core.distance Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Hierarchy For Package miml.core.distance

                Package Hierarchies: @@ -77,39 +102,46 @@

                Hierarchy For Package miml.core.distance

                +

                Class Hierarchy

                +
                +

                Interface Hierarchy

                  -
                • java.io.Serializable +
                • java.io.Serializable
                +
                +
                + diff --git a/documentation/apidoc/miml/core/distance/package-use.html b/documentation/apidoc/miml/core/distance/package-use.html old mode 100755 new mode 100644 index e381dd3..cd036e6 --- a/documentation/apidoc/miml/core/distance/package-use.html +++ b/documentation/apidoc/miml/core/distance/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.core.distance - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Package
                miml.core.distance

                + +
                  -
                • +
                • Constructor Summary

                  - +
                  - + + - +
                  Constructors 
                  Constructor and DescriptionConstructorDescription
                  MIMLBag(weka.core.Instance instance) +MIMLBag​(weka.core.Instance instance)
                  Constructor.
                +
                +
                  -
                • +
                • Method Summary

                  - +
                  - + + - + - + - + - + - + - +
                  All Methods Instance Methods Concrete Methods 
                  Modifier and TypeMethod and DescriptionMethodDescription
                  weka.core.InstancesgetBagAsInstances() +getBagAsInstances()
                  Gets a bag in the form of a set of instances considering just the relational information.
                  weka.core.InstancegetInstance(int bagIndex) +getInstance​(int bagIndex)
                  Returns an instance of the Bag with index bagIndex.
                  intgetNumAttributesInABag() +getNumAttributesInABag()
                  Gets the number of attributes of in the relational attribute of a Bag.
                  intgetNumAttributesWithRelational() +getNumAttributesWithRelational()
                  Gets the total number of attributes of the Bag.
                  intgetNumInstances() +getNumInstances()
                  Gets the number of instances of the Bag.
                  voidsetValue(int instanceIndex, +setValue​(int instanceIndex, int attrIndex, - double value) + double value)
                  Sets the value of attrIndex attribute of the instanceIndex to a certain value.
                    -
                  • +
                  • Methods inherited from class weka.core.DenseInstance

                    copy, forceDeleteAttributeAt, forceInsertAttributeAt, getRevision, index, main, mergeInstance, numAttributes, numValues, replaceMissingValues, setValue, setValueSparse, toDoubleArray, toStringNoWeight, toStringNoWeight, value
                    -
                  • +
                  • Methods inherited from class weka.core.AbstractInstance

                    attribute, attributeSparse, classAttribute, classIndex, classIsMissing, classValue, dataset, deleteAttributeAt, enumerateAttributes, equalHeaders, equalHeadersMsg, hasMissingValue, insertAttributeAt, isMissing, isMissing, isMissingSparse, numClasses, relationalValue, relationalValue, setClassMissing, setClassValue, setClassValue, setDataset, setMissing, setMissing, setValue, setValue, setValue, setWeight, stringValue, stringValue, toString, toString, toString, toString, toString, toStringMaxDecimalDigits, value, valueSparse, weight
                    -
                  • +
                  • Methods inherited from class java.lang.Object

                    clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
                    -
                  • +
                  • -

                    Methods inherited from interface weka.core.Instance

                    -attribute, attributeSparse, classAttribute, classIndex, classIsMissing, classValue, dataset, deleteAttributeAt, enumerateAttributes, equalHeaders, equalHeadersMsg, hasMissingValue, index, insertAttributeAt, isMissing, isMissing, isMissingSparse, mergeInstance, numAttributes, numClasses, numValues, relationalValue, relationalValue, replaceMissingValues, setClassMissing, setClassValue, setClassValue, setDataset, setMissing, setMissing, setValue, setValue, setValue, setValue, setValueSparse, setWeight, stringValue, stringValue, toDoubleArray, toString, toString, toString, toString, toStringMaxDecimalDigits, toStringNoWeight, toStringNoWeight, value, value, valueSparse, weight
                  • +

                    Methods inherited from interface weka.core.Copyable

                    +copy
                    -
                  • +
                  • -

                    Methods inherited from interface weka.core.Copyable

                    -copy
                  • +

                    Methods inherited from interface weka.core.Instance

                    +attribute, attributeSparse, classAttribute, classIndex, classIsMissing, classValue, dataset, deleteAttributeAt, enumerateAttributes, equalHeaders, equalHeadersMsg, hasMissingValue, index, insertAttributeAt, isMissing, isMissing, isMissingSparse, mergeInstance, numAttributes, numClasses, numValues, relationalValue, relationalValue, replaceMissingValues, setClassMissing, setClassValue, setClassValue, setDataset, setMissing, setMissing, setValue, setValue, setValue, setValue, setValueSparse, setWeight, stringValue, stringValue, toDoubleArray, toString, toString, toString, toString, toStringMaxDecimalDigits, toStringNoWeight, toStringNoWeight, value, value, valueSparse, weight
                +
                @@ -285,12 +326,13 @@

                Methods inherited from interface weka.core.Copyable

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -306,19 +348,21 @@

                      serialVersionUID

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • MIMLBag

                      -
                      public MIMLBag(weka.core.Instance instance)
                      +
                      public MIMLBag​(weka.core.Instance instance)
                               throws java.lang.Exception
                      Constructor.
                      @@ -331,19 +375,21 @@

                      MIMLBag

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • getInstance

                      -
                      public weka.core.Instance getInstance(int bagIndex)
                      +
                      public weka.core.Instance getInstance​(int bagIndex)
                      Returns an instance of the Bag with index bagIndex.
                      Parameters:
                      @@ -353,13 +399,13 @@

                      getInstance

                    - +
                    • getNumAttributesWithRelational

                      -
                      public int getNumAttributesWithRelational()
                      +
                      public int getNumAttributesWithRelational()
                      Gets the total number of attributes of the Bag. This number includes attributes corresponding to labels. Instead the relational attribute, the number of attributes contained in the relational attribute is considered. For @@ -382,13 +428,13 @@

                      getNumAttributesWithRelational

                    - +
                    • getNumAttributesInABag

                      -
                      public int getNumAttributesInABag()
                      +
                      public int getNumAttributesInABag()
                      Gets the number of attributes of in the relational attribute of a Bag. For instance, in the relation above, the output of the method is 3.
                      @@ -409,13 +455,13 @@

                      getNumAttributesInABag

                    - +
                    • getNumInstances

                      -
                      public int getNumInstances()
                      +
                      public int getNumInstances()
                      Gets the number of instances of the Bag.
                      Returns:
                      @@ -423,13 +469,13 @@

                      getNumInstances

                    - +
                    • getBagAsInstances

                      -
                      public weka.core.Instances getBagAsInstances()
                      +
                      public weka.core.Instances getBagAsInstances()
                                                             throws java.lang.Exception
                      Gets a bag in the form of a set of instances considering just the relational information. Neither the identifier attribute of the Bag nor label attributes @@ -460,13 +506,13 @@

                      getBagAsInstances

                    - +
                    • setValue

                      -
                      public void setValue(int instanceIndex,
                      +
                      public void setValue​(int instanceIndex,
                                            int attrIndex,
                                            double value)
                      Sets the value of attrIndex attribute of the instanceIndex to a certain @@ -481,21 +527,25 @@

                      setValue

                  +
                +
                + diff --git a/documentation/apidoc/miml/data/MIMLBag.svg b/documentation/apidoc/miml/data/MIMLBag.svg new file mode 100644 index 0000000..0cd4b57 --- /dev/null +++ b/documentation/apidoc/miml/data/MIMLBag.svg @@ -0,0 +1,90 @@ +MIMLBagmiml.dataserialVersionUID: longMIMLBag(Instance)getInstance(int): InstancegetNumAttributesWithRelational(): intgetNumAttributesInABag(): intgetNumInstances(): intgetBagAsInstances(): InstancessetValue(int, int, double): voidDenseInstanceweka.coreInstanceweka.coreattribute(int): AttributeattributeSparse(int): AttributeclassAttribute(): AttributeclassIndex(): intclassIsMissing(): booleanclassValue(): doubledataset(): InstancesdeleteAttributeAt(int): voidenumerateAttributes(): EnumerationequalHeaders(Instance): booleanequalHeadersMsg(Instance): StringhasMissingValue(): booleanindex(int): intinsertAttributeAt(int): voidisMissing(int): booleanisMissingSparse(int): booleanisMissing(Attribute): booleanmergeInstance(Instance): InstancenumAttributes(): intnumClasses(): intnumValues(): intreplaceMissingValues(double[]): voidsetClassMissing(): voidsetClassValue(double): voidsetClassValue(String): voidsetDataset(Instances): voidsetMissing(int): voidsetMissing(Attribute): voidsetValue(int, double): voidsetValueSparse(int, double): voidsetValue(int, String): voidsetValue(Attribute, double): voidsetValue(Attribute, String): voidsetWeight(double): voidrelationalValue(int): InstancesrelationalValue(Attribute): InstancesstringValue(int): StringstringValue(Attribute): StringtoDoubleArray(): double[]toStringNoWeight(int): StringtoStringNoWeight(): StringtoStringMaxDecimalDigits(int): StringtoString(int, int): StringtoString(int): StringtoString(Attribute, int): StringtoString(Attribute): Stringvalue(int): doublevalueSparse(int): doublevalue(Attribute): doubleweight(): doubleUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/MIMLInstances.html b/documentation/apidoc/miml/data/MIMLInstances.html old mode 100755 new mode 100644 index 4d9e9f7..aff5d8d --- a/documentation/apidoc/miml/data/MIMLInstances.html +++ b/documentation/apidoc/miml/data/MIMLInstances.html @@ -1,12 +1,22 @@ - + - + MIMLInstances - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data
                +
                Package miml.data

                Class MIMLInstances

                @@ -114,10 +139,9 @@

                Class MIMLInstances

              • All Implemented Interfaces:
                -
                java.io.Serializable
                +
                java.io.Serializable

                -
                public class MIMLInstances
                 extends mulan.data.MultiLabelInstances
                Class inheriting from MultiLabelnstances to represent MIML data.
                @@ -136,182 +160,227 @@

                Class MIMLInstances

                • +
                    -
                  • +
                  • Field Summary

                    - +
                    - + + - +
                    Fields 
                    Modifier and TypeField and DescriptionFieldDescription
                    private static longserialVersionUID +serialVersionUID
                    Generated Serial version UID.
                  +
                  +
                    -
                  • +
                  • Constructor Summary

                    - +
                    - + + - + - + - + - + - + + + + +
                    Constructors 
                    Constructor and DescriptionConstructorDescription
                    MIMLInstances(weka.core.Instances dataSet, - mulan.data.LabelsMetaData labelsMetaData) +MIMLInstances​(java.lang.String arffFilePath, + int numLabelAttributes)
                    Constructor.
                    MIMLInstances(weka.core.Instances dataSet, - java.lang.String xmlLabelsDefFilePath) +MIMLInstances​(java.lang.String arffFilePath, + java.lang.String xmlLabelsDefFilePath)
                    Constructor.
                    MIMLInstances(MIMLInstances mimlDataSet) +MIMLInstances​(MIMLInstances mimlDataSet)
                    Constructor.
                    MIMLInstances(java.lang.String arffFilePath, - int numLabelAttributes) +MIMLInstances​(mulan.data.MultiLabelInstances mlDataSet)
                    Constructor.
                    MIMLInstances(java.lang.String arffFilePath, - java.lang.String xmlLabelsDefFilePath) +MIMLInstances​(weka.core.Instances dataSet, + java.lang.String xmlLabelsDefFilePath) +
                    Constructor.
                    +
                    MIMLInstances​(weka.core.Instances dataSet, + mulan.data.LabelsMetaData labelsMetaData)
                    Constructor.
                  +
                  +
                  +
              • @@ -326,12 +396,13 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -347,19 +418,21 @@

                      serialVersionUID

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • MIMLInstances

                      -
                      public MIMLInstances(weka.core.Instances dataSet,
                      +
                      public MIMLInstances​(weka.core.Instances dataSet,
                                            java.lang.String xmlLabelsDefFilePath)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -373,13 +446,13 @@

                      MIMLInstances

                    - +
                    • MIMLInstances

                      -
                      public MIMLInstances(weka.core.Instances dataSet,
                      +
                      public MIMLInstances​(weka.core.Instances dataSet,
                                            mulan.data.LabelsMetaData labelsMetaData)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -393,13 +466,13 @@

                      MIMLInstances

                    - +
                    • MIMLInstances

                      -
                      public MIMLInstances(java.lang.String arffFilePath,
                      +
                      public MIMLInstances​(java.lang.String arffFilePath,
                                            java.lang.String xmlLabelsDefFilePath)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -412,13 +485,13 @@

                      MIMLInstances

                    - +
                    • MIMLInstances

                      -
                      public MIMLInstances(java.lang.String arffFilePath,
                      +
                      public MIMLInstances​(java.lang.String arffFilePath,
                                            int numLabelAttributes)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -431,18 +504,35 @@

                      MIMLInstances

                    - + + + +
                      +
                    • +

                      MIMLInstances

                      +
                      public MIMLInstances​(MIMLInstances mimlDataSet)
                      +              throws mulan.data.InvalidDataFormatException
                      +
                      Constructor.
                      +
                      +
                      Parameters:
                      +
                      mimlDataSet - A datasetof MIMLInstances.
                      +
                      Throws:
                      +
                      mulan.data.InvalidDataFormatException - To be handled in an upper level.
                      +
                      +
                    • +
                    +
                    • MIMLInstances

                      -
                      public MIMLInstances(MIMLInstances mimlDataSet)
                      +
                      public MIMLInstances​(mulan.data.MultiLabelInstances mlDataSet)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      Parameters:
                      -
                      mimlDataSet - A datasetof MIMLInstances.
                      +
                      mlDataSet - A multi-label datasetof .
                      Throws:
                      mulan.data.InvalidDataFormatException - To be handled in an upper level.
                      @@ -450,21 +540,23 @@

                      MIMLInstances

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • getBag

                      -
                      public MIMLBag getBag(int bagIndex)
                      +
                      public MIMLBag getBag​(int bagIndex)
                                      throws java.lang.Exception
                      -
                      Gets a MIMLBag (i.e. pattern) with a certain bagIndex.
                      +
                      Gets a MIMLBag (i.e. pattern) with a certain bagIndex.
                      Parameters:
                      bagIndex - Index of the bag.
                      @@ -476,15 +568,15 @@

                      getBag

                    - +
                    • getBagAsInstances

                      -
                      public weka.core.Instances getBagAsInstances(int bagIndex)
                      +
                      public weka.core.Instances getBagAsInstances​(int bagIndex)
                                                             throws java.lang.Exception
                      -
                      Gets a MIMLBag with a certain bagIndex in the form of a set of +
                      Gets a MIMLBag with a certain bagIndex in the form of a set of Instances considering just the relational information. Neither identification attribute of the Bag nor label attributes are included.
                      @@ -498,13 +590,13 @@

                      getBagAsInstances

                    - +
                    • addBag

                      -
                      public void addBag(MIMLBag bag)
                      +
                      public void addBag​(MIMLBag bag)
                      Adds a Bag of Instances to the dataset.
                      Parameters:
                      @@ -512,13 +604,13 @@

                      addBag

                    - +
                    • addInstance

                      -
                      public void addInstance(MIMLBag bag,
                      +
                      public void addInstance​(MIMLBag bag,
                                               int index)
                      Adds a Bag of Instances to the dataset in a certain index.
                      @@ -528,13 +620,13 @@

                      addInstance

                    - +
                    • getInstance

                      -
                      public weka.core.Instance getInstance(int bagIndex,
                      +
                      public weka.core.Instance getInstance​(int bagIndex,
                                                             int instanceIndex)
                                                      throws java.lang.IndexOutOfBoundsException
                      Gets an instance of a bag.
                      @@ -549,13 +641,13 @@

                      getInstance

                    - +
                    • getNumBags

                      -
                      public int getNumBags()
                      +
                      public int getNumBags()
                      Gets the number of bags of the dataset.
                      Returns:
                      @@ -563,13 +655,13 @@

                      getNumBags

                    - +
                    • getNumInstances

                      -
                      public int getNumInstances(int bagIndex)
                      +
                      public int getNumInstances​(int bagIndex)
                                           throws java.lang.Exception
                      Gets the number of instances of a bag.
                      @@ -582,13 +674,13 @@

                      getNumInstances

                    - +
                    • getNumAttributes

                      -
                      public int getNumAttributes()
                      +
                      public int getNumAttributes()
                      Gets the number of attributes of the dataset considering label attributes and the relational attribute with bags as a single attribute. For instance, in relation above, the returned value is 6. @@ -610,13 +702,13 @@

                      getNumAttributes

                    - +
                    • getNumAttributesWithRelational

                      -
                      public int getNumAttributesWithRelational()
                      +
                      public int getNumAttributesWithRelational()
                      Gets the total number of attributes of the dataset. This number includes attributes corresponding to labels. Instead the relational attribute, the number of attributes contained in the relational attribute is considered. For @@ -639,13 +731,13 @@

                      getNumAttributesWithRelational

                    - +
                    • getNumAttributesInABag

                      -
                      public int getNumAttributesInABag()
                      +
                      public int getNumAttributesInABag()
                      Gets the number of attributes per bag. In MIML all bags have the same number of attributes.* For instance, in the relation above, the output of the method is 3.
                      @@ -667,13 +759,13 @@

                      getNumAttributesInABag

                    - +
                    • getMLDataSet

                      -
                      public mulan.data.MultiLabelInstances getMLDataSet()
                      +
                      public mulan.data.MultiLabelInstances getMLDataSet()
                      Returns the dataset as MultiLabelInstances.
                      Returns:
                      @@ -681,13 +773,13 @@

                      getMLDataSet

                    - +
                    • insertAttributeToBags

                      -
                      public MIMLInstances insertAttributeToBags(weka.core.Attribute newAttr)
                      +
                      public MIMLInstances insertAttributeToBags​(weka.core.Attribute newAttr)
                                                           throws mulan.data.InvalidDataFormatException
                      Adds an attribute to the relational attribute with value '?' at the last position.
                      @@ -701,13 +793,13 @@

                      insertAttributeToBags

                    - +
                    • insertAttributesToBags

                      -
                      public MIMLInstances insertAttributesToBags(java.util.ArrayList<weka.core.Attribute> Attributes)
                      +
                      public MIMLInstances insertAttributesToBags​(java.util.ArrayList<weka.core.Attribute> Attributes)
                                                            throws mulan.data.InvalidDataFormatException
                      Adds a set of attributes to the relational attribute with values '?' at the last position of the relational attribute.
                      @@ -721,29 +813,30 @@

                      insertAttributesToBags

                    - + -
                      +
                      • splitData

                        -
                        public static java.util.List<MIMLInstances> splitData(MIMLInstances mimlDataSet,
                        -                                                      double percentageTrain,
                        -                                                      int seed,
                        -                                                      int partitioningMethod)
                        -                                               throws java.lang.Exception
                        -
                        Split MIML data train and test partition given a percentage and a partitioning method.
                        +
                        public static MIMLInstances[] splitData​(MIMLInstances mimlDataSet,
                        +                                        double percentageTrain,
                        +                                        int seed,
                        +                                        int partitioningMethod)
                        +                                 throws java.lang.Exception
                        +
                        Split MIML data train and test partition given a percentage and a + partitioning method.
                        Parameters:
                        mimlDataSet - The MIML dataset to be splited.
                        percentageTrain - The percentage (0-100) to be used for train.
                        seed - Seed use to randomize.
                        partitioningMethod - An integer with the partitioning method: -
                          -
                        • 1 random partitioning
                        • -
                        • 2 powerset partitioning
                        • -
                        • 3 iterative partitioning
                        • -
                        +
                          +
                        • 1 random partitioning
                        • +
                        • 2 powerset partitioning
                        • +
                        • 3 iterative partitioning
                        • +
                        Returns:
                        A list with the dataset splited.
                        Throws:
                        @@ -751,23 +844,58 @@

                        splitData

                      + + + +
                        +
                      • +

                        roundsCV

                        +
                        public static MIMLInstances[][] roundsCV​(MIMLInstances mimlDataSet,
                        +                                         int nFolds,
                        +                                         int seed,
                        +                                         int partitioningMethod)
                        +                                  throws java.lang.Exception
                        +
                        Generate tran/test partitions for CV cross validation.
                        +
                        +
                        Parameters:
                        +
                        mimlDataSet - The MIML dataset to be splited.
                        +
                        nFolds - The number of folds.
                        +
                        seed - Seed use to randomize.
                        +
                        partitioningMethod - An integer with the partitioning method: +
                          +
                        • 1 random partitioning
                        • +
                        • 2 powerset partitioning
                        • +
                        • 3 iterative partitioning
                        • +
                        +
                        Returns:
                        +
                        MIMLInstances[][] a nfolds x 2 matrix. Each row represents a + fold being column 0 the train set and the column 1 the test set.
                        +
                        Throws:
                        +
                        java.lang.Exception - To be handled in an upper level.
                        +
                    +
                  +
                • +
                +
                + diff --git a/documentation/apidoc/miml/data/MIMLInstances.svg b/documentation/apidoc/miml/data/MIMLInstances.svg new file mode 100644 index 0000000..6a9a9de --- /dev/null +++ b/documentation/apidoc/miml/data/MIMLInstances.svg @@ -0,0 +1,47 @@ +MIMLInstancesmiml.dataserialVersionUID: longMIMLInstances(Instances, String)MIMLInstances(Instances, LabelsMetaData)MIMLInstances(String, String)MIMLInstances(String, int)MIMLInstances(MIMLInstances)getBag(int): MIMLBaggetBagAsInstances(int): InstancesaddBag(MIMLBag): voidaddInstance(MIMLBag, int): voidgetInstance(int, int): InstancegetNumBags(): intgetNumInstances(int): intgetNumAttributes(): intgetNumAttributesWithRelational(): intgetNumAttributesInABag(): intgetMLDataSet(): MultiLabelInstancesinsertAttributeToBags(Attribute): MIMLInstancesinsertAttributesToBags(ArrayList<Attribute>): MIMLInstancessplitData(MIMLInstances, double, int, int): List<MIMLInstances>MultiLabelInstancesmulan.dataUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/MLSave.html b/documentation/apidoc/miml/data/MLSave.html old mode 100755 new mode 100644 index 7c1b230..acbd865 --- a/documentation/apidoc/miml/data/MLSave.html +++ b/documentation/apidoc/miml/data/MLSave.html @@ -1,12 +1,22 @@ - + - + MLSave - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data
                +
                Package miml.data

                Class MLSave

                @@ -108,7 +133,6 @@

                Class MLSave


                • -
                  public final class MLSave
                   extends java.lang.Object
                  Class with methods to write to file a multi-label dataset. MIML format is @@ -126,81 +150,93 @@

                  Class MLSave

                  • +
                      -
                    • +
                    • Constructor Summary

                      - +
                      - + + - + +
                      Constructors 
                      ModifierConstructor and DescriptionConstructorDescription
                      private MLSave() MLSave() 
                    +
                    +
                      -
                    • +
                    • Method Summary

                      - +
                      - + + - + - + - + - + - + - +
                      All Methods Static Methods Concrete Methods 
                      Modifier and TypeMethod and DescriptionMethodDescription
                      static voidsaveArff(weka.core.Instances instances, - java.lang.String pathName) -
                      Writes an arff file with an Instances dataset.
                      +
                      saveArff​(MIMLInstances instances, + java.lang.String pathName) +
                      Writes an arff file with a multi-label dataset.
                      static voidsaveArff(MIMLInstances instances, - java.lang.String pathName) +saveArff​(mulan.data.MultiLabelInstances instances, + java.lang.String pathName)
                      Writes an arff file with a multi-label dataset.
                      static voidsaveArff(mulan.data.MultiLabelInstances instances, - java.lang.String pathName) -
                      Writes an arff file with a multi-label dataset.
                      +
                      saveArff​(weka.core.Instances instances, + java.lang.String pathName) +
                      Writes an arff file with an Instances dataset.
                      static voidsaveXml(java.util.ArrayList<java.lang.String> labelNames, - java.lang.String pathName) +saveXml​(java.util.ArrayList<java.lang.String> labelNames, + java.lang.String pathName)
                      Writes an xml file.
                      static voidsaveXml(weka.core.Instances instances, - java.lang.String pathName) -
                      Writes an xml file with label definitions of an instances dataset.
                      +
                      saveXml​(mulan.data.MultiLabelInstances instances, + java.lang.String pathName) +
                      Writes an xml file with label definitions of a multi-label dataset.
                      static voidsaveXml(mulan.data.MultiLabelInstances instances, - java.lang.String pathName) -
                      Writes an xml file with label definitions of a multi-label dataset.
                      +
                      saveXml​(weka.core.Instances instances, + java.lang.String pathName) +
                      Writes an xml file with label definitions of an instances dataset.
                        -
                      • +
                      • Methods inherited from class java.lang.Object

                        @@ -208,6 +244,7 @@

                        Methods inherited from class java.lang.Object

                    +
                  @@ -215,12 +252,13 @@

                  Methods inherited from class java.lang.Object

                  • +
                      -
                    • +
                    • Constructor Detail

                      - +
                        @@ -231,19 +269,21 @@

                        MLSave

                    +
                    +
                      -
                    • +
                    • Method Detail

                      - +
                      • saveArff

                        -
                        public static void saveArff(MIMLInstances instances,
                        +
                        public static void saveArff​(MIMLInstances instances,
                                                     java.lang.String pathName)
                                              throws java.io.IOException
                        Writes an arff file with a multi-label dataset. MIML format is also @@ -257,13 +297,13 @@

                        saveArff

                      - +
                      • saveArff

                        -
                        public static void saveArff(mulan.data.MultiLabelInstances instances,
                        +
                        public static void saveArff​(mulan.data.MultiLabelInstances instances,
                                                     java.lang.String pathName)
                                              throws java.io.IOException
                        Writes an arff file with a multi-label dataset. MIML format is also @@ -277,13 +317,13 @@

                        saveArff

                      - +
                      • saveArff

                        -
                        public static void saveArff(weka.core.Instances instances,
                        +
                        public static void saveArff​(weka.core.Instances instances,
                                                     java.lang.String pathName)
                                              throws java.io.IOException
                        Writes an arff file with an Instances dataset.
                        @@ -296,13 +336,13 @@

                        saveArff

                      - +
                      • saveXml

                        -
                        public static void saveXml(mulan.data.MultiLabelInstances instances,
                        +
                        public static void saveXml​(mulan.data.MultiLabelInstances instances,
                                                    java.lang.String pathName)
                                             throws java.io.IOException,
                                                    mulan.data.LabelsBuilderException
                        @@ -318,13 +358,13 @@

                        saveXml

                      - +
                      • saveXml

                        -
                        public static void saveXml(weka.core.Instances instances,
                        +
                        public static void saveXml​(weka.core.Instances instances,
                                                    java.lang.String pathName)
                                             throws java.io.IOException,
                                                    mulan.data.LabelsBuilderException
                        @@ -339,13 +379,13 @@

                        saveXml

                      - +
                      • saveXml

                        -
                        public static void saveXml(java.util.ArrayList<java.lang.String> labelNames,
                        +
                        public static void saveXml​(java.util.ArrayList<java.lang.String> labelNames,
                                                    java.lang.String pathName)
                        Writes an xml file.
                        @@ -357,21 +397,25 @@

                        saveXml

                    +
                +
                + diff --git a/documentation/apidoc/miml/data/MLSave.svg b/documentation/apidoc/miml/data/MLSave.svg new file mode 100644 index 0000000..4c66e53 --- /dev/null +++ b/documentation/apidoc/miml/data/MLSave.svg @@ -0,0 +1,27 @@ +MLSavemiml.datasaveArff(MIMLInstances, String): voidsaveArff(MultiLabelInstances, String): voidsaveArff(Instances, String): voidsaveXml(MultiLabelInstances, String): voidsaveXml(Instances, String): voidsaveXml(ArrayList<String>, String): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/MWTranslator.html b/documentation/apidoc/miml/data/MWTranslator.html old mode 100755 new mode 100644 index 2e3da3b..0ec48de --- a/documentation/apidoc/miml/data/MWTranslator.html +++ b/documentation/apidoc/miml/data/MWTranslator.html @@ -1,12 +1,22 @@ - + - + MWTranslator - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data
                +
                Package miml.data

                Class MWTranslator

                @@ -108,7 +133,6 @@

                Class MWTranslator


                • -
                  public class MWTranslator
                   extends java.lang.Object
                  Class to serve as interface between MIMLInstances and Matlab data types.
                  @@ -125,139 +149,161 @@

                  Class MWTranslator

                  • +
                    +
                    +
                    +
                    +
                      -
                    • +
                    • Method Summary

                      - +
                      - + + - + - + - + - + - + - + - + - +
                      All Methods Instance Methods Concrete Methods 
                      Modifier and TypeMethod and DescriptionMethodDescription
                      com.mathworks.toolbox.javabuilder.MWNumericArraygetBagAsArray(int index) +getBagAsArray​(int index)
                      Returns a bag in the format of a nInstxnAttributes array of double.
                      com.mathworks.toolbox.javabuilder.MWNumericArraygetBagAsArray(MIMLBag bag) +getBagAsArray​(MIMLBag bag)
                      Returns a MIMLBag in the format of a nInstxnAttributes MWNumericArray of double.
                      com.mathworks.toolbox.javabuilder.MWCellArraygetBagAsCell(int index) +getBagAsCell​(int index)
                      Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
                      com.mathworks.toolbox.javabuilder.MWCellArraygetBagAsCell(MIMLBag bag) +getBagAsCell​(MIMLBag bag)
                      Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
                      com.mathworks.toolbox.javabuilder.MWCellArraygetBags() +getBags()
                      Returns all the bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in aCellArray{i,1}.
                      com.mathworks.toolbox.javabuilder.MWNumericArraygetLabels() +getLabels()
                      Returns label associations of all bags in the MIMLInstances dataset in the format of a nLabelsxnBags MWNumericArray of double.
                      com.mathworks.toolbox.javabuilder.MWNumericArraygetLabels(int index) +getLabels​(int index)
                      Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double.
                      com.mathworks.toolbox.javabuilder.MWNumericArraygetLabels(MIMLBag bag) +getLabels​(MIMLBag bag)
                      Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double.
                        -
                      • +
                      • Methods inherited from class java.lang.Object

                        @@ -265,6 +311,7 @@

                        Methods inherited from class java.lang.Object

                    +
                @@ -272,22 +319,23 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - + - +
                      @@ -297,7 +345,7 @@

                      nBags

                      Number of bags of the dataset
                    - +
                      @@ -307,7 +355,7 @@

                      nLabels

                      Number of labels of the dataset
                    - +
                      @@ -317,7 +365,7 @@

                      attributesPerBag

                      Number of attributes per bag
                    - +
                      @@ -329,19 +377,21 @@

                      labelIndices

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • MWTranslator

                      -
                      public MWTranslator(MIMLInstances mimlDataSet)
                      +
                      public MWTranslator​(MIMLInstances mimlDataSet)
                      Constructor.
                      Parameters:
                      @@ -351,19 +401,21 @@

                      MWTranslator

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • getBags

                      -
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBags()
                      +
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBags()
                                                                             throws java.lang.Exception
                      Returns all the bags in the MIMLInstances dataset in the format of a nBagsx1 MWCellArray in which the ith bag is stored in aCellArray{i,1}. Each bag is a @@ -379,13 +431,13 @@

                      getBags

                    - +
                    • getLabels

                      -
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels()
                      +
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels()
                                                                                  throws java.lang.Exception
                      Returns label associations of all bags in the MIMLInstances dataset in the format of a nLabelsxnBags MWNumericArray of double. If the ith bag belongs to @@ -402,13 +454,13 @@

                      getLabels

                    - +
                    • getBagAsCell

                      -
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBagAsCell(MIMLBag bag)
                      +
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBagAsCell​(MIMLBag bag)
                                                                                  throws java.lang.Exception
                      Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
                      @@ -423,13 +475,13 @@

                      getBagAsCell

                    - +
                    • getBagAsCell

                      -
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBagAsCell(int index)
                      +
                      public com.mathworks.toolbox.javabuilder.MWCellArray getBagAsCell​(int index)
                                                                                  throws java.lang.Exception
                      Returns a MIMLBag in the format of a 1x1 MWCellArray in which the bag is stored in CellArray{1,1} as an nInstxnAttributes array of double.
                      @@ -444,13 +496,13 @@

                      getBagAsCell

                    - +
                    • getBagAsArray

                      -
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getBagAsArray(MIMLBag bag)
                      +
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getBagAsArray​(MIMLBag bag)
                                                                                      throws java.lang.Exception
                      Returns a MIMLBag in the format of a nInstxnAttributes MWNumericArray of double.
                      @@ -465,13 +517,13 @@

                      getBagAsArray

                    - +
                    • getBagAsArray

                      -
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getBagAsArray(int index)
                      +
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getBagAsArray​(int index)
                                                                                      throws java.lang.Exception
                      Returns a bag in the format of a nInstxnAttributes array of double.
                      @@ -484,13 +536,13 @@

                      getBagAsArray

                    - +
                    • getLabels

                      -
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels(MIMLBag bag)
                      +
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels​(MIMLBag bag)
                                                                                  throws java.lang.Exception
                      Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double. If the bag belongs to the jth label, then @@ -506,13 +558,13 @@

                      getLabels

                    - +
                    • getLabels

                      -
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels(int index)
                      +
                      public com.mathworks.toolbox.javabuilder.MWNumericArray getLabels​(int index)
                                                                                  throws java.lang.Exception
                      Returns label associations of a MIMLbag in the format of a nLabelsx1 MWNumericArray of double. If the bag belongs to the jth label, then @@ -530,21 +582,25 @@

                      getLabels

                  +
                +
                + diff --git a/documentation/apidoc/miml/data/MWTranslator.svg b/documentation/apidoc/miml/data/MWTranslator.svg new file mode 100644 index 0000000..4a04434 --- /dev/null +++ b/documentation/apidoc/miml/data/MWTranslator.svg @@ -0,0 +1,35 @@ +MWTranslatormiml.datamimlDataSet: MIMLInstancesnBags: intnLabels: intattributesPerBag: intlabelIndices: int[]MWTranslator(MIMLInstances)getBags(): MWCellArraygetLabels(): MWNumericArraygetBagAsCell(MIMLBag): MWCellArraygetBagAsCell(int): MWCellArraygetBagAsArray(MIMLBag): MWNumericArraygetBagAsArray(int): MWNumericArraygetLabels(MIMLBag): MWNumericArraygetLabels(int): MWNumericArrayUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/class-use/MIMLBag.html b/documentation/apidoc/miml/data/class-use/MIMLBag.html old mode 100755 new mode 100644 index 9caf6fc..bd8e6e5 --- a/documentation/apidoc/miml/data/class-use/MIMLBag.html +++ b/documentation/apidoc/miml/data/class-use/MIMLBag.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.MIMLBag - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.MIMLBag

                +
                + diff --git a/documentation/apidoc/miml/data/class-use/MIMLInstances.html b/documentation/apidoc/miml/data/class-use/MIMLInstances.html old mode 100755 new mode 100644 index d56b804..4dc85c4 --- a/documentation/apidoc/miml/data/class-use/MIMLInstances.html +++ b/documentation/apidoc/miml/data/class-use/MIMLInstances.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.MIMLInstances - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.MIMLInstances

                +
                + diff --git a/documentation/apidoc/miml/data/class-use/MLSave.html b/documentation/apidoc/miml/data/class-use/MLSave.html old mode 100755 new mode 100644 index b10a34a..ab2633b --- a/documentation/apidoc/miml/data/class-use/MLSave.html +++ b/documentation/apidoc/miml/data/class-use/MLSave.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.MLSave - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.MLSave

                No usage of miml.data.MLSave
                +
                + diff --git a/documentation/apidoc/miml/data/class-use/MWTranslator.html b/documentation/apidoc/miml/data/class-use/MWTranslator.html old mode 100755 new mode 100644 index 928e7a9..3714dec --- a/documentation/apidoc/miml/data/class-use/MWTranslator.html +++ b/documentation/apidoc/miml/data/class-use/MWTranslator.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.MWTranslator - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.MWTranslator

                +
                + diff --git a/documentation/apidoc/miml/data/normalization/MinMaxNormalization.html b/documentation/apidoc/miml/data/normalization/MinMaxNormalization.html old mode 100755 new mode 100644 index eb0c701..016fdc4 --- a/documentation/apidoc/miml/data/normalization/MinMaxNormalization.html +++ b/documentation/apidoc/miml/data/normalization/MinMaxNormalization.html @@ -1,12 +1,22 @@ - + - + MinMaxNormalization - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data.normalization
                +

                Class MinMaxNormalization

                @@ -108,7 +133,6 @@

                Class MinMaxNormalization

              • -
                public class MinMaxNormalization
                 extends java.lang.Object
                Class implementing min-max normalization for MIML datasets.
                @@ -125,124 +149,145 @@

                Class MinMaxNormalization
              • +
                  -
                • +
                • Field Summary

                  - +
                  - + + - + - + + - + - + - + +
                  Fields 
                  Modifier and TypeField and DescriptionFieldDescription
                  protected double[]Max +Max
                  Max, Min and Range values for features.
                  protected double[]Min Min 
                  (package private) intnFeatures +nFeatures
                  Number of features of the bags in the MIML dataset.
                  (package private) booleannormalized +normalized
                  Value indicating if the bag attributes of the dataset were normalized before calling normalize (e.g. the dataset does not need normalization).
                  protected double[]Range Range 
                +
                +
                +
                +
                +
              • @@ -257,12 +303,13 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -272,7 +319,7 @@

                      Max

                      Max, Min and Range values for features.
                    - +
                      @@ -281,7 +328,7 @@

                      Min

                      protected double[] Min
                    - +
                      @@ -290,7 +337,7 @@

                      Range

                      protected double[] Range
                    - +
                      @@ -300,7 +347,7 @@

                      nFeatures

                      Number of features of the bags in the MIML dataset.
                    - +
                      @@ -313,13 +360,15 @@

                      normalized

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                      @@ -330,24 +379,27 @@

                      MinMaxNormalization

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • normalize

                      -
                      public void normalize(MIMLInstances mimlDataSet)
                      +
                      public void normalize​(MIMLInstances mimlDataSet)
                                      throws java.lang.Exception
                      -
                      Applies min-max normalization on a MIMLInstances dataset. Given an attribute - values, x, the new x' value will be x' = (x-min(x))/(max(x)-min(x)). Before - call this method the method update stats must be called to get the max and - min values for attributes.
                      +
                      Applies min-max normalization on a MIMLInstances dataset. Given an + attribute's value, x, the new x' value will be x' = + (x-min(x))/(max(x)-min(x)). Thus every attribute's value is transformed into + a decimal between 0 and 1.Before call this method the method update stats + must be called to get the max and min values for attributes.
                      Parameters:
                      mimlDataSet - a dataset to normalize.
                      @@ -356,13 +408,13 @@

                      normalize

                    - +
                    • updateStats

                      -
                      public void updateStats(MIMLInstances mimlDataSet)
                      +
                      public void updateStats​(MIMLInstances mimlDataSet)
                                        throws java.lang.Exception
                      Set the max and min values for all attributes in the bag. This method must be called before call normalized. If several datasets with the same structure @@ -390,13 +442,13 @@

                      updateStats

                    - +
                    • isNormalized

                      -
                      public boolean isNormalized()
                      +
                      public boolean isNormalized()
                      Returns true if the dataset does not need normalization. Requires a previous call of updateStats.
                      @@ -405,13 +457,13 @@

                      isNormalized

                    - +
                    • getMax

                      -
                      public double[] getMax()
                      +
                      public double[] getMax()
                      Retuns an array with the maximum values for all bag attributes in the dataset. Requires a previous call of updateStats.
                      @@ -420,13 +472,13 @@

                      getMax

                    - +
                    • getMin

                      -
                      public double[] getMin()
                      +
                      public double[] getMin()
                      Retuns an array with the minimum values for all bag attributes in the dataset. Requires a previous call of updateStats.
                      @@ -435,13 +487,13 @@

                      getMin

                    - +
                    • getRange

                      -
                      public double[] getRange()
                      +
                      public double[] getRange()
                      Retuns an array with the range values (i.e. max-min) for all bag attributes in the dataset. Requires a previous call of updateStats.
                      @@ -450,13 +502,13 @@

                      getRange

                    - +
                    • getnFeatures

                      -
                      public int getnFeatures()
                      +
                      public int getnFeatures()
                      Retuns the number of bag attributes in the dataset. Requires a previous call of updateStats.
                      @@ -467,21 +519,25 @@

                      getnFeatures

                  +
                +
                + diff --git a/documentation/apidoc/miml/data/normalization/MinMaxNormalization.svg b/documentation/apidoc/miml/data/normalization/MinMaxNormalization.svg new file mode 100644 index 0000000..e4fcc3f --- /dev/null +++ b/documentation/apidoc/miml/data/normalization/MinMaxNormalization.svg @@ -0,0 +1,33 @@ +MinMaxNormalizationmiml.data.normalizationMax: double[]Min: double[]Range: double[]nFeatures: intnormalized: booleannormalize(MIMLInstances): voidupdateStats(MIMLInstances): voidisNormalized(): booleangetMax(): double[]getMin(): double[]getRange(): double[]getnFeatures(): intUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/normalization/class-use/MinMaxNormalization.html b/documentation/apidoc/miml/data/normalization/class-use/MinMaxNormalization.html old mode 100755 new mode 100644 index 41c9078..a4dab83 --- a/documentation/apidoc/miml/data/normalization/class-use/MinMaxNormalization.html +++ b/documentation/apidoc/miml/data/normalization/class-use/MinMaxNormalization.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.normalization.MinMaxNormalization - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.normalization.MinMaxNormalization

                No usage of miml.data.normalization.MinMaxNormalization
                +
                + diff --git a/documentation/apidoc/miml/data/normalization/package-frame.html b/documentation/apidoc/miml/data/normalization/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/normalization/package-summary.html b/documentation/apidoc/miml/data/normalization/package-summary.html old mode 100755 new mode 100644 index deb91c5..22e4227 --- a/documentation/apidoc/miml/data/normalization/package-summary.html +++ b/documentation/apidoc/miml/data/normalization/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.normalization - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Package miml.data.normalization

                + +
                  -
                • +
                • Method Summary

                  - +
                  - + + - + - + - + + + + + +
                  All Methods Static Methods Instance Methods Abstract Methods Concrete Methods 
                  Modifier and TypeMethod and DescriptionMethodDescription
                  static mulan.data.MultiLabelInstances[][]foldsToRounds(mulan.data.MultiLabelInstances[] Folds) +foldsToRounds​(mulan.data.MultiLabelInstances[] Folds)
                  Returns the train and test sets for each fold.
                  abstract mulan.data.MultiLabelInstances[]getFolds(int nFolds) +getFolds​(int nFolds)
                  Splits a dataset into nfolds partitions.
                  mulan.data.MultiLabelInstances[][]getRounds(int nFolds) +getRounds​(int nFolds)
                  Returns the train and test sets for each fold.
                  protected voidstatsToString​(mulan.data.MultiLabelInstances[] Partition) +
                  Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
                  +
                  +
                    +
                  • Methods inherited from class java.lang.Object

                    @@ -214,6 +265,7 @@

                    Methods inherited from class java.lang.Object

                +
                @@ -221,18 +273,19 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • CrossValidationBase

                      -
                      public CrossValidationBase(int seed,
                      +
                      public CrossValidationBase​(int seed,
                                                  mulan.data.MultiLabelInstances mlDataSet)
                                           throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -245,13 +298,13 @@

                      CrossValidationBase

                    - +
                    • CrossValidationBase

                      -
                      public CrossValidationBase(mulan.data.MultiLabelInstances mlDataSet)
                      +
                      public CrossValidationBase​(mulan.data.MultiLabelInstances mlDataSet)
                                           throws mulan.data.InvalidDataFormatException
                      Default constructor.
                      @@ -264,19 +317,21 @@

                      CrossValidationBase

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - +
                    • getRounds

                      -
                      public mulan.data.MultiLabelInstances[][] getRounds(int nFolds)
                      +
                      public mulan.data.MultiLabelInstances[][] getRounds​(int nFolds)
                                                                    throws java.lang.Exception
                      Returns the train and test sets for each fold.
                      @@ -291,13 +346,13 @@

                      getRounds

                    - +
                    • foldsToRounds

                      -
                      public static mulan.data.MultiLabelInstances[][] foldsToRounds(mulan.data.MultiLabelInstances[] Folds)
                      +
                      public static mulan.data.MultiLabelInstances[][] foldsToRounds​(mulan.data.MultiLabelInstances[] Folds)
                                                                               throws java.lang.Exception
                      Returns the train and test sets for each fold. This method is static being useful if the user has partitions.
                      @@ -312,13 +367,13 @@

                      foldsToRounds

                    - + -
                      +
                      • getFolds

                        -
                        public abstract mulan.data.MultiLabelInstances[] getFolds(int nFolds)
                        +
                        public abstract mulan.data.MultiLabelInstances[] getFolds​(int nFolds)
                                                                            throws mulan.data.InvalidDataFormatException
                        Splits a dataset into nfolds partitions.
                        @@ -332,23 +387,47 @@

                        getFolds

                      + + + +
                        +
                      • +

                        statsToString

                        +
                        protected void statsToString​(mulan.data.MultiLabelInstances[] Partition)
                        +
                        Description copied from class: PartitionerBase
                        +
                        Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
                        +
                        +
                        Specified by:
                        +
                        statsToString in class PartitionerBase
                        +
                        Parameters:
                        +
                        Partition - An array with the partitions. In case of train/test, + partition Partition[0] is the train set and Partition[1] is + the test set. In case of CV, Partition[i] is the ith fold.
                        +
                        +
                      • +
                    +
                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/CrossValidationBase.svg b/documentation/apidoc/miml/data/partitioning/CrossValidationBase.svg new file mode 100644 index 0000000..bcee263 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/CrossValidationBase.svg @@ -0,0 +1,32 @@ +CrossValidationBasemiml.data.partitioningCrossValidationBase(int, MultiLabelInstances)CrossValidationBase(MultiLabelInstances)getRounds(int): MultiLabelInstances[]foldsToRounds(MultiLabelInstances[]): MultiLabelInstances[]getFolds(int): MultiLabelInstances[]PartitionerBasemiml.data.partitioningUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/PartitionerBase.html b/documentation/apidoc/miml/data/partitioning/PartitionerBase.html old mode 100755 new mode 100644 index 00fd240..3e1270a --- a/documentation/apidoc/miml/data/partitioning/PartitionerBase.html +++ b/documentation/apidoc/miml/data/partitioning/PartitionerBase.html @@ -1,12 +1,22 @@ - + - + PartitionerBase - + + + + + + + + + +var data = {"i0":6,"i1":10}; +var tabs = {65535:["t0","All Methods"],2:["t2","Instance Methods"],4:["t3","Abstract Methods"],8:["t4","Concrete Methods"]}; +var altColor = "altColor"; +var rowColor = "rowColor"; +var tableTab = "tableTab"; +var activeTableTab = "activeTableTab"; +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data.partitioning
                +

                Class PartitionerBase

                @@ -103,10 +134,9 @@

                Class PartitionerBase

              • Direct Known Subclasses:
                -
                CrossValidationBase, TrainTestBase
                +
                CrossValidationBase, TrainTestBase

                -
                public abstract class PartitionerBase
                 extends java.lang.Object
                General scheme for partitioning multi-output data.
                @@ -123,65 +153,99 @@

                Class PartitionerBase

                • +
                    -
                  • +
                  • Field Summary

                    - +
                    - + + - + - +
                    Fields 
                    Modifier and TypeField and DescriptionFieldDescription
                    protected intseed +seed
                    Seed for reproduction of results
                    protected mulan.data.MultiLabelInstancesworkingSet +workingSet
                    A copy of the instances to generate partitions
                  +
                  +
                    -
                  • +
                  • Constructor Summary

                    - +
                    - + + - + - +
                    Constructors 
                    Constructor and DescriptionConstructorDescription
                    PartitionerBase(int seed, - mulan.data.MultiLabelInstances mlDataSet) +PartitionerBase​(int seed, + mulan.data.MultiLabelInstances mlDataSet)
                    Constructor of the class
                    PartitionerBase(mulan.data.MultiLabelInstances mlDataSet) +PartitionerBase​(mulan.data.MultiLabelInstances mlDataSet)
                    Constructor of the class
                  +
                  +
                    -
                  • +
                  • Method Summary

                    + + + + + + + + + + + + + + + + + +
                    All Methods Instance Methods Abstract Methods Concrete Methods 
                    Modifier and TypeMethodDescription
                    protected abstract voidstatsToString​(mulan.data.MultiLabelInstances[] Partition) +
                    Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
                    +
                    inttotalExamples() +
                    Returns the number of examples of the dataset to be partitioned.
                    +
                      -
                    • +
                    • Methods inherited from class java.lang.Object

                      @@ -189,6 +253,7 @@

                      Methods inherited from class java.lang.Object

                  +
              • @@ -196,12 +261,13 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Field Detail

                    - +
                      @@ -211,7 +277,7 @@

                      seed

                      Seed for reproduction of results
                    - +
                      @@ -223,19 +289,21 @@

                      workingSet

                  +
                  +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • PartitionerBase

                      -
                      public PartitionerBase(mulan.data.MultiLabelInstances mlDataSet)
                      +
                      public PartitionerBase​(mulan.data.MultiLabelInstances mlDataSet)
                                       throws mulan.data.InvalidDataFormatException
                      Constructor of the class
                      @@ -246,13 +314,13 @@

                      PartitionerBase

                    - +
                    • PartitionerBase

                      -
                      public PartitionerBase(int seed,
                      +
                      public PartitionerBase​(int seed,
                                              mulan.data.MultiLabelInstances mlDataSet)
                                       throws mulan.data.InvalidDataFormatException
                      Constructor of the class
                      @@ -267,21 +335,66 @@

                      PartitionerBase

                  +
                  + +
                  +
                    +
                  • + + +

                    Method Detail

                    + + + +
                      +
                    • +

                      totalExamples

                      +
                      public int totalExamples()
                      +
                      Returns the number of examples of the dataset to be partitioned.
                      +
                      +
                      Returns:
                      +
                      int
                      +
                      +
                    • +
                    + + + +
                      +
                    • +

                      statsToString

                      +
                      protected abstract void statsToString​(mulan.data.MultiLabelInstances[] Partition)
                      +
                      Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
                      +
                      +
                      Parameters:
                      +
                      Partition - An array with the partitions. In case of train/test, + partition Partition[0] is the train set and Partition[1] is + the test set. In case of CV, Partition[i] is the ith fold.
                      +
                      +
                    • +
                    +
                  • +
                  +
                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/PartitionerBase.svg b/documentation/apidoc/miml/data/partitioning/PartitionerBase.svg new file mode 100644 index 0000000..5259660 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/PartitionerBase.svg @@ -0,0 +1,25 @@ +PartitionerBasemiml.data.partitioningseed: intworkingSet: MultiLabelInstancesPartitionerBase(MultiLabelInstances)PartitionerBase(int, MultiLabelInstances)UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/TrainTestBase.html b/documentation/apidoc/miml/data/partitioning/TrainTestBase.html old mode 100755 new mode 100644 index 72d3ae6..0f98255 --- a/documentation/apidoc/miml/data/partitioning/TrainTestBase.html +++ b/documentation/apidoc/miml/data/partitioning/TrainTestBase.html @@ -1,12 +1,22 @@ - + - + TrainTestBase - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data.partitioning
                +

                Class TrainTestBase

                @@ -100,7 +125,7 @@

                Class TrainTestBase

              • java.lang.Object
              • @@ -210,18 +260,19 @@

                Methods inherited from class java.lang.Object

                • +
                    -
                  • +
                  • Constructor Detail

                    - +
                    • TrainTestBase

                      -
                      public TrainTestBase(int seed,
                      +
                      public TrainTestBase​(int seed,
                                            mulan.data.MultiLabelInstances mlDataSet)
                                     throws mulan.data.InvalidDataFormatException
                      Constructor.
                      @@ -234,13 +285,13 @@

                      TrainTestBase

                    - +
                    • TrainTestBase

                      -
                      public TrainTestBase(mulan.data.MultiLabelInstances mlDataSet)
                      +
                      public TrainTestBase​(mulan.data.MultiLabelInstances mlDataSet)
                                     throws mulan.data.InvalidDataFormatException
                      Default constructor.
                      @@ -253,25 +304,27 @@

                      TrainTestBase

                  +
                  +
                    -
                  • +
                  • Method Detail

                    - + -
                      +
                      • split

                        -
                        public abstract mulan.data.MultiLabelInstances[] split(double percentageTrain)
                        +
                        public abstract mulan.data.MultiLabelInstances[] split​(double percentageTrain)
                                                                         throws java.lang.Exception
                        Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                        Parameters:
                        -
                        percentageTrain - Percentage of train dataset.
                        +
                        percentageTrain - Percentage of train dataset, a value in [0, 100].
                        Returns:
                        MultiLabelInstances[].
                        MultiLabelInstances[0] is the train set.
                        @@ -281,23 +334,47 @@

                        split

                      + + + +
                        +
                      • +

                        statsToString

                        +
                        protected void statsToString​(mulan.data.MultiLabelInstances[] Partition)
                        +
                        Description copied from class: PartitionerBase
                        +
                        Given an array with datasets corresponding to partitions, prints the number + of examples of each dataset of the vector
                        +
                        +
                        Specified by:
                        +
                        statsToString in class PartitionerBase
                        +
                        Parameters:
                        +
                        Partition - An array with the partitions. In case of train/test, + partition Partition[0] is the train set and Partition[1] is + the test set. In case of CV, Partition[i] is the ith fold.
                        +
                        +
                      • +
                    +
                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/TrainTestBase.svg b/documentation/apidoc/miml/data/partitioning/TrainTestBase.svg new file mode 100644 index 0000000..d70c54a --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/TrainTestBase.svg @@ -0,0 +1,30 @@ +TrainTestBasemiml.data.partitioningTrainTestBase(int, MultiLabelInstances)TrainTestBase(MultiLabelInstances)split(double): MultiLabelInstances[]PartitionerBasemiml.data.partitioningUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/class-use/CrossValidationBase.html b/documentation/apidoc/miml/data/partitioning/class-use/CrossValidationBase.html old mode 100755 new mode 100644 index 64ca2f5..cf1603c --- a/documentation/apidoc/miml/data/partitioning/class-use/CrossValidationBase.html +++ b/documentation/apidoc/miml/data/partitioning/class-use/CrossValidationBase.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.CrossValidationBase - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.partitioning.CrossValidationBase

                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/class-use/PartitionerBase.html b/documentation/apidoc/miml/data/partitioning/class-use/PartitionerBase.html old mode 100755 new mode 100644 index 3e9c868..6f63234 --- a/documentation/apidoc/miml/data/partitioning/class-use/PartitionerBase.html +++ b/documentation/apidoc/miml/data/partitioning/class-use/PartitionerBase.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.PartitionerBase - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.partitioning.PartitionerBase

                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/class-use/TrainTestBase.html b/documentation/apidoc/miml/data/partitioning/class-use/TrainTestBase.html old mode 100755 new mode 100644 index fa39854..6becd5d --- a/documentation/apidoc/miml/data/partitioning/class-use/TrainTestBase.html +++ b/documentation/apidoc/miml/data/partitioning/class-use/TrainTestBase.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.TrainTestBase - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.partitioning.TrainTestBase

                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.html b/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.html old mode 100755 new mode 100644 index 595e26c..30407f0 --- a/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.html @@ -1,12 +1,22 @@ - + - + IterativeCrossValidation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data.partitioning.iterative
                +

                Class IterativeCrossValidation

                @@ -100,10 +125,10 @@

                Class IterativeCrossVal
              • java.lang.Object
              • +
                + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.svg b/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.svg new file mode 100644 index 0000000..2ae3bbe --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/iterative/IterativeCrossValidation.svg @@ -0,0 +1,32 @@ +IterativeCrossValidationmiml.data.partitioning.iterativeIterativeCrossValidation(int, MultiLabelInstances)IterativeCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]CrossValidationBasemiml.data.partitioninggetFolds(int): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.html b/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.html old mode 100755 new mode 100644 index e640abb..f6e84e6 --- a/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.html @@ -1,12 +1,22 @@ - + - + IterativeTrainTest - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +
                -
                miml.data.partitioning.iterative
                +

                Class IterativeTrainTest

                @@ -100,10 +125,10 @@

                Class IterativeTrainTest

              • java.lang.Object
                • -
                • miml.data.partitioning.PartitionerBase
                • +
                • miml.data.partitioning.PartitionerBase
                  • -
                  • miml.data.partitioning.TrainTestBase
                  • +
                  • miml.data.partitioning.TrainTestBase
                    • miml.data.partitioning.iterative.IterativeTrainTest
                    • @@ -118,9 +143,8 @@

                      Class IterativeTrainTest


                      • -
                        public class IterativeTrainTest
                        -extends TrainTestBase
                        +extends TrainTestBase
                        Class to carry out an stratified iterativeTrainTest partition of multi-label dataset. MIML and MVML format is also supported. @@ -147,80 +171,92 @@

                        Class IterativeTrainTest

                        • +
                          +
                          +
                            -
                          • +
                          • Constructor Summary

                            - +
                            - + + - + - +
                            Constructors 
                            Constructor and DescriptionConstructorDescription
                            IterativeTrainTest(int seed, - mulan.data.MultiLabelInstances mlDataSet) +IterativeTrainTest​(int seed, + mulan.data.MultiLabelInstances mlDataSet)
                            Constructor.
                            IterativeTrainTest(mulan.data.MultiLabelInstances mlDataSet) +IterativeTrainTest​(mulan.data.MultiLabelInstances mlDataSet)
                            Default constructor.
                          +
                          +
                            -
                          • +
                          • Method Summary

                            - +
                            - + + - + - + - + - + - + - + - + - + - + - +
                            All Methods Instance Methods Concrete Methods 
                            Modifier and TypeMethod and DescriptionMethodDescription
                            private double[][]calculatingTheDesiredSplits(int[] frequenciesOnDataset, +calculatingTheDesiredSplits​(int[] frequenciesOnDataset, double[] splitRatio, int numLabels, - int totalNumberOfInstances) + int totalNumberOfInstances)
                            Returns the desired number of examples per label in each fold and in the last column the total desired number of examples in each fold.
                            private int[]calculatingTheFrequencies(weka.core.Instances dataSet, +calculatingTheFrequencies​(weka.core.Instances dataSet, int numLabels, - int[] labelIndices) + int[] labelIndices)
                            Returns the number of examples per label in each fold.
                            private int[]findThePossibleSpit(double[][] desiredSplit, +findThePossibleSpit​(double[][] desiredSplit, int lab, - int numFolds) + int numFolds)
                            Takes fold statistics and the index of the desired label (desired in the sense the label that we will apply the stratification sampling at this point) and it decides which are the folds that this instance can be inserted.
                            @@ -228,63 +264,84 @@

                            Method Summary

                            private weka.core.Instances[]foldsCreation(weka.core.Instances workingSet, +foldsCreation​(weka.core.Instances workingSet, java.util.Random random, double[] splitRatio, int numLabels, int[] labelIndices, - int totalNumberOfInstances)  + int totalNumberOfInstances) 
                            private boolean[]getTrueLabels(weka.core.Instance instance, +getTrueLabels​(weka.core.Instance instance, int numLabels, - int[] labelIndices) + int[] labelIndices)
                            Returns the relevant labels of one instance.
                            private int[]returnPossibleSplitsForNotAnnotated(double[][] desiredSplit) +returnPossibleSplitsForNotAnnotated​(double[][] desiredSplit)
                            Returns the possible folds for the examples that are not annotated with any label.
                            mulan.data.MultiLabelInstances[]split(double percentageTrain) +split​(double percentageTrain)
                            Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                            private weka.core.Instances[]takeTheInstancesOfTheLabel(weka.core.Instances workingSet, +takeTheInstancesOfTheLabel​(weka.core.Instances workingSet, int numLabels, int[] labelIndices, - int[] desiredLabel) + int[] desiredLabel)
                            Returns two sets of instances.
                            private int[]takingTheSmallestIndexAndNumberInVector(int[] vectorSumOfLabels, - int totalNumberOfInstances) +takingTheSmallestIndexAndNumberInVector​(int[] vectorSumOfLabels, + int totalNumberOfInstances)
                            Returns the rarest label and the number of examples that are annotated with that label.
                            private double[]updateDesiredSplitStatistics(double[] desiredSplit, - boolean[] trueLabels) +updateDesiredSplitStatistics​(double[] desiredSplit, + boolean[] trueLabels)
                            Updates the desired splits every time that an instance is inserted into a fold.
                            + +
                              +
                            • Methods inherited from class java.lang.Object

                              @@ -292,6 +349,7 @@

                              Methods inherited from class java.lang.Object

                          +
                        @@ -299,18 +357,19 @@

                        Methods inherited from class java.lang.Object

                        • +
                            -
                          • +
                          • Constructor Detail

                            - +
                            • IterativeTrainTest

                              -
                              public IterativeTrainTest(int seed,
                              +
                              public IterativeTrainTest​(int seed,
                                                         mulan.data.MultiLabelInstances mlDataSet)
                                                  throws mulan.data.InvalidDataFormatException
                              Constructor.
                              @@ -323,13 +382,13 @@

                              IterativeTrainTest

                            - +
                            • IterativeTrainTest

                              -
                              public IterativeTrainTest(mulan.data.MultiLabelInstances mlDataSet)
                              +
                              public IterativeTrainTest​(mulan.data.MultiLabelInstances mlDataSet)
                                                  throws mulan.data.InvalidDataFormatException
                              Default constructor.
                              @@ -342,27 +401,29 @@

                              IterativeTrainTest

                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • split

                              -
                              public mulan.data.MultiLabelInstances[] split(double percentageTrain)
                              -
                              Description copied from class: TrainTestBase
                              +
                              public mulan.data.MultiLabelInstances[] split​(double percentageTrain)
                              +
                              Description copied from class: TrainTestBase
                              Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                              Specified by:
                              -
                              split in class TrainTestBase
                              +
                              split in class TrainTestBase
                              Parameters:
                              -
                              percentageTrain - Percentage of train dataset.
                              +
                              percentageTrain - Percentage of train dataset, a value in [0, 100].
                              Returns:
                              MultiLabelInstances[].
                              MultiLabelInstances[0] is the train set.
                              @@ -370,13 +431,13 @@

                              split

                            - +
                            • foldsCreation

                              -
                              private weka.core.Instances[] foldsCreation(weka.core.Instances workingSet,
                              +
                              private weka.core.Instances[] foldsCreation​(weka.core.Instances workingSet,
                                                                           java.util.Random random,
                                                                           double[] splitRatio,
                                                                           int numLabels,
                              @@ -384,13 +445,13 @@ 

                              foldsCreation

                              int totalNumberOfInstances)
                            - +
                            • calculatingTheFrequencies

                              -
                              private int[] calculatingTheFrequencies(weka.core.Instances dataSet,
                              +
                              private int[] calculatingTheFrequencies​(weka.core.Instances dataSet,
                                                                       int numLabels,
                                                                       int[] labelIndices)
                              Returns the number of examples per label in each fold.
                              @@ -404,13 +465,13 @@

                              calculatingTheFrequencies

                            - +
                            • calculatingTheDesiredSplits

                              -
                              private double[][] calculatingTheDesiredSplits(int[] frequenciesOnDataset,
                              +
                              private double[][] calculatingTheDesiredSplits​(int[] frequenciesOnDataset,
                                                                              double[] splitRatio,
                                                                              int numLabels,
                                                                              int totalNumberOfInstances)
                              @@ -427,13 +488,13 @@

                              calculatingTheDesiredSplits

                            - +
                            • takingTheSmallestIndexAndNumberInVector

                              -
                              private int[] takingTheSmallestIndexAndNumberInVector(int[] vectorSumOfLabels,
                              +
                              private int[] takingTheSmallestIndexAndNumberInVector​(int[] vectorSumOfLabels,
                                                                                     int totalNumberOfInstances)
                              Returns the rarest label and the number of examples that are annotated with that label.
                              @@ -446,13 +507,13 @@

                              takingTheSmallestIndexAndNumberInVector

                            - +
                            • takeTheInstancesOfTheLabel

                              -
                              private weka.core.Instances[] takeTheInstancesOfTheLabel(weka.core.Instances workingSet,
                              +
                              private weka.core.Instances[] takeTheInstancesOfTheLabel​(weka.core.Instances workingSet,
                                                                                        int numLabels,
                                                                                        int[] labelIndices,
                                                                                        int[] desiredLabel)
                              @@ -469,13 +530,13 @@

                              takeTheInstancesOfTheLabel

                            - +
                            • findThePossibleSpit

                              -
                              private int[] findThePossibleSpit(double[][] desiredSplit,
                              +
                              private int[] findThePossibleSpit​(double[][] desiredSplit,
                                                                 int lab,
                                                                 int numFolds)
                              Takes fold statistics and the index of the desired label (desired in the @@ -493,13 +554,13 @@

                              findThePossibleSpit

                            - +
                            • updateDesiredSplitStatistics

                              -
                              private double[] updateDesiredSplitStatistics(double[] desiredSplit,
                              +
                              private double[] updateDesiredSplitStatistics​(double[] desiredSplit,
                                                                             boolean[] trueLabels)
                              Updates the desired splits every time that an instance is inserted into a fold.
                              @@ -512,13 +573,13 @@

                              updateDesiredSplitStatistics

                            - +
                            • returnPossibleSplitsForNotAnnotated

                              -
                              private int[] returnPossibleSplitsForNotAnnotated(double[][] desiredSplit)
                              +
                              private int[] returnPossibleSplitsForNotAnnotated​(double[][] desiredSplit)
                              Returns the possible folds for the examples that are not annotated with any label. In this special case the only criterion is the total number of examples in each fold.
                              @@ -530,13 +591,13 @@

                              returnPossibleSplitsForNotAnnotated

                            - +
                            • getTrueLabels

                              -
                              private boolean[] getTrueLabels(weka.core.Instance instance,
                              +
                              private boolean[] getTrueLabels​(weka.core.Instance instance,
                                                               int numLabels,
                                                               int[] labelIndices)
                              Returns the relevant labels of one instance.
                              @@ -552,21 +613,25 @@

                              getTrueLabels

                          +
              • +
                + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.svg b/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.svg new file mode 100644 index 0000000..090f78d --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/iterative/IterativeTrainTest.svg @@ -0,0 +1,41 @@ +IterativeTrainTestmiml.data.partitioning.iterativeIterativeTrainTest(int, MultiLabelInstances)IterativeTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]foldsCreation(Instances, Random, double[], int, int[], int): Instances[]calculatingTheFrequencies(Instances, int, int[]): int[]calculatingTheDesiredSplits(int[], double[], int, int): double[]takingTheSmallestIndexAndNumberInVector(int[], int): int[]takeTheInstancesOfTheLabel(Instances, int, int[], int[]): Instances[]findThePossibleSpit(double[], int, int): int[]updateDesiredSplitStatistics(double[], boolean[]): double[]returnPossibleSplitsForNotAnnotated(double[]): int[]getTrueLabels(Instance, int, int[]): boolean[]TrainTestBasemiml.data.partitioningsplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeCrossValidation.html b/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeCrossValidation.html old mode 100755 new mode 100644 index 330d297..01aaa81 --- a/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeCrossValidation.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeCrossValidation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.iterative.IterativeCrossValidation - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.partitioning.iterative.IterativeCrossValidation

                No usage of miml.data.partitioning.iterative.IterativeCrossValidation
                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeTrainTest.html b/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeTrainTest.html old mode 100755 new mode 100644 index 9973174..f90564b --- a/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/class-use/IterativeTrainTest.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.iterative.IterativeTrainTest - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Uses of Class
                miml.data.partitioning.iterative.IterativeTrainTest

                No usage of miml.data.partitioning.iterative.IterativeTrainTest
                +
                + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/package-frame.html b/documentation/apidoc/miml/data/partitioning/iterative/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/partitioning/iterative/package-summary.html b/documentation/apidoc/miml/data/partitioning/iterative/package-summary.html old mode 100755 new mode 100644 index bb6ae41..80c1e70 --- a/documentation/apidoc/miml/data/partitioning/iterative/package-summary.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.iterative - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                + +
                +

                Package miml.data.partitioning.iterative

                • - +
                  @@ -83,14 +108,14 @@

                  Package miml.data.partitioning.iterative<

                  - + - +
                  Class Summary 
                  Class
                  IterativeCrossValidationIterativeCrossValidation
                  Class to carry out an stratified cross validation partition of multi-label dataset.
                  IterativeTrainTestIterativeTrainTest
                  Class to carry out an stratified iterativeTrainTest partition of multi-label dataset.
                  @@ -101,16 +126,19 @@

                  Package miml.data.partitioning.iterative< + + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/package-tree.html b/documentation/apidoc/miml/data/partitioning/iterative/package-tree.html old mode 100755 new mode 100644 index aedf708..83ca623 --- a/documentation/apidoc/miml/data/partitioning/iterative/package-tree.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.iterative Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Hierarchy For Package miml.data.partitioning.iterative

                  Package Hierarchies: @@ -77,20 +102,21 @@

                  Hierarchy For Package miml.data.partitioning.iterative

                  +

                  Class Hierarchy

                  +
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/package-use.html b/documentation/apidoc/miml/data/partitioning/iterative/package-use.html old mode 100755 new mode 100644 index d0d6076..3454458 --- a/documentation/apidoc/miml/data/partitioning/iterative/package-use.html +++ b/documentation/apidoc/miml/data/partitioning/iterative/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.data.partitioning.iterative - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Uses of Package
                  miml.data.partitioning.iterative

                  No usage of miml.data.partitioning.iterative
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/iterative/package.svg b/documentation/apidoc/miml/data/partitioning/iterative/package.svg new file mode 100644 index 0000000..b02e522 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/iterative/package.svg @@ -0,0 +1,57 @@ +miml.data.partitioning.iterativemiml.data.partitioningIterativeCrossValidationIterativeCrossValidation(int, MultiLabelInstances)IterativeCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]IterativeTrainTestIterativeTrainTest(int, MultiLabelInstances)IterativeTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]foldsCreation(Instances, Random, double[], int, int[], int): Instances[]calculatingTheFrequencies(Instances, int, int[]): int[]calculatingTheDesiredSplits(int[], double[], int, int): double[]takingTheSmallestIndexAndNumberInVector(int[], int): int[]takeTheInstancesOfTheLabel(Instances, int, int[], int[]): Instances[]findThePossibleSpit(double[], int, int): int[]updateDesiredSplitStatistics(double[], boolean[]): double[]returnPossibleSplitsForNotAnnotated(double[]): int[]getTrueLabels(Instance, int, int[]): boolean[]CrossValidationBasegetFolds(int): MultiLabelInstances[]TrainTestBasesplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/package-frame.html b/documentation/apidoc/miml/data/partitioning/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/partitioning/package-summary.html b/documentation/apidoc/miml/data/partitioning/package-summary.html old mode 100755 new mode 100644 index 8969d32..b5a23ff --- a/documentation/apidoc/miml/data/partitioning/package-summary.html +++ b/documentation/apidoc/miml/data/partitioning/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Package miml.data.partitioning

                  + +
                  +
                  @@ -218,18 +260,19 @@

                  Methods inherited from class java.lang.Object

                  • +
                      -
                    • +
                    • Constructor Detail

                      - +
                      • LabelPowersetCrossValidation

                        -
                        public LabelPowersetCrossValidation(int seed,
                        +
                        public LabelPowersetCrossValidation​(int seed,
                                                             mulan.data.MultiLabelInstances mlDataSet)
                                                      throws mulan.data.InvalidDataFormatException
                        Constructor.
                        @@ -242,13 +285,13 @@

                        LabelPowersetCrossValidation

                      - +
                      • LabelPowersetCrossValidation

                        -
                        public LabelPowersetCrossValidation(mulan.data.MultiLabelInstances mlDataSet)
                        +
                        public LabelPowersetCrossValidation​(mulan.data.MultiLabelInstances mlDataSet)
                                                      throws mulan.data.InvalidDataFormatException
                        Default constructor.
                        @@ -261,25 +304,27 @@

                        LabelPowersetCrossValidation

                    +
                    +
                      -
                    • +
                    • Method Detail

                      - +
                      • getFolds

                        -
                        public mulan.data.MultiLabelInstances[] getFolds(int nFolds)
                        +
                        public mulan.data.MultiLabelInstances[] getFolds​(int nFolds)
                                                                   throws mulan.data.InvalidDataFormatException
                        -
                        Description copied from class: CrossValidationBase
                        +
                        Description copied from class: CrossValidationBase
                        Splits a dataset into nfolds partitions.
                        Specified by:
                        -
                        getFolds in class CrossValidationBase
                        +
                        getFolds in class CrossValidationBase
                        Parameters:
                        nFolds - Number of folds.
                        Returns:
                        @@ -292,21 +337,25 @@

                        getFolds

                    +
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetCrossValidation.svg b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetCrossValidation.svg new file mode 100644 index 0000000..ed780f5 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetCrossValidation.svg @@ -0,0 +1,32 @@ +LabelPowersetCrossValidationmiml.data.partitioning.powersetLabelPowersetCrossValidation(int, MultiLabelInstances)LabelPowersetCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]CrossValidationBasemiml.data.partitioninggetFolds(int): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.html b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.html old mode 100755 new mode 100644 index 15514b0..67af13e --- a/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.html @@ -1,12 +1,22 @@ - + - + LabelPowersetTrainTest - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +
                  -
                  miml.data.partitioning.powerset
                  +

                  Class LabelPowersetTrainTest

                  @@ -100,10 +125,10 @@

                  Class LabelPowersetTrainT
                • java.lang.Object
                • @@ -212,18 +261,19 @@

                  Methods inherited from class java.lang.Object

                  • +
                      -
                    • +
                    • Constructor Detail

                      - +
                      • LabelPowersetTrainTest

                        -
                        public LabelPowersetTrainTest(int seed,
                        +
                        public LabelPowersetTrainTest​(int seed,
                                                       mulan.data.MultiLabelInstances mlDataSet)
                                                throws mulan.data.InvalidDataFormatException
                        Constructor.
                        @@ -236,13 +286,13 @@

                        LabelPowersetTrainTest

                      - +
                      • LabelPowersetTrainTest

                        -
                        public LabelPowersetTrainTest(mulan.data.MultiLabelInstances mlDataSet)
                        +
                        public LabelPowersetTrainTest​(mulan.data.MultiLabelInstances mlDataSet)
                                                throws mulan.data.InvalidDataFormatException
                        Default constructor.
                        @@ -255,28 +305,30 @@

                        LabelPowersetTrainTest

                    +
                    +
                      -
                    • +
                    • Method Detail

                      - +
                      • split

                        -
                        public mulan.data.MultiLabelInstances[] split(double percentage)
                        +
                        public mulan.data.MultiLabelInstances[] split​(double percentage)
                                                                throws java.lang.Exception
                        -
                        Description copied from class: TrainTestBase
                        +
                        Description copied from class: TrainTestBase
                        Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                        Specified by:
                        -
                        split in class TrainTestBase
                        +
                        split in class TrainTestBase
                        Parameters:
                        -
                        percentage - Percentage of train dataset.
                        +
                        percentage - Percentage of train dataset, a value in [0, 100].
                        Returns:
                        MultiLabelInstances[].
                        MultiLabelInstances[0] is the train set.
                        @@ -288,21 +340,25 @@

                        split

                    +
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.svg b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.svg new file mode 100644 index 0000000..4f70acc --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/powerset/LabelPowersetTrainTest.svg @@ -0,0 +1,32 @@ +LabelPowersetTrainTestmiml.data.partitioning.powersetLabelPowersetTrainTest(int, MultiLabelInstances)LabelPowersetTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]TrainTestBasemiml.data.partitioningsplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetCrossValidation.html b/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetCrossValidation.html old mode 100755 new mode 100644 index a41f288..715e7f5 --- a/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetCrossValidation.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetCrossValidation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.powerset.LabelPowersetCrossValidation - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Uses of Class
                  miml.data.partitioning.powerset.LabelPowersetCrossValidation

                  No usage of miml.data.partitioning.powerset.LabelPowersetCrossValidation
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetTrainTest.html b/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetTrainTest.html old mode 100755 new mode 100644 index ee73c6a..40aa1d2 --- a/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/class-use/LabelPowersetTrainTest.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.powerset.LabelPowersetTrainTest - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Uses of Class
                  miml.data.partitioning.powerset.LabelPowersetTrainTest

                  No usage of miml.data.partitioning.powerset.LabelPowersetTrainTest
                  +
                  + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/package-frame.html b/documentation/apidoc/miml/data/partitioning/powerset/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/partitioning/powerset/package-summary.html b/documentation/apidoc/miml/data/partitioning/powerset/package-summary.html old mode 100755 new mode 100644 index d9e9ad2..bf6bd16 --- a/documentation/apidoc/miml/data/partitioning/powerset/package-summary.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.powerset - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                  + +
                  +

                  Package miml.data.partitioning.powerset

                  • - +
                    @@ -83,14 +108,14 @@

                    Package miml.data.partitioning.powerset

                    - + - +
                    Class Summary 
                    Class
                    LabelPowersetCrossValidationLabelPowersetCrossValidation
                    Class to split a multi-label dataset into N multi-label for cross-validation by applying a labelPowerset-based partition.
                    LabelPowersetTrainTestLabelPowersetTrainTest
                    Class to split a multi-label dataset into two multi-label datasets corresponding to the train and test datasets respectively by applying a @@ -102,16 +127,19 @@

                    Package miml.data.partitioning.powerset

                    + + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/package-tree.html b/documentation/apidoc/miml/data/partitioning/powerset/package-tree.html old mode 100755 new mode 100644 index 0a3740a..b8e024a --- a/documentation/apidoc/miml/data/partitioning/powerset/package-tree.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.powerset Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +

                    Hierarchy For Package miml.data.partitioning.powerset

                    Package Hierarchies: @@ -77,20 +102,21 @@

                    Hierarchy For Package miml.data.partitioning.powerset

                    +

                    Class Hierarchy

                    +
                    +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/package-use.html b/documentation/apidoc/miml/data/partitioning/powerset/package-use.html old mode 100755 new mode 100644 index 4079ec4..8d5ce13 --- a/documentation/apidoc/miml/data/partitioning/powerset/package-use.html +++ b/documentation/apidoc/miml/data/partitioning/powerset/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.data.partitioning.powerset - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +

                    Uses of Package
                    miml.data.partitioning.powerset

                    No usage of miml.data.partitioning.powerset
                    +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/powerset/package.svg b/documentation/apidoc/miml/data/partitioning/powerset/package.svg new file mode 100644 index 0000000..3cddf16 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/powerset/package.svg @@ -0,0 +1,48 @@ +miml.data.partitioning.powersetmiml.data.partitioningLabelPowersetCrossValidationLabelPowersetCrossValidation(int, MultiLabelInstances)LabelPowersetCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]LabelPowersetTrainTestLabelPowersetTrainTest(int, MultiLabelInstances)LabelPowersetTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]CrossValidationBasegetFolds(int): MultiLabelInstances[]TrainTestBasesplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.html b/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.html old mode 100755 new mode 100644 index 5b1fab5..258d7bf --- a/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.html +++ b/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.html @@ -1,12 +1,22 @@ - + - + RandomCrossValidation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +
                    -
                    miml.data.partitioning.random
                    +

                    Class RandomCrossValidation

                    @@ -100,10 +125,10 @@

                    Class RandomCrossValidatio
                  • java.lang.Object
                    • -
                    • miml.data.partitioning.PartitionerBase
                    • +
                    • miml.data.partitioning.PartitionerBase
                      • -
                      • miml.data.partitioning.CrossValidationBase
                      • +
                      • miml.data.partitioning.CrossValidationBase
                        • miml.data.partitioning.random.RandomCrossValidation
                        • @@ -118,9 +143,8 @@

                          Class RandomCrossValidatio

                          • -
                            public class RandomCrossValidation
                            -extends CrossValidationBase
                            +extends CrossValidationBase
                            Class to split a multi-label dataset into N multi-label random datasets for cross-validation. MIML and MVML formats are also supported. Due to this fact, applied over datasets with a high number of labels (e.g. some subsets of miml @@ -128,7 +152,7 @@

                            Class RandomCrossValidatio and with some duplicated instances. In these cases, using a lower number of folds (eg. 3 folds) or another kind of partitioning (eg. iteratrive or powerset) is recommended. Besides, the same instance could be included twice - to guarantee instances of all labels in the resulte train set.

                            + to guarantee instances of all labels in the resulting train set.

                  • Version:
                    20201029
                    @@ -142,87 +166,106 @@

                    Class RandomCrossValidatio @@ -237,12 +281,13 @@

                    Methods inherited from class java.lang.Object

                    • +
                        -
                      • +
                      • Field Detail

                        - +
                          @@ -255,19 +300,21 @@

                          indexes

                      +
                      +
                        -
                      • +
                      • Constructor Detail

                        - +
                        • RandomCrossValidation

                          -
                          public RandomCrossValidation(int seed,
                          +
                          public RandomCrossValidation​(int seed,
                                                        mulan.data.MultiLabelInstances mlDataSet)
                                                 throws mulan.data.InvalidDataFormatException
                          Constructor.
                          @@ -280,13 +327,13 @@

                          RandomCrossValidation

                    - +
                    • RandomCrossValidation

                      -
                      public RandomCrossValidation(mulan.data.MultiLabelInstances mlDataSet)
                      +
                      public RandomCrossValidation​(mulan.data.MultiLabelInstances mlDataSet)
                                             throws mulan.data.InvalidDataFormatException
                      Default constructor.
                      @@ -299,25 +346,27 @@

                      RandomCrossValidation

                    + +
                      -
                    • +
                    • Method Detail

                      - +
                      • getFolds

                        -
                        public mulan.data.MultiLabelInstances[] getFolds(int nFolds)
                        +
                        public mulan.data.MultiLabelInstances[] getFolds​(int nFolds)
                                                                   throws mulan.data.InvalidDataFormatException
                        -
                        Description copied from class: CrossValidationBase
                        +
                        Description copied from class: CrossValidationBase
                        Splits a dataset into nfolds partitions.
                        Specified by:
                        -
                        getFolds in class CrossValidationBase
                        +
                        getFolds in class CrossValidationBase
                        Parameters:
                        nFolds - Number of folds.
                        Returns:
                        @@ -330,21 +379,25 @@

                        getFolds

                    +
                    +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.svg b/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.svg new file mode 100644 index 0000000..656e4d3 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/random/RandomCrossValidation.svg @@ -0,0 +1,33 @@ +RandomCrossValidationmiml.data.partitioning.randomindexes: int[]RandomCrossValidation(int, MultiLabelInstances)RandomCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]CrossValidationBasemiml.data.partitioninggetFolds(int): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.html b/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.html old mode 100755 new mode 100644 index 73f7971..9c18b40 --- a/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.html @@ -1,12 +1,22 @@ - + - + RandomTrainTest - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +
                    -
                    miml.data.partitioning.random
                    +

                    Class RandomTrainTest

                    @@ -100,10 +125,10 @@

                    Class RandomTrainTest

                  • java.lang.Object
                    • -
                    • miml.data.partitioning.PartitionerBase
                    • +
                    • miml.data.partitioning.PartitionerBase
                      • -
                      • miml.data.partitioning.TrainTestBase
                      • +
                      • miml.data.partitioning.TrainTestBase
                        • miml.data.partitioning.random.RandomTrainTest
                        • @@ -118,9 +143,8 @@

                          Class RandomTrainTest


                          • -
                            public class RandomTrainTest
                            -extends TrainTestBase
                            +extends TrainTestBase
                            Class to split a multi-label dataset into two multi-label random datasets corresponding to the train and test datasets respectively. MIML and MVML formats are also supported. This class guarantees at least one instance for @@ -138,67 +162,91 @@

                            Class RandomTrainTest

                            • +
                              +
                              +
                                -
                              • +
                              • Constructor Summary

                                - +
                                - + + - + - +
                                Constructors 
                                Constructor and DescriptionConstructorDescription
                                RandomTrainTest(int seed, - mulan.data.MultiLabelInstances mlDataSet) +RandomTrainTest​(int seed, + mulan.data.MultiLabelInstances mlDataSet)
                                Constructor.
                                RandomTrainTest(mulan.data.MultiLabelInstances mlDataSet) +RandomTrainTest​(mulan.data.MultiLabelInstances mlDataSet)
                                Default constructor.
                              +
                              +
                                -
                              • +
                              • Method Summary

                                - +
                                - + + - +
                                All Methods Instance Methods Concrete Methods 
                                Modifier and TypeMethod and DescriptionMethodDescription
                                mulan.data.MultiLabelInstances[]split(double percentageTrain) +split​(double percentageTrain)
                                Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                                + +
                                  +
                                • Methods inherited from class java.lang.Object

                                  @@ -206,6 +254,7 @@

                                  Methods inherited from class java.lang.Object

                              +
                            @@ -213,18 +262,19 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                • RandomTrainTest

                                  -
                                  public RandomTrainTest(int seed,
                                  +
                                  public RandomTrainTest​(int seed,
                                                          mulan.data.MultiLabelInstances mlDataSet)
                                                   throws mulan.data.InvalidDataFormatException
                                  Constructor.
                                  @@ -237,13 +287,13 @@

                                  RandomTrainTest

                                - +
                                • RandomTrainTest

                                  -
                                  public RandomTrainTest(mulan.data.MultiLabelInstances mlDataSet)
                                  +
                                  public RandomTrainTest​(mulan.data.MultiLabelInstances mlDataSet)
                                                   throws mulan.data.InvalidDataFormatException
                                  Default constructor.
                                  @@ -256,28 +306,30 @@

                                  RandomTrainTest

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • split

                                  -
                                  public mulan.data.MultiLabelInstances[] split(double percentageTrain)
                                  +
                                  public mulan.data.MultiLabelInstances[] split​(double percentageTrain)
                                                                          throws java.lang.Exception
                                  -
                                  Description copied from class: TrainTestBase
                                  +
                                  Description copied from class: TrainTestBase
                                  Returns a array with two multi-label random datasets corresponding to the train and test sets respectively.
                                  Specified by:
                                  -
                                  split in class TrainTestBase
                                  +
                                  split in class TrainTestBase
                                  Parameters:
                                  -
                                  percentageTrain - Percentage of train dataset.
                                  +
                                  percentageTrain - Percentage of train dataset, a value in [0, 100].
                                  Returns:
                                  MultiLabelInstances[].
                                  MultiLabelInstances[0] is the train set.
                                  @@ -289,21 +341,25 @@

                                  split

                              +
                  • +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.svg b/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.svg new file mode 100644 index 0000000..5841d6c --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/random/RandomTrainTest.svg @@ -0,0 +1,32 @@ +RandomTrainTestmiml.data.partitioning.randomRandomTrainTest(int, MultiLabelInstances)RandomTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]TrainTestBasemiml.data.partitioningsplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/partitioning/random/class-use/RandomCrossValidation.html b/documentation/apidoc/miml/data/partitioning/random/class-use/RandomCrossValidation.html old mode 100755 new mode 100644 index 30d3ea5..9840765 --- a/documentation/apidoc/miml/data/partitioning/random/class-use/RandomCrossValidation.html +++ b/documentation/apidoc/miml/data/partitioning/random/class-use/RandomCrossValidation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.random.RandomCrossValidation - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +

                    Uses of Class
                    miml.data.partitioning.random.RandomCrossValidation

                    No usage of miml.data.partitioning.random.RandomCrossValidation
                    +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/random/class-use/RandomTrainTest.html b/documentation/apidoc/miml/data/partitioning/random/class-use/RandomTrainTest.html old mode 100755 new mode 100644 index d859c47..50fa4b9 --- a/documentation/apidoc/miml/data/partitioning/random/class-use/RandomTrainTest.html +++ b/documentation/apidoc/miml/data/partitioning/random/class-use/RandomTrainTest.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.partitioning.random.RandomTrainTest - + + + + + + + + + +var pathtoroot = "../../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +

                    Uses of Class
                    miml.data.partitioning.random.RandomTrainTest

                    No usage of miml.data.partitioning.random.RandomTrainTest
                    +
                    + diff --git a/documentation/apidoc/miml/data/partitioning/random/package-frame.html b/documentation/apidoc/miml/data/partitioning/random/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/partitioning/random/package-summary.html b/documentation/apidoc/miml/data/partitioning/random/package-summary.html old mode 100755 new mode 100644 index fce1241..5dab711 --- a/documentation/apidoc/miml/data/partitioning/random/package-summary.html +++ b/documentation/apidoc/miml/data/partitioning/random/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.random - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                    + +
                    +

                    Package miml.data.partitioning.random

                    • - +
                      @@ -83,14 +108,14 @@

                      Package miml.data.partitioning.random

                      - + - +
                      Class Summary 
                      Class
                      RandomCrossValidationRandomCrossValidation
                      Class to split a multi-label dataset into N multi-label random datasets for cross-validation.
                      RandomTrainTestRandomTrainTest
                      Class to split a multi-label dataset into two multi-label random datasets corresponding to the train and test datasets respectively.
                      @@ -101,16 +126,19 @@

                      Package miml.data.partitioning.random

                      + + diff --git a/documentation/apidoc/miml/data/partitioning/random/package-tree.html b/documentation/apidoc/miml/data/partitioning/random/package-tree.html old mode 100755 new mode 100644 index 3195633..4d7458f --- a/documentation/apidoc/miml/data/partitioning/random/package-tree.html +++ b/documentation/apidoc/miml/data/partitioning/random/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.data.partitioning.random Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Hierarchy For Package miml.data.partitioning.random

                      Package Hierarchies: @@ -77,20 +102,21 @@

                      Hierarchy For Package miml.data.partitioning.random

                      +

                      Class Hierarchy

                      +
                      +
                      + diff --git a/documentation/apidoc/miml/data/partitioning/random/package-use.html b/documentation/apidoc/miml/data/partitioning/random/package-use.html old mode 100755 new mode 100644 index 2e6acbb..a3a3a22 --- a/documentation/apidoc/miml/data/partitioning/random/package-use.html +++ b/documentation/apidoc/miml/data/partitioning/random/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.data.partitioning.random - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Package
                      miml.data.partitioning.random

                      No usage of miml.data.partitioning.random
                      +
                      + diff --git a/documentation/apidoc/miml/data/partitioning/random/package.svg b/documentation/apidoc/miml/data/partitioning/random/package.svg new file mode 100644 index 0000000..49fa0d5 --- /dev/null +++ b/documentation/apidoc/miml/data/partitioning/random/package.svg @@ -0,0 +1,49 @@ +miml.data.partitioning.randommiml.data.partitioningRandomCrossValidationindexes: int[]RandomCrossValidation(int, MultiLabelInstances)RandomCrossValidation(MultiLabelInstances)getFolds(int): MultiLabelInstances[]RandomTrainTestRandomTrainTest(int, MultiLabelInstances)RandomTrainTest(MultiLabelInstances)split(double): MultiLabelInstances[]CrossValidationBasegetFolds(int): MultiLabelInstances[]TrainTestBasesplit(double): MultiLabelInstances[]UMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/statistics/MIMLStatistics.html b/documentation/apidoc/miml/data/statistics/MIMLStatistics.html old mode 100755 new mode 100644 index bcb446f..a4274cb --- a/documentation/apidoc/miml/data/statistics/MIMLStatistics.html +++ b/documentation/apidoc/miml/data/statistics/MIMLStatistics.html @@ -1,12 +1,22 @@ - + - + MIMLStatistics - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.data.statistics
                      +

                      Class MIMLStatistics

                      @@ -108,7 +133,6 @@

                      Class MIMLStatistics


                      • -
                        public class MIMLStatistics
                         extends java.lang.Object
                        Class with methods to obtain information about a MIML dataset. @@ -127,238 +151,278 @@

                        Class MIMLStatistics

                        @@ -427,64 +499,67 @@

                        Methods inherited from class java.lang.Object

                        • +
                          +
                          +
                            -
                          • +
                          • Constructor Detail

                            - +
                            • MIMLStatistics

                              -
                              public MIMLStatistics(MIMLInstances dataSet)
                              +
                              public MIMLStatistics​(MIMLInstances dataSet)
                              Constructor.
                              Parameters:
                              @@ -494,19 +569,21 @@

                              MIMLStatistics

                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • getPhi

                              -
                              public double[][] getPhi()
                              +
                              public double[][] getPhi()
                              Gets the Phi correlation matrix. It requires the method calculatePhiChi2 to be previously called.
                              @@ -515,13 +592,13 @@

                              getPhi

                            - +
                            • getChi2

                              -
                              public double[][] getChi2()
                              +
                              public double[][] getChi2()
                              Gets the Chi2 correlation matrix. It requires the method calculatePhiChi2 to be previously called.
                              @@ -530,13 +607,13 @@

                              getChi2

                            - +
                            • cardinality

                              -
                              public double cardinality()
                              +
                              public double cardinality()
                              Computes the Cardinality as the average number of labels per pattern. It requires the method calculateStats to be previously called.
                              @@ -545,13 +622,13 @@

                              cardinality

                            - +
                            • density

                              -
                              public double density()
                              +
                              public double density()
                              Computes the density as the cardinality/numLabels. It the method calculateStats to be previously called.
                              @@ -560,13 +637,13 @@

                              density

                            - +
                            • priors

                              -
                              public double[] priors()
                              +
                              public double[] priors()
                              Returns the prior probabilities of the labels. It requires the method calculateStats to be previously called.
                              @@ -575,13 +652,13 @@

                              priors

                            - +
                            • labelSets

                              -
                              public java.util.Set<mulan.data.LabelSet> labelSets()
                              +
                              public java.util.Set<mulan.data.LabelSet> labelSets()
                              Returns a set with the distinct label sets of the dataset. It requires the method calculateStats to be previously called.
                              @@ -590,13 +667,13 @@

                              labelSets

                            - +
                            • labelSetFrequency

                              -
                              public int labelSetFrequency(mulan.data.LabelSet x)
                              +
                              public int labelSetFrequency​(mulan.data.LabelSet x)
                              Returns the frequency of a label set in the dataset. It requires the method calculateStats to be previously called.
                              @@ -607,13 +684,13 @@

                              labelSetFrequency

                            - +
                            • labelCombCount

                              -
                              public java.util.HashMap<mulan.data.LabelSet,java.lang.Integer> labelCombCount()
                              +
                              public java.util.HashMap<mulan.data.LabelSet,​java.lang.Integer> labelCombCount()
                              Returns the HashMap containing the distinct labelsets and their frequencies. It requires the method calculateStats to be previously called.
                              @@ -622,13 +699,13 @@

                              labelCombCount

                            - +
                            • calculateCooncurrence

                              -
                              public double[][] calculateCooncurrence(MIMLInstances mlDataSet)
                              +
                              public double[][] calculateCooncurrence​(MIMLInstances mlDataSet)
                              This method calculates a matrix with the coocurrences of pairs of labels. It requires the method calculateStats to be previously called.
                              @@ -639,13 +716,13 @@

                              calculateCooncurrence

                            - +
                            • calculatePhiChi2

                              -
                              public void calculatePhiChi2(MIMLInstances dataSet)
                              +
                              public void calculatePhiChi2​(MIMLInstances dataSet)
                                                     throws java.lang.Exception
                              Calculates Phi and Chi-square correlation matrix.
                              @@ -656,13 +733,13 @@

                              calculatePhiChi2

                            - +
                            • getPhiHistogram

                              -
                              public double[] getPhiHistogram()
                              +
                              public double[] getPhiHistogram()
                              Calculates a histogram of Phi correlations. It requires the method calculatePhi to be previously called.
                              @@ -671,13 +748,13 @@

                              getPhiHistogram

                            - +
                            • uncorrelatedLabels

                              -
                              public int[] uncorrelatedLabels(int labelIndex,
                              +
                              public int[] uncorrelatedLabels​(int labelIndex,
                                                               double bound)
                              Returns the indices of the labels whose Phi coefficient values lie between -bound <= phi <= bound. It requires the method calculatePhi to be @@ -692,13 +769,13 @@

                              uncorrelatedLabels

                            - +
                            • topPhiCorrelatedLabels

                              -
                              public int[] topPhiCorrelatedLabels(int labelIndex,
                              +
                              public int[] topPhiCorrelatedLabels​(int labelIndex,
                                                                   int k)
                              Returns the indices of the labels that have the strongest Phi correlation with the label which is given as a parameter. The second parameter is the @@ -714,13 +791,13 @@

                              topPhiCorrelatedLabels

                            - +
                            • printPhiDiagram

                              -
                              public void printPhiDiagram(double step)
                              +
                              public void printPhiDiagram​(double step)
                              This method prints data, useful for the visualization of Phi per dataset. It prints int(1/step) + 1 pairs of values. The first value of each pair is the phi value and the second is the average number of labels that correlate to @@ -732,13 +809,13 @@

                              printPhiDiagram

                            - +
                            • innerClassIR

                              -
                              public double[] innerClassIR()
                              +
                              public double[] innerClassIR()
                              Computes the innerClassIR for each label as negativePatterns/positivePatterns. It requires the method calculateStats to be previously called.
                              @@ -748,13 +825,13 @@

                              innerClassIR

                            - +
                            • interClassIR

                              -
                              public double[] interClassIR()
                              +
                              public double[] interClassIR()
                              Computes the interClassIR for each label positiveExamplesOfMajorityLabel/positivePatternsLabel. It requires the method calculateStats to be previously called.
                              @@ -765,13 +842,13 @@

                              interClassIR

                            - +
                            • averageIR

                              -
                              public double averageIR(double[] IR)
                              +
                              public double averageIR​(double[] IR)
                              Computes the average of any IR vector.
                              Parameters:
                              @@ -781,13 +858,13 @@

                              averageIR

                            - +
                            • varianceIR

                              -
                              public double varianceIR(double[] IR)
                              +
                              public double varianceIR​(double[] IR)
                              Computes the variance of any IR vector.
                              Parameters:
                              @@ -797,13 +874,13 @@

                              varianceIR

                            - +
                            • pUnique

                              -
                              public double pUnique()
                              +
                              public double pUnique()
                              Returns proportion of unique label combinations (pPunique) value defined as the proportion of labelsets which are unique across the total number of examples. It requires the method calculateStats to be previously called. @@ -816,13 +893,13 @@

                              pUnique

                            - +
                            • pMax

                              -
                              public double pMax()
                              +
                              public double pMax()
                              Returns pMax, the proportion of examples associated with the most frequently occurring labelset. It requires the method calculateStats to be previously called. @@ -835,13 +912,13 @@

                              pMax

                            - +
                            • labelSkew

                              -
                              public java.util.HashMap<mulan.data.LabelSet,java.lang.Double> labelSkew()
                              +
                              public java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> labelSkew()
                              Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns of the labelSet). It requires the method calculateStats to be previously called.
                              @@ -851,13 +928,13 @@

                              labelSkew

                            - +
                            • averageSkew

                              -
                              public double averageSkew(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                              +
                              public double averageSkew​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                              Computes the average labelSkew.
                              Parameters:
                              @@ -867,13 +944,13 @@

                              averageSkew

                            - +
                            • skewRatio

                              -
                              public double skewRatio()
                              +
                              public double skewRatio()
                              Computes the skewRatio as peak/base. It requires the method calculateStats to be previously called.
                              @@ -882,13 +959,13 @@

                              skewRatio

                            - +
                            • toString

                              -
                              public java.lang.String toString()
                              +
                              public java.lang.String toString()
                              Returns statistics in textual representation. It requires the method calculateStats to be previously called.
                              @@ -899,13 +976,13 @@

                              toString

                            - +
                            • toCSV

                              -
                              public java.lang.String toCSV()
                              +
                              public java.lang.String toCSV()
                              Returns statistics in CSV representation. It requires the method calculateStats to be previously called.
                              @@ -914,13 +991,13 @@

                              toCSV

                            - +
                            • distributionBagsToString

                              -
                              protected java.lang.String distributionBagsToString(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                              +
                              protected java.lang.String distributionBagsToString​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                              Returns labelSkew in textual representation.
                              Parameters:
                              @@ -930,13 +1007,13 @@

                              distributionBagsToString

                            - +
                            • distributionBagsToCSV

                              -
                              protected java.lang.String distributionBagsToCSV(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                              +
                              protected java.lang.String distributionBagsToCSV​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                              Returns labelSkew in CSV representation.
                              Parameters:
                              @@ -946,28 +1023,28 @@

                              distributionBagsToCSV

                            - +
                            • -

                              cooncurrenceToString

                              -
                              public java.lang.String cooncurrenceToString()
                              +

                              coocurrenceToString

                              +
                              public java.lang.String coocurrenceToString()
                              Returns cooCurrenceMatrix in textual representation. It requires the method - calculateCooncurrence to be previously called.
                              + calculateCoocurrence to be previously called.
                      Returns:
                      -
                      CooCurrenceMatrix in textual representation.
                      +
                      CoocurrenceMatrix in textual representation.
                      - +
                      • -

                        cooncurrenceToCSV

                        -
                        public java.lang.String cooncurrenceToCSV()
                        +

                        coocurrenceToCSV

                        +
                        public java.lang.String coocurrenceToCSV()
                        Returns cooCurrenceMatrix in CSV representation. It requires the method calculateCooncurrence to be previously called.
                        @@ -976,13 +1053,13 @@

                        cooncurrenceToCSV

                      - +
                      • correlationsToString

                        -
                        public java.lang.String correlationsToString(double[][] matrix)
                        +
                        public java.lang.String correlationsToString​(double[][] matrix)
                        Returns Phi correlations in textual representation. It requires the method calculatePhiChi2 to be previously called.
                        @@ -993,13 +1070,13 @@

                        correlationsToString

                      - +
                      • correlationsToCSV

                        -
                        public java.lang.String correlationsToCSV(double[][] matrix)
                        +
                        public java.lang.String correlationsToCSV​(double[][] matrix)
                        Returns Phi correlations in CSV representation. It requires the method calculatePhiChi2 to be previously called.
                        @@ -1010,13 +1087,13 @@

                        correlationsToCSV

                      - +
                      • distributionBagsToString

                        -
                        protected java.lang.String distributionBagsToString()
                        +
                        protected java.lang.String distributionBagsToString()
                        Returns distributionBags in textual representation.
                        Returns:
                        @@ -1024,13 +1101,13 @@

                        distributionBagsToString

                      - +
                      • distributionBagsToCSV

                        -
                        protected java.lang.String distributionBagsToCSV()
                        +
                        protected java.lang.String distributionBagsToCSV()
                        Returns distributionBags in CSV representation.
                        Returns:
                        @@ -1038,13 +1115,13 @@

                        distributionBagsToCSV

                      - +
                      • getDataSet

                        -
                        public MIMLInstances getDataSet()
                        +
                        public MIMLInstances getDataSet()
                        Returns the dataset used to calculate the statistics.
                        Returns:
                        @@ -1052,13 +1129,13 @@

                        getDataSet

                      - +
                      • setDataSet

                        -
                        public void setDataSet(MIMLInstances dataSet)
                        +
                        public void setDataSet​(MIMLInstances dataSet)
                        Set the dataset used.
                        Parameters:
                        @@ -1068,21 +1145,25 @@

                        setDataSet

                      + +
                      + diff --git a/documentation/apidoc/miml/data/statistics/MIMLStatistics.svg b/documentation/apidoc/miml/data/statistics/MIMLStatistics.svg new file mode 100644 index 0000000..1410abe --- /dev/null +++ b/documentation/apidoc/miml/data/statistics/MIMLStatistics.svg @@ -0,0 +1,59 @@ +MIMLStatisticsmiml.data.statisticsdataSet: MIMLInstancesmilstatistics: MIStatisticsmlstatistics: MLStatisticsMIMLStatistics(MIMLInstances)getPhi(): double[]getChi2(): double[]cardinality(): doubledensity(): doublepriors(): double[]labelSets(): Set<LabelSet>labelSetFrequency(LabelSet): intlabelCombCount(): HashMap<LabelSet, Integer>calculateCooncurrence(MIMLInstances): double[]calculatePhiChi2(MIMLInstances): voidgetPhiHistogram(): double[]uncorrelatedLabels(int, double): int[]topPhiCorrelatedLabels(int, int): int[]printPhiDiagram(double): voidinnerClassIR(): double[]interClassIR(): double[]averageIR(double[]): doublevarianceIR(double[]): doublepUnique(): doublepMax(): doublelabelSkew(): HashMap<LabelSet, Double>averageSkew(HashMap<LabelSet, Double>): doubleskewRatio(): doubletoCSV(): StringdistributionBagsToString(HashMap<LabelSet, Double>): StringdistributionBagsToCSV(HashMap<LabelSet, Double>): StringcooncurrenceToString(): StringcooncurrenceToCSV(): StringcorrelationsToString(double[]): StringcorrelationsToCSV(double[]): StringdistributionBagsToString(): StringdistributionBagsToCSV(): StringgetDataSet(): MIMLInstancessetDataSet(MIMLInstances): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/statistics/MIStatistics.html b/documentation/apidoc/miml/data/statistics/MIStatistics.html old mode 100755 new mode 100644 index 160d266..a24a7d8 --- a/documentation/apidoc/miml/data/statistics/MIStatistics.html +++ b/documentation/apidoc/miml/data/statistics/MIStatistics.html @@ -1,12 +1,22 @@ - + - + MIStatistics - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.data.statistics
                      +

                      Class MIStatistics

                      @@ -108,7 +133,6 @@

                      Class MIStatistics


                      • -
                        public class MIStatistics
                         extends java.lang.Object
                        Class with methods to obtain information about a MI dataset such as the @@ -127,131 +151,153 @@

                        Class MIStatistics

                        @@ -266,12 +313,13 @@

                        Methods inherited from class java.lang.Object

                        • +
                            -
                          • +
                          • Field Detail

                            - +
                              @@ -281,7 +329,7 @@

                              minInstancesPerBag

                              The minimum number of instances per bag.
                            - +
                              @@ -291,7 +339,7 @@

                              maxInstancesPerBag

                              The maximum number of instances per bag.
                            - +
                              @@ -301,7 +349,7 @@

                              avgInstancesPerBag

                              The average number of instances per bag.
                            - +
                              @@ -311,7 +359,7 @@

                              attributesPerBag

                              The number of attributes per bag.
                            - +
                              @@ -321,7 +369,7 @@

                              numBags

                              The number of bags.
                            - +
                              @@ -331,17 +379,17 @@

                              totalInstances

                              The total of instances.
                            - +
                            • distributionBags

                              -
                              java.util.HashMap<java.lang.Integer,java.lang.Integer> distributionBags
                              +
                              java.util.HashMap<java.lang.Integer,​java.lang.Integer> distributionBags
                              The distribution of number of instances per bag.
                            - +
                              @@ -353,47 +401,51 @@

                              dataSet

                          +
                          +
                            -
                          • +
                          • Constructor Detail

                            - +
                            • MIStatistics

                              -
                              public MIStatistics(weka.core.Instances dataSet)
                              +
                              public MIStatistics​(weka.core.Instances dataSet)
                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • calculateStats

                              -
                              protected void calculateStats()
                              +
                              protected void calculateStats()
                              Calculates various MIML statistics, such as instancesPerBag and attributesPerBag.
                            - +
                            • distributionBagsToString

                              -
                              protected java.lang.String distributionBagsToString()
                              +
                              protected java.lang.String distributionBagsToString()
                              Returns distributionBags in textual representation.
                              Returns:
                              @@ -401,13 +453,13 @@

                              distributionBagsToString

                            - +
                            • distributionBagsToCSV

                              -
                              protected java.lang.String distributionBagsToCSV()
                              +
                              protected java.lang.String distributionBagsToCSV()
                              Returns distributionBags in CSV representation.
                              Returns:
                              @@ -415,13 +467,13 @@

                              distributionBagsToCSV

                            - +
                            • toString

                              -
                              public java.lang.String toString()
                              +
                              public java.lang.String toString()
                              Returns statistics in textual representation.
                              Overrides:
                              @@ -431,13 +483,13 @@

                              toString

                            - +
                            • toCSV

                              -
                              public java.lang.String toCSV()
                              +
                              public java.lang.String toCSV()
                              Returns statistics in CSV representation.
                              Returns:
                              @@ -447,21 +499,25 @@

                              toCSV

                          +
                      +
                      + diff --git a/documentation/apidoc/miml/data/statistics/MIStatistics.svg b/documentation/apidoc/miml/data/statistics/MIStatistics.svg new file mode 100644 index 0000000..a458912 --- /dev/null +++ b/documentation/apidoc/miml/data/statistics/MIStatistics.svg @@ -0,0 +1,34 @@ +MIStatisticsmiml.data.statisticsminInstancesPerBag: intmaxInstancesPerBag: intavgInstancesPerBag: doubleattributesPerBag: intnumBags: inttotalInstances: intdistributionBags: HashMap<Integer, Integer>dataSet: InstancesMIStatistics(Instances)calculateStats(): voiddistributionBagsToString(): StringdistributionBagsToCSV(): StringtoCSV(): StringUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/statistics/MLStatistics.html b/documentation/apidoc/miml/data/statistics/MLStatistics.html old mode 100755 new mode 100644 index 7e6b7e8..9420299 --- a/documentation/apidoc/miml/data/statistics/MLStatistics.html +++ b/documentation/apidoc/miml/data/statistics/MLStatistics.html @@ -1,12 +1,22 @@ - + - + MLStatistics - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.data.statistics
                      +

                      Class MLStatistics

                      @@ -108,7 +133,6 @@

                      Class MLStatistics


                      • -
                        public class MLStatistics
                         extends java.lang.Object
                        Class with methods to obtain information about a ML dataset. @@ -132,305 +156,356 @@

                        Class MLStatistics

                        • +
                          +
                          +
                            -
                          • +
                          • Constructor Summary

                            - +
                            - + + - +
                            Constructors 
                            Constructor and DescriptionConstructorDescription
                            MLStatistics(mulan.data.MultiLabelInstances mlDataSet) +MLStatistics​(mulan.data.MultiLabelInstances mlDataSet)
                            Constructor.
                          +
                          +
                            -
                          • +
                          • Method Summary

                            - +
                            - + + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - + - - + + - + - + - - + + - + - + - + - + - + - + - + - + - + - +
                            All Methods Instance Methods Concrete Methods 
                            Modifier and TypeMethod and DescriptionMethodDescription
                            doubleaverageIR(double[] IR) +averageIR​(double[] IR)
                            Computes the average of any IR vector.
                            doubleaverageSkew(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew) +averageSkew​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                            Computes the average labelSkew.
                            double[][]calculateCoocurrence(mulan.data.MultiLabelInstances mlDataSet) +calculateCoocurrence​(mulan.data.MultiLabelInstances mlDataSet)
                            This method calculates a matrix with the coocurrences of pairs of labels.
                            voidcalculatePhiChi2(mulan.data.MultiLabelInstances dataSet) +calculatePhiChi2​(mulan.data.MultiLabelInstances dataSet)
                            Calculates Phi and Chi-square correlation matrix.
                            protected voidcalculateStats() +calculateStats()
                            Calculates various ML statistics.
                            doublecardinality() +cardinality()
                            Computes the Cardinality as the average number of labels per pattern.
                            java.lang.StringcoocurrenceToCSV() +coocurrenceToCSV()
                            Returns coocurrenceMatrix in CSV representation.
                            java.lang.StringcoocurrenceToString() +coocurrenceToString()
                            Returns coocurrenceMatrix in textual representation.
                            java.lang.StringcorrelationsToCSV(double[][] matrix) +correlationsToCSV​(double[][] matrix)
                            Returns Phi correlations in CSV representation.
                            java.lang.StringcorrelationsToString(double[][] matrix) +correlationsToString​(double[][] matrix)
                            Returns Phi correlations in textual representation.
                            doubledensity() +density()
                            Computes the density as the cardinality/numLabels.
                            protected java.lang.StringdistributionBagsToCSV(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew) +distributionBagsToCSV​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                            Returns labelSkew in CSV representation.
                            protected java.lang.StringdistributionBagsToString(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew) +distributionBagsToString​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                            Returns labelSkew in textual representation.
                            double[][]getChi2() +getChi2()
                            Gets the Chi2 correlation matrix.
                            double[][]getPhi() +getPhi()
                            Gets the Phi correlation matrix.
                            double[]getPhiHistogram() +getPhiHistogram()
                            Calculates a histogram of Phi correlations.
                            double[]innerClassIR() +innerClassIR()
                            Computes the innerClassIR for each label as negativePatterns/positivePatterns.
                            double[]interClassIR() +interClassIR()
                            Computes the interClassIR for each label positiveExamplesOfMajorityLabel/positivePatternsLabel.
                            java.util.HashMap<mulan.data.LabelSet,java.lang.Integer>labelCombCount() +java.util.HashMap<mulan.data.LabelSet,​java.lang.Integer>labelCombCount()
                            Returns the HashMap containing the distinct labelsets and their frequencies.
                            intlabelSetFrequency(mulan.data.LabelSet x) +labelSetFrequency​(mulan.data.LabelSet x)
                            Returns the frequency of a label set in the dataset.
                            java.util.Set<mulan.data.LabelSet>labelSets() +labelSets()
                            Returns a set with the distinct label sets of the dataset.
                            java.util.HashMap<mulan.data.LabelSet,java.lang.Double>labelSkew() +java.util.HashMap<mulan.data.LabelSet,​java.lang.Double>labelSkew()
                            Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns of the labelSet).
                            doublepMax() +pMax()
                            Returns pMax, the proportion of examples associated with the most frequently occurring labelset.
                            voidprintPhiDiagram(double step) +printPhiDiagram​(double step)
                            This method prints data, useful for the visualization of Phi per dataset.
                            double[]priors() +priors()
                            Returns the prior probabilities of the labels.
                            doublepUnique() +pUnique()
                            Returns proportion of unique label combinations (pPunique) value defined as the proportion of labelsets which are unique across the total number of examples.
                            @@ -438,47 +513,53 @@

                            Method Summary

                            doubleskewRatio() +skewRatio()
                            Computes the skewRatio as peak/base.
                            java.lang.StringtoCSV() +toCSV()
                            Returns statistics in CSV representation.
                            int[]topPhiCorrelatedLabels(int labelIndex, - int k) +topPhiCorrelatedLabels​(int labelIndex, + int k)
                            Returns the indices of the labels that have the strongest Phi correlation with the label which is given as a parameter.
                            java.lang.StringtoString() +toString()
                            Returns statistics in textual representation.
                            int[]uncorrelatedLabels(int labelIndex, - double bound) +uncorrelatedLabels​(int labelIndex, + double bound)
                            Returns the indices of the labels whose Phi coefficient values lie between -bound <= phi <= bound.
                            doublevarianceIR(double[] IR) +varianceIR​(double[] IR)
                            Computes the variance of any IR vector.
                              -
                            • +
                            • Methods inherited from class java.lang.Object

                              @@ -486,6 +567,7 @@

                              Methods inherited from class java.lang.Object

                          +
                        @@ -493,12 +575,13 @@

                        Methods inherited from class java.lang.Object

                        • +
                            -
                          • +
                          • Field Detail

                            - +
                              @@ -508,7 +591,7 @@

                              numLabels

                              The number of labels.
                            - +
                              @@ -518,7 +601,7 @@

                              numExamples

                              The number of examples.
                            - +
                              @@ -528,7 +611,7 @@

                              numAttributes

                              The number of attributes.
                            - +
                              @@ -538,7 +621,7 @@

                              numNominal

                              The number of nominal predictive attributes.
                            - +
                              @@ -548,7 +631,7 @@

                              numNumeric

                              The number of numeric attributes.
                            - +
                              @@ -558,7 +641,7 @@

                              positiveExamplesPerLabel

                              The number of positive examples per label.
                            - +
                              @@ -568,17 +651,17 @@

                              distributionLabelsPerExample

                              The number of examples having 0, 1, 2,... , numLabel labels.
                            - +
                            • labelCombinations

                              -
                              protected java.util.HashMap<mulan.data.LabelSet,java.lang.Integer> labelCombinations
                              +
                              protected java.util.HashMap<mulan.data.LabelSet,​java.lang.Integer> labelCombinations
                              LabelSets in the dataset.
                            - +
                              @@ -588,7 +671,7 @@

                              peak

                              The highest labelSet count.
                            - +
                              @@ -598,7 +681,7 @@

                              base

                              The lowest labelSet count.
                            - +
                              @@ -608,7 +691,7 @@

                              nUnique

                              Number of labelSets with only one pattern.
                            - +
                              @@ -618,7 +701,7 @@

                              maxCount

                              Number of labelSets with the peak value.
                            - +
                              @@ -628,7 +711,7 @@

                              coocurrenceMatrix

                              Coocurrence matrix.
                            - +
                              @@ -639,7 +722,7 @@

                              phi

                              direct relation.
                      - +
                        @@ -651,7 +734,7 @@

                        chi2

                        than 3.84 show label dependence at 0.05 level of significance (95%).
                      - +
                        @@ -663,19 +746,21 @@

                        mlDataSet

                      + +
                        -
                      • +
                      • Constructor Detail

                        - +
                        • MLStatistics

                          -
                          public MLStatistics(mulan.data.MultiLabelInstances mlDataSet)
                          +
                          public MLStatistics​(mulan.data.MultiLabelInstances mlDataSet)
                          Constructor.
                          Parameters:
                          @@ -685,19 +770,21 @@

                          MLStatistics

                      +
                      +
                        -
                      • +
                      • Method Detail

                        - +
                        • getPhi

                          -
                          public double[][] getPhi()
                          +
                          public double[][] getPhi()
                          Gets the Phi correlation matrix. It requires the method calculatePhiChi2 to be previously called.
                          @@ -706,13 +793,13 @@

                          getPhi

                        - +
                        • getChi2

                          -
                          public double[][] getChi2()
                          +
                          public double[][] getChi2()
                          Gets the Chi2 correlation matrix. It requires the method calculatePhiChi2 to be previously called.
                          @@ -721,23 +808,23 @@

                          getChi2

                        - +
                        • calculateStats

                          -
                          protected void calculateStats()
                          +
                          protected void calculateStats()
                          Calculates various ML statistics.
                        - +
                        • cardinality

                          -
                          public double cardinality()
                          +
                          public double cardinality()
                          Computes the Cardinality as the average number of labels per pattern. It requires the method calculateStats to be previously called.
                          @@ -746,13 +833,13 @@

                          cardinality

                        - +
                        • density

                          -
                          public double density()
                          +
                          public double density()
                          Computes the density as the cardinality/numLabels. It the method calculateStats to be previously called.
                          @@ -761,13 +848,13 @@

                          density

                        - +
                        • priors

                          -
                          public double[] priors()
                          +
                          public double[] priors()
                          Returns the prior probabilities of the labels. It requires the method calculateStats to be previously called.
                          @@ -776,13 +863,13 @@

                          priors

                        - +
                        • labelSets

                          -
                          public java.util.Set<mulan.data.LabelSet> labelSets()
                          +
                          public java.util.Set<mulan.data.LabelSet> labelSets()
                          Returns a set with the distinct label sets of the dataset. It requires the method calculateStats to be previously called.
                          @@ -791,13 +878,13 @@

                          labelSets

                        - +
                        • labelSetFrequency

                          -
                          public int labelSetFrequency(mulan.data.LabelSet x)
                          +
                          public int labelSetFrequency​(mulan.data.LabelSet x)
                          Returns the frequency of a label set in the dataset. It requires the method calculateStats to be previously called.
                          @@ -808,13 +895,13 @@

                          labelSetFrequency

                        - +
                        • labelCombCount

                          -
                          public java.util.HashMap<mulan.data.LabelSet,java.lang.Integer> labelCombCount()
                          +
                          public java.util.HashMap<mulan.data.LabelSet,​java.lang.Integer> labelCombCount()
                          Returns the HashMap containing the distinct labelsets and their frequencies. It requires the method calculateStats to be previously called.
                          @@ -823,13 +910,13 @@

                          labelCombCount

                        - +
                        • calculateCoocurrence

                          -
                          public double[][] calculateCoocurrence(mulan.data.MultiLabelInstances mlDataSet)
                          +
                          public double[][] calculateCoocurrence​(mulan.data.MultiLabelInstances mlDataSet)
                          This method calculates a matrix with the coocurrences of pairs of labels. It requires the method calculateStats to be previously called.
                          @@ -840,13 +927,13 @@

                          calculateCoocurrence

                        - +
                        • calculatePhiChi2

                          -
                          public void calculatePhiChi2(mulan.data.MultiLabelInstances dataSet)
                          +
                          public void calculatePhiChi2​(mulan.data.MultiLabelInstances dataSet)
                                                 throws java.lang.Exception
                          Calculates Phi and Chi-square correlation matrix.
                          @@ -857,13 +944,13 @@

                          calculatePhiChi2

                        - +
                        • getPhiHistogram

                          -
                          public double[] getPhiHistogram()
                          +
                          public double[] getPhiHistogram()
                          Calculates a histogram of Phi correlations. It requires the method calculatePhi to be previously called.
                          @@ -872,13 +959,13 @@

                          getPhiHistogram

                        - +
                        • uncorrelatedLabels

                          -
                          public int[] uncorrelatedLabels(int labelIndex,
                          +
                          public int[] uncorrelatedLabels​(int labelIndex,
                                                           double bound)
                          Returns the indices of the labels whose Phi coefficient values lie between -bound <= phi <= bound. It requires the method calculatePhi to be @@ -893,13 +980,13 @@

                          uncorrelatedLabels

                        - +
                        • topPhiCorrelatedLabels

                          -
                          public int[] topPhiCorrelatedLabels(int labelIndex,
                          +
                          public int[] topPhiCorrelatedLabels​(int labelIndex,
                                                               int k)
                          Returns the indices of the labels that have the strongest Phi correlation with the label which is given as a parameter. The second parameter is the @@ -915,13 +1002,13 @@

                          topPhiCorrelatedLabels

                        - +
                        • printPhiDiagram

                          -
                          public void printPhiDiagram(double step)
                          +
                          public void printPhiDiagram​(double step)
                          This method prints data, useful for the visualization of Phi per dataset. It prints int(1/step) + 1 pairs of values. The first value of each pair is the phi value and the second is the average number of labels that correlate to @@ -933,13 +1020,13 @@

                          printPhiDiagram

                        - +
                        • innerClassIR

                          -
                          public double[] innerClassIR()
                          +
                          public double[] innerClassIR()
                          Computes the innerClassIR for each label as negativePatterns/positivePatterns. It requires the method calculateStats to be previously called.
                          @@ -949,13 +1036,13 @@

                          innerClassIR

                        - +
                        • interClassIR

                          -
                          public double[] interClassIR()
                          +
                          public double[] interClassIR()
                          Computes the interClassIR for each label positiveExamplesOfMajorityLabel/positivePatternsLabel. It requires the method calculateStats to be previously called.
                          @@ -966,13 +1053,13 @@

                          interClassIR

                        - +
                        • averageIR

                          -
                          public double averageIR(double[] IR)
                          +
                          public double averageIR​(double[] IR)
                          Computes the average of any IR vector.
                          Parameters:
                          @@ -982,13 +1069,13 @@

                          averageIR

                        - +
                        • varianceIR

                          -
                          public double varianceIR(double[] IR)
                          +
                          public double varianceIR​(double[] IR)
                          Computes the variance of any IR vector.
                          Parameters:
                          @@ -998,13 +1085,13 @@

                          varianceIR

                        - +
                        • pUnique

                          -
                          public double pUnique()
                          +
                          public double pUnique()
                          Returns proportion of unique label combinations (pPunique) value defined as the proportion of labelsets which are unique across the total number of examples. It requires the method calculateStats to be previously called. @@ -1017,13 +1104,13 @@

                          pUnique

                        - +
                        • pMax

                          -
                          public double pMax()
                          +
                          public double pMax()
                          Returns pMax, the proportion of examples associated with the most frequently occurring labelset. It requires the method calculateStats to be previously called. @@ -1036,13 +1123,13 @@

                          pMax

                        - +
                        • labelSkew

                          -
                          public java.util.HashMap<mulan.data.LabelSet,java.lang.Double> labelSkew()
                          +
                          public java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> labelSkew()
                          Computes the IR for each labelSet as (patterns of majorityLabelSet)/(patterns of the labelSet). It requires the method calculateStats to be previously called.
                          @@ -1052,13 +1139,13 @@

                          labelSkew

                        - +
                        • averageSkew

                          -
                          public double averageSkew(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                          +
                          public double averageSkew​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                          Computes the average labelSkew.
                          Parameters:
                          @@ -1068,13 +1155,13 @@

                          averageSkew

                        - +
                        • skewRatio

                          -
                          public double skewRatio()
                          +
                          public double skewRatio()
                          Computes the skewRatio as peak/base. It requires the method calculateStats to be previously called.
                          @@ -1083,13 +1170,13 @@

                          skewRatio

                        - +
                        • toString

                          -
                          public java.lang.String toString()
                          +
                          public java.lang.String toString()
                          Returns statistics in textual representation. It requires the method calculateStats to be previously called.
                          @@ -1100,13 +1187,13 @@

                          toString

                        - +
                        • toCSV

                          -
                          public java.lang.String toCSV()
                          +
                          public java.lang.String toCSV()
                          Returns statistics in CSV representation. It requires the method calculateStats to be previously called.
                          @@ -1115,13 +1202,13 @@

                          toCSV

                        - +
                        • distributionBagsToString

                          -
                          protected java.lang.String distributionBagsToString(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                          +
                          protected java.lang.String distributionBagsToString​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                          Returns labelSkew in textual representation.
                          Parameters:
                          @@ -1131,13 +1218,13 @@

                          distributionBagsToString

                        - +
                        • distributionBagsToCSV

                          -
                          protected java.lang.String distributionBagsToCSV(java.util.HashMap<mulan.data.LabelSet,java.lang.Double> skew)
                          +
                          protected java.lang.String distributionBagsToCSV​(java.util.HashMap<mulan.data.LabelSet,​java.lang.Double> skew)
                          Returns labelSkew in CSV representation.
                          Parameters:
                          @@ -1147,13 +1234,13 @@

                          distributionBagsToCSV

                        - +
                        • coocurrenceToString

                          -
                          public java.lang.String coocurrenceToString()
                          +
                          public java.lang.String coocurrenceToString()
                          Returns coocurrenceMatrix in textual representation. It requires the method calculateCoocurrence to be previously called.
                          @@ -1162,13 +1249,13 @@

                          coocurrenceToString

                        - +
                        • coocurrenceToCSV

                          -
                          public java.lang.String coocurrenceToCSV()
                          +
                          public java.lang.String coocurrenceToCSV()
                          Returns coocurrenceMatrix in CSV representation. It requires the method calculateCoocurrence to be previously called.
                          @@ -1177,13 +1264,13 @@

                          coocurrenceToCSV

                        - +
                        • correlationsToString

                          -
                          public java.lang.String correlationsToString(double[][] matrix)
                          +
                          public java.lang.String correlationsToString​(double[][] matrix)
                          Returns Phi correlations in textual representation. It requires the method calculatePhiChi2 to be previously called.
                          @@ -1194,13 +1281,13 @@

                          correlationsToString

                        - +
                        • correlationsToCSV

                          -
                          public java.lang.String correlationsToCSV(double[][] matrix)
                          +
                          public java.lang.String correlationsToCSV​(double[][] matrix)
                          Returns Phi correlations in CSV representation. It requires the method calculatePhiChi2 to be previously called.
                          @@ -1213,21 +1300,25 @@

                          correlationsToCSV

                      +
                      +
                      + diff --git a/documentation/apidoc/miml/data/statistics/MLStatistics.svg b/documentation/apidoc/miml/data/statistics/MLStatistics.svg new file mode 100644 index 0000000..d24a2f3 --- /dev/null +++ b/documentation/apidoc/miml/data/statistics/MLStatistics.svg @@ -0,0 +1,69 @@ +MLStatisticsmiml.data.statisticsnumLabels: intnumExamples: intnumAttributes: intnumNominal: intnumNumeric: intpositiveExamplesPerLabel: int[]distributionLabelsPerExample: int[]labelCombinations: HashMap<LabelSet, Integer>peak: intbase: intnUnique: intmaxCount: intcoocurrenceMatrix: double[]phi: double[]chi2: double[]mlDataSet: MultiLabelInstancesMLStatistics(MultiLabelInstances)getPhi(): double[]getChi2(): double[]calculateStats(): voidcardinality(): doubledensity(): doublepriors(): double[]labelSets(): Set<LabelSet>labelSetFrequency(LabelSet): intlabelCombCount(): HashMap<LabelSet, Integer>calculateCoocurrence(MultiLabelInstances): double[]calculatePhiChi2(MultiLabelInstances): voidgetPhiHistogram(): double[]uncorrelatedLabels(int, double): int[]topPhiCorrelatedLabels(int, int): int[]printPhiDiagram(double): voidinnerClassIR(): double[]interClassIR(): double[]averageIR(double[]): doublevarianceIR(double[]): doublepUnique(): doublepMax(): doublelabelSkew(): HashMap<LabelSet, Double>averageSkew(HashMap<LabelSet, Double>): doubleskewRatio(): doubletoCSV(): StringdistributionBagsToString(HashMap<LabelSet, Double>): StringdistributionBagsToCSV(HashMap<LabelSet, Double>): StringcoocurrenceToString(): StringcoocurrenceToCSV(): StringcorrelationsToString(double[]): StringcorrelationsToCSV(double[]): StringUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/data/statistics/class-use/MIMLStatistics.html b/documentation/apidoc/miml/data/statistics/class-use/MIMLStatistics.html old mode 100755 new mode 100644 index 14c6c07..d739df3 --- a/documentation/apidoc/miml/data/statistics/class-use/MIMLStatistics.html +++ b/documentation/apidoc/miml/data/statistics/class-use/MIMLStatistics.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.statistics.MIMLStatistics - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.data.statistics.MIMLStatistics

                      No usage of miml.data.statistics.MIMLStatistics
                      +
                      + diff --git a/documentation/apidoc/miml/data/statistics/class-use/MIStatistics.html b/documentation/apidoc/miml/data/statistics/class-use/MIStatistics.html old mode 100755 new mode 100644 index 4fd1c88..4e0ff34 --- a/documentation/apidoc/miml/data/statistics/class-use/MIStatistics.html +++ b/documentation/apidoc/miml/data/statistics/class-use/MIStatistics.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.statistics.MIStatistics - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.data.statistics.MIStatistics

                      +
                      + diff --git a/documentation/apidoc/miml/data/statistics/class-use/MLStatistics.html b/documentation/apidoc/miml/data/statistics/class-use/MLStatistics.html old mode 100755 new mode 100644 index 8a33502..7aa3cbe --- a/documentation/apidoc/miml/data/statistics/class-use/MLStatistics.html +++ b/documentation/apidoc/miml/data/statistics/class-use/MLStatistics.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.data.statistics.MLStatistics - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.data.statistics.MLStatistics

                      +
                      + diff --git a/documentation/apidoc/miml/data/statistics/package-frame.html b/documentation/apidoc/miml/data/statistics/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/data/statistics/package-summary.html b/documentation/apidoc/miml/data/statistics/package-summary.html old mode 100755 new mode 100644 index a0abb03..eb97536 --- a/documentation/apidoc/miml/data/statistics/package-summary.html +++ b/documentation/apidoc/miml/data/statistics/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.data.statistics - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Package miml.data.statistics

                      + +
                      +
                      +
                      +
                      @@ -333,12 +390,13 @@

                      Methods inherited from class java.lang.Object

                      • +
                          -
                        • +
                        • Field Detail

                          - +
                            @@ -348,17 +406,17 @@

                            multipleEvaluation

                            The evaluation method used in cross-validation.
                          - + - +
                            @@ -368,7 +426,7 @@

                            numFolds

                            The number of folds.
                          - +
                            @@ -378,7 +436,7 @@

                            seed

                            The seed for the partition.
                          - +
                            @@ -388,7 +446,7 @@

                            trainTime

                            Train time in milliseconds.
                          - +
                            @@ -400,19 +458,21 @@

                            testTime

                        +
                        +
                          -
                        • +
                        • Constructor Detail

                          - +
                          • EvaluatorCV

                            -
                            public EvaluatorCV(MIMLInstances data,
                            +
                            public EvaluatorCV​(MIMLInstances data,
                                                int numFolds)
                            Instantiates a new CV evaluator.
                            @@ -422,7 +482,7 @@

                            EvaluatorCV

                          - +
                            @@ -434,25 +494,27 @@

                            EvaluatorCV

                        +
                        +
                          -
                        • +
                        • Method Detail

                          - +
                          • runExperiment

                            -
                            public void runExperiment(IMIMLClassifier classifier)
                            +
                            public void runExperiment​(IMIMLClassifier classifier)
                                                throws java.lang.Exception
                            -
                            Description copied from interface: IEvaluator
                            +
                            Description copied from interface: IEvaluator
                            Run an experiment.
                            Specified by:
                            -
                            runExperiment in interface IEvaluator<mulan.evaluation.MultipleEvaluation>
                            +
                            runExperiment in interface IEvaluator<mulan.evaluation.MultipleEvaluation>
                            Parameters:
                            classifier - The classifier used in the experiment.
                            Throws:
                            @@ -460,13 +522,13 @@

                            runExperiment

                          - +
                          • meanArray

                            -
                            protected double meanArray(long[] array)
                            +
                            protected double meanArray​(long[] array)
                            Calculate the mean of given array.
                            Parameters:
                            @@ -476,13 +538,13 @@

                            meanArray

                          - +
                          • stdArray

                            -
                            protected double stdArray(long[] array)
                            +
                            protected double stdArray​(long[] array)
                            Calculate the standard deviation of given array.
                            Parameters:
                            @@ -492,13 +554,13 @@

                            stdArray

                          - +
                          • getTrainTime

                            -
                            public long[] getTrainTime()
                            +
                            public long[] getTrainTime()
                            Gets the time spent in training in each fold.
                            Returns:
                            @@ -506,13 +568,13 @@

                            getTrainTime

                          - +
                          • getTestTime

                            -
                            public long[] getTestTime()
                            +
                            public long[] getTestTime()
                            Gets the time spent in testing in each fold.
                            Returns:
                            @@ -520,13 +582,13 @@

                            getTestTime

                          - +
                          • getNumFolds

                            -
                            public int getNumFolds()
                            +
                            public int getNumFolds()
                            Gets the number of folds used in the experiment.
                            Returns:
                            @@ -534,13 +596,13 @@

                            getNumFolds

                          - +
                          • setNumFolds

                            -
                            public void setNumFolds(int numFolds)
                            +
                            public void setNumFolds​(int numFolds)
                            Sets the number of folds used in the experiment.
                            Parameters:
                            @@ -548,13 +610,13 @@

                            setNumFolds

                          - +
                          • getSeed

                            -
                            public int getSeed()
                            +
                            public int getSeed()
                            Gets the seed used in the experiment.
                            Returns:
                            @@ -562,13 +624,13 @@

                            getSeed

                          - +
                          • setSeed

                            -
                            public void setSeed(int seed)
                            +
                            public void setSeed​(int seed)
                            Sets the seed used in the experiment.
                            Parameters:
                            @@ -576,13 +638,13 @@

                            setSeed

                          - +
                          • getAvgTrainTime

                            -
                            public double getAvgTrainTime()
                            +
                            public double getAvgTrainTime()
                            Gets the average time of all folds in train.
                            Returns:
                            @@ -590,13 +652,13 @@

                            getAvgTrainTime

                          - +
                          • getAvgTestTime

                            -
                            public double getAvgTestTime()
                            +
                            public double getAvgTestTime()
                            Gets the average time of all folds in test.
                            Returns:
                            @@ -604,13 +666,13 @@

                            getAvgTestTime

                          - +
                          • getStdTrainTime

                            -
                            public double getStdTrainTime()
                            +
                            public double getStdTrainTime()
                            Gets the standard deviation time of all folds in train.
                            Returns:
                            @@ -618,13 +680,13 @@

                            getStdTrainTime

                          - +
                          • getStdTestTime

                            -
                            public double getStdTestTime()
                            +
                            public double getStdTestTime()
                            Gets the standard deviation time of all folds in test.
                            Returns:
                            @@ -632,30 +694,30 @@

                            getStdTestTime

                          - +
                          • getEvaluation

                            -
                            public mulan.evaluation.MultipleEvaluation getEvaluation()
                            -
                            Description copied from interface: IEvaluator
                            +
                            public mulan.evaluation.MultipleEvaluation getEvaluation()
                            +
                            Description copied from interface: IEvaluator
                            Gets the evaluation generated by the experiment.
                            Specified by:
                            -
                            getEvaluation in interface IEvaluator<mulan.evaluation.MultipleEvaluation>
                            +
                            getEvaluation in interface IEvaluator<mulan.evaluation.MultipleEvaluation>
                            Returns:
                            The evaluation.
                          - +
                          • getData

                            -
                            public MIMLInstances getData()
                            +
                            public MIMLInstances getData()
                            Gets the data used in the experiment.
                            Returns:
                            @@ -663,18 +725,18 @@

                            getData

                          - +
                          • configure

                            -
                            public void configure(org.apache.commons.configuration2.Configuration configuration)
                            -
                            Description copied from interface: IConfiguration
                            +
                            public void configure​(org.apache.commons.configuration2.Configuration configuration)
                            +
                            Description copied from interface: IConfiguration
                            Method to configure the class with the given configuration.
                            Specified by:
                            -
                            configure in interface IConfiguration
                            +
                            configure in interface IConfiguration
                            Parameters:
                            configuration - Configuration used to configure the class.
                            @@ -682,21 +744,25 @@

                            configure

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/EvaluatorCV.svg b/documentation/apidoc/miml/evaluation/EvaluatorCV.svg new file mode 100644 index 0000000..9030ff9 --- /dev/null +++ b/documentation/apidoc/miml/evaluation/EvaluatorCV.svg @@ -0,0 +1,60 @@ +EvaluatorCVmiml.evaluationmultipleEvaluation: MultipleEvaluationdata: MIMLInstancesnumFolds: intseed: inttrainTime: long[]testTime: long[]EvaluatorCV(MIMLInstances, int)EvaluatorCV()runExperiment(IMIMLClassifier): voidmeanArray(long[]): doublestdArray(long[]): doublegetTrainTime(): long[]getTestTime(): long[]getNumFolds(): intsetNumFolds(int): voidgetSeed(): intsetSeed(int): voidgetAvgTrainTime(): doublegetAvgTestTime(): doublegetStdTrainTime(): doublegetStdTestTime(): doublegetEvaluation(): MultipleEvaluationgetData(): MIMLInstancesconfigure(Configuration): voidIConfigurationmiml.coreconfigure(Configuration): voidIEvaluatormiml.evaluationMultipleEvaluationrunExperiment(IMIMLClassifier): voidgetEvaluation(): MultipleEvaluationUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/evaluation/EvaluatorHoldout.html b/documentation/apidoc/miml/evaluation/EvaluatorHoldout.html old mode 100755 new mode 100644 index 12c6dcc..de34ad9 --- a/documentation/apidoc/miml/evaluation/EvaluatorHoldout.html +++ b/documentation/apidoc/miml/evaluation/EvaluatorHoldout.html @@ -1,12 +1,22 @@ - + - + EvaluatorHoldout - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.evaluation
                      +

                      Class EvaluatorHoldout

                      @@ -109,13 +134,16 @@

                      Class EvaluatorHoldout

                    • All Implemented Interfaces:
                      -
                      IConfiguration, IEvaluator<mulan.evaluation.Evaluation>
                      +
                      IConfiguration, IEvaluator<mulan.evaluation.Evaluation>
                      +
                      +
                      +
                      Direct Known Subclasses:
                      +
                      EvaluatorHoldoutClus

                      -
                      public class EvaluatorHoldout
                       extends java.lang.Object
                      -implements IConfiguration, IEvaluator<mulan.evaluation.Evaluation>
                      +implements IConfiguration, IEvaluator<mulan.evaluation.Evaluation>
                      Class that allow evaluate an algorithm applying a holdout method.
                      Version:
                      @@ -130,140 +158,163 @@

                      Class EvaluatorHoldout

                    • @@ -278,12 +330,13 @@

                      Methods inherited from class java.lang.Object

                      • +
                          -
                        • +
                        • Field Detail

                          - +
                            @@ -293,27 +346,27 @@

                            evaluation

                            The evaluation method used in holdout.
                          - + - + - +
                            @@ -323,7 +376,7 @@

                            trainTime

                            Train time in milliseconds.
                          - +
                            @@ -335,20 +388,22 @@

                            testTime

                        +
                        +
                          -
                        • +
                        • Constructor Detail

                          - +
                          • EvaluatorHoldout

                            -
                            public EvaluatorHoldout(MIMLInstances trainData,
                            -                        MIMLInstances testData)
                            +
                            public EvaluatorHoldout​(MIMLInstances trainData,
                            +                        MIMLInstances testData)
                                              throws mulan.data.InvalidDataFormatException
                            Instantiates a new holdout evaluator with provided train and test partitions.
                            @@ -360,13 +415,13 @@

                            EvaluatorHoldout

                          - +
                          • EvaluatorHoldout

                            -
                            public EvaluatorHoldout(MIMLInstances mimlDataSet,
                            +
                            public EvaluatorHoldout​(MIMLInstances mimlDataSet,
                                                     double percentageTrain)
                                              throws java.lang.Exception
                            Instantiates a new holdout evaluator with random partitioning method.
                            @@ -379,13 +434,13 @@

                            EvaluatorHoldout

                          - +
                          • EvaluatorHoldout

                            -
                            public EvaluatorHoldout(MIMLInstances mimlDataSet,
                            +
                            public EvaluatorHoldout​(MIMLInstances mimlDataSet,
                                                     double percentageTrain,
                                                     int seed,
                                                     int method)
                            @@ -397,17 +452,17 @@ 

                            EvaluatorHoldout

                            percentageTrain - The percentage of train.
                            seed - Seed for randomization.
                            method - partitioning method. -
                              -
                            • 1 random partitioning
                            • -
                            • 2 powerset partitioning
                            • -
                            • 3 iterative partitioning
                            • -
                            +
                              +
                            • 1 random partitioning
                            • +
                            • 2 powerset partitioning
                            • +
                            • 3 iterative partitioning
                            • +
                            Throws:
                            java.lang.Exception - If occur an error during holdout experiment.
                          - +
                            @@ -419,36 +474,38 @@

                            EvaluatorHoldout

                        +
                        +
                          -
                        • +
                        • Method Detail

                          - + - +
                          • getTrainTime

                            -
                            public long getTrainTime()
                            +
                            public long getTrainTime()
                            Gets the time spent in training.
                            Returns:
                            @@ -456,13 +513,13 @@

                            getTrainTime

                          - +
                          • getTestTime

                            -
                            public long getTestTime()
                            +
                            public long getTestTime()
                            Gets the time spent in testing.
                            Returns:
                            @@ -470,30 +527,30 @@

                            getTestTime

                          - +
                          • getEvaluation

                            -
                            public mulan.evaluation.Evaluation getEvaluation()
                            -
                            Description copied from interface: IEvaluator
                            +
                            public mulan.evaluation.Evaluation getEvaluation()
                            +
                            Description copied from interface: IEvaluator
                            Gets the evaluation generated by the experiment.
                            Specified by:
                            -
                            getEvaluation in interface IEvaluator<mulan.evaluation.Evaluation>
                            +
                            getEvaluation in interface IEvaluator<mulan.evaluation.Evaluation>
                            Returns:
                            The evaluation.
                          - +
                          • getData

                            -
                            public MIMLInstances getData()
                            +
                            public MIMLInstances getData()
                            Gets the data used in the experiment.
                            Returns:
                            @@ -501,18 +558,18 @@

                            getData

                          - +
                          • configure

                            -
                            public void configure(org.apache.commons.configuration2.Configuration configuration)
                            -
                            Description copied from interface: IConfiguration
                            +
                            public void configure​(org.apache.commons.configuration2.Configuration configuration)
                            +
                            Description copied from interface: IConfiguration
                            Method to configure the class with the given configuration.
                            Specified by:
                            -
                            configure in interface IConfiguration
                            +
                            configure in interface IConfiguration
                            Parameters:
                            configuration - Configuration used to configure the class.
                            @@ -520,21 +577,25 @@

                            configure

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/EvaluatorHoldout.svg b/documentation/apidoc/miml/evaluation/EvaluatorHoldout.svg new file mode 100644 index 0000000..de11a18 --- /dev/null +++ b/documentation/apidoc/miml/evaluation/EvaluatorHoldout.svg @@ -0,0 +1,51 @@ +EvaluatorHoldoutmiml.evaluationevaluation: EvaluationtrainData: MIMLInstancestestData: MIMLInstancestrainTime: longtestTime: longEvaluatorHoldout(MIMLInstances, MIMLInstances)EvaluatorHoldout(MIMLInstances, double)EvaluatorHoldout(MIMLInstances, double, int, int)EvaluatorHoldout()runExperiment(IMIMLClassifier): voidgetTrainTime(): longgetTestTime(): longgetEvaluation(): EvaluationgetData(): MIMLInstancesconfigure(Configuration): voidIConfigurationmiml.coreconfigure(Configuration): voidIEvaluatormiml.evaluationEvaluationrunExperiment(IMIMLClassifier): voidgetEvaluation(): EvaluationUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/evaluation/EvaluatorHoldoutClus.html b/documentation/apidoc/miml/evaluation/EvaluatorHoldoutClus.html new file mode 100644 index 0000000..c4db5e2 --- /dev/null +++ b/documentation/apidoc/miml/evaluation/EvaluatorHoldoutClus.html @@ -0,0 +1,495 @@ + + + + + +EvaluatorHoldoutClus + + + + + + + + + + + + + + + +
                      + +
                      + +
                      +
                      + +

                      Class EvaluatorHoldoutClus

                      +
                      +
                      + +
                      +
                        +
                      • +
                        +
                        All Implemented Interfaces:
                        +
                        IConfiguration, IEvaluator<mulan.evaluation.Evaluation>
                        +
                        +
                        +
                        public class EvaluatorHoldoutClus
                        +extends EvaluatorHoldout
                        +
                        Class that allow evaluate a classifier applying a holdout method with the + clus System. NOTE that that RFPCT calls clus library that performs, in a + single call, train and test steps. Therefore: + 1. Train time got by miml library is not relevant. + 2. Test time got by miml libraryr really computes the train and test time + required by the call to clus library.
                        +
                        +
                        Version:
                        +
                        20230117
                        +
                        Author:
                        +
                        Eva Gibaja
                        +
                        +
                      • +
                      +
                      +
                      +
                        +
                      • + +
                        + +
                        + +
                        +
                          +
                        • + + +

                          Constructor Summary

                          + + + + + + + + + + + + + + +
                          Constructors 
                          ConstructorDescription
                          EvaluatorHoldoutClus() +
                          No-argument constructor for xml configuration.
                          +
                          EvaluatorHoldoutClus​(MIMLInstances trainData, + MIMLInstances testData, + java.lang.String clusWorkingDir, + java.lang.String clusDatasetName) +
                          Instantiates a new holdout evaluator with provided train and test partitions.
                          +
                          +
                        • +
                        +
                        + +
                        + +
                        +
                      • +
                      +
                      +
                      +
                        +
                      • + +
                        +
                          +
                        • + + +

                          Field Detail

                          + + + +
                            +
                          • +

                            clusWorkingDir

                            +
                            protected java.lang.String clusWorkingDir
                            +
                            The directory where all temporary files needed or generated by CLUS library + are written.
                            +
                          • +
                          + + + +
                            +
                          • +

                            clusDatasetName

                            +
                            protected java.lang.String clusDatasetName
                            +
                            The dataset name that will be used for training, test and settings files.
                            +
                          • +
                          +
                        • +
                        +
                        + +
                        +
                          +
                        • + + +

                          Constructor Detail

                          + + + +
                            +
                          • +

                            EvaluatorHoldoutClus

                            +
                            public EvaluatorHoldoutClus​(MIMLInstances trainData,
                            +                            MIMLInstances testData,
                            +                            java.lang.String clusWorkingDir,
                            +                            java.lang.String clusDatasetName)
                            +                     throws mulan.data.InvalidDataFormatException
                            +
                            Instantiates a new holdout evaluator with provided train and test partitions.
                            +
                            +
                            Parameters:
                            +
                            trainData - The train data used in the experiment.
                            +
                            testData - The test data used in the experiment.
                            +
                            clusDatasetName - The dataset name that will be used for training, test + and settings files.
                            +
                            clusWorkingDir - The directory where all temporary files needed or + generated by CLUS library are written.
                            +
                            Throws:
                            +
                            mulan.data.InvalidDataFormatException - To be handled.
                            +
                            +
                          • +
                          + + + +
                            +
                          • +

                            EvaluatorHoldoutClus

                            +
                            public EvaluatorHoldoutClus()
                            +
                            No-argument constructor for xml configuration.
                            +
                          • +
                          +
                        • +
                        +
                        + +
                        +
                          +
                        • + + +

                          Method Detail

                          + + + + + + + +
                            +
                          • +

                            configure

                            +
                            public void configure​(org.apache.commons.configuration2.Configuration configuration)
                            +
                            Description copied from interface: IConfiguration
                            +
                            Method to configure the class with the given configuration.
                            +
                            +
                            Specified by:
                            +
                            configure in interface IConfiguration
                            +
                            Overrides:
                            +
                            configure in class EvaluatorHoldout
                            +
                            Parameters:
                            +
                            configuration - Configuration used to configure the class.
                            +
                            +
                          • +
                          + + + +
                            +
                          • +

                            prepareMeasuresClassification

                            +
                            protected java.util.List<mulan.evaluation.measure.Measure> prepareMeasuresClassification​(mulan.data.MultiLabelInstances mlTrainData)
                            +
                          • +
                          +
                        • +
                        +
                        +
                      • +
                      +
                      +
                      +
                      + + + + diff --git a/documentation/apidoc/miml/evaluation/IEvaluator.html b/documentation/apidoc/miml/evaluation/IEvaluator.html old mode 100755 new mode 100644 index 1a2d653..363f651 --- a/documentation/apidoc/miml/evaluation/IEvaluator.html +++ b/documentation/apidoc/miml/evaluation/IEvaluator.html @@ -1,12 +1,22 @@ - + - + IEvaluator - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.evaluation
                      +

                      Interface IEvaluator<T>

                      @@ -105,10 +130,9 @@

                      Interface IEvaluator<T>

                      All Known Implementing Classes:
                      -
                      EvaluatorCV, EvaluatorHoldout
                      +
                      EvaluatorCV, EvaluatorHoldout, EvaluatorHoldoutClus

                      -
                      public interface IEvaluator<T>
                      Interface for run and evaluate a experiment.
                      @@ -124,32 +148,37 @@

                      Interface IEvaluator<T>

                    • +
                      +
                    • @@ -157,18 +186,19 @@

                      Method Summary

                      • +
                          -
                        • +
                        • Method Detail

                          - +
                          • runExperiment

                            -
                            void runExperiment(IMIMLClassifier classifier)
                            +
                            void runExperiment​(IMIMLClassifier classifier)
                                         throws java.lang.Exception
                            Run an experiment.
                            @@ -179,13 +209,13 @@

                            runExperiment

                          - +
                          • getEvaluation

                            -
                            T getEvaluation()
                            +
                            T getEvaluation()
                            Gets the evaluation generated by the experiment.
                            Returns:
                            @@ -195,21 +225,25 @@

                            getEvaluation

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/IEvaluator.svg b/documentation/apidoc/miml/evaluation/IEvaluator.svg new file mode 100644 index 0000000..044eef9 --- /dev/null +++ b/documentation/apidoc/miml/evaluation/IEvaluator.svg @@ -0,0 +1,23 @@ +IEvaluatormiml.evaluationTrunExperiment(IMIMLClassifier): voidgetEvaluation(): TUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/evaluation/class-use/EvaluatorCV.html b/documentation/apidoc/miml/evaluation/class-use/EvaluatorCV.html old mode 100755 new mode 100644 index d7b08a4..82c3ccf --- a/documentation/apidoc/miml/evaluation/class-use/EvaluatorCV.html +++ b/documentation/apidoc/miml/evaluation/class-use/EvaluatorCV.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.evaluation.EvaluatorCV - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.evaluation.EvaluatorCV

                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldout.html b/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldout.html old mode 100755 new mode 100644 index 85e9b84..c241585 --- a/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldout.html +++ b/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldout.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.evaluation.EvaluatorHoldout - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.evaluation.EvaluatorHoldout

                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldoutClus.html b/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldoutClus.html new file mode 100644 index 0000000..2b82209 --- /dev/null +++ b/documentation/apidoc/miml/evaluation/class-use/EvaluatorHoldoutClus.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.evaluation.EvaluatorHoldoutClus + + + + + + + + + + + + + + + +
                      + +
                      +
                      +
                      +

                      Uses of Class
                      miml.evaluation.EvaluatorHoldoutClus

                      +
                      +
                      No usage of miml.evaluation.EvaluatorHoldoutClus
                      +
                      + + + diff --git a/documentation/apidoc/miml/evaluation/class-use/IEvaluator.html b/documentation/apidoc/miml/evaluation/class-use/IEvaluator.html old mode 100755 new mode 100644 index 9ecf79c..b6bd957 --- a/documentation/apidoc/miml/evaluation/class-use/IEvaluator.html +++ b/documentation/apidoc/miml/evaluation/class-use/IEvaluator.html @@ -1,12 +1,22 @@ - + - + Uses of Interface miml.evaluation.IEvaluator - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Interface
                      miml.evaluation.IEvaluator

                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/package-frame.html b/documentation/apidoc/miml/evaluation/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/evaluation/package-summary.html b/documentation/apidoc/miml/evaluation/package-summary.html old mode 100755 new mode 100644 index de22c9f..0c72d35 --- a/documentation/apidoc/miml/evaluation/package-summary.html +++ b/documentation/apidoc/miml/evaluation/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.evaluation - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Package miml.evaluation

                      • - +
                        @@ -83,7 +108,7 @@

                        Package miml.evaluation

                        - + @@ -92,7 +117,7 @@

                        Package miml.evaluation

                        Interface Summary 
                        Interface
                        IEvaluator<T>IEvaluator<T>
                        Interface for run and evaluate a experiment.
                      • - +
                        @@ -100,33 +125,43 @@

                        Package miml.evaluation

                        - + - + + + + +
                        Class Summary 
                        Class
                        EvaluatorCVEvaluatorCV
                        Class that allow evaluate an algorithm applying a cross-validation method with random partitioning.
                        EvaluatorHoldoutEvaluatorHoldout
                        Class that allow evaluate an algorithm applying a holdout method.
                        EvaluatorHoldoutClus +
                        Class that allow evaluate a classifier applying a holdout method with the + clus System.
                        +
                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/package-tree.html b/documentation/apidoc/miml/evaluation/package-tree.html old mode 100755 new mode 100644 index b25f020..884ab9b --- a/documentation/apidoc/miml/evaluation/package-tree.html +++ b/documentation/apidoc/miml/evaluation/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.evaluation Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Hierarchy For Package miml.evaluation

                      Package Hierarchies: @@ -77,30 +102,41 @@

                      Hierarchy For Package miml.evaluation

                      +

                      Class Hierarchy

                      +
                      +

                      Interface Hierarchy

                      +
                      +
                      + diff --git a/documentation/apidoc/miml/evaluation/package-use.html b/documentation/apidoc/miml/evaluation/package-use.html old mode 100755 new mode 100644 index 9eaadb4..dad3d9e --- a/documentation/apidoc/miml/evaluation/package-use.html +++ b/documentation/apidoc/miml/evaluation/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.evaluation - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Package
                      miml.evaluation

                      + +
                      +
                      @@ -254,18 +295,19 @@

                      Methods inherited from class java.lang.Object

                      • +
                          -
                        • +
                        • Constructor Detail

                          - +
                          • BaseMIMLReport

                            -
                            public BaseMIMLReport(java.util.List<java.lang.String> measures,
                            +
                            public BaseMIMLReport​(java.util.List<java.lang.String> measures,
                                                   java.lang.String filename,
                                                   boolean std,
                                                   boolean labels,
                            @@ -284,7 +326,7 @@ 

                            BaseMIMLReport

                          - +
                            @@ -296,19 +338,21 @@

                            BaseMIMLReport

                        +
                        +
                          -
                        • +
                        • Method Detail

                          - +
                          • crossValidationToCSV

                            -
                            protected java.lang.String crossValidationToCSV(EvaluatorCV evaluator)
                            +
                            protected java.lang.String crossValidationToCSV​(EvaluatorCV evaluator)
                                                                      throws java.lang.Exception
                            Read the cross-validation results and transform to CSV format.
                            @@ -321,13 +365,13 @@

                            crossValidationToCSV

                          - +
                          • holdoutToCSV

                            -
                            protected java.lang.String holdoutToCSV(EvaluatorHoldout evaluator)
                            +
                            protected java.lang.String holdoutToCSV​(EvaluatorHoldout evaluator)
                                                              throws java.lang.Exception
                            Read the holdout results and transform to CSV format.
                            @@ -340,13 +384,13 @@

                            holdoutToCSV

                          - +
                          • crossValidationToString

                            -
                            protected java.lang.String crossValidationToString(EvaluatorCV evaluator)
                            +
                            protected java.lang.String crossValidationToString​(EvaluatorCV evaluator)
                                                                         throws java.lang.Exception
                            Read the cross-validation results and transform to plain text.
                            @@ -359,13 +403,13 @@

                            crossValidationToString

                          - +
                          • holdoutToString

                            -
                            protected java.lang.String holdoutToString(EvaluatorHoldout evaluator)
                            +
                            protected java.lang.String holdoutToString​(EvaluatorHoldout evaluator)
                                                                 throws java.lang.Exception
                            Read the holdout results and transform to plain text.
                            @@ -378,15 +422,15 @@

                            holdoutToString

                          - +
                          • toCSV

                            -
                            public java.lang.String toCSV(IEvaluator evaluator)
                            +
                            public java.lang.String toCSV​(IEvaluator evaluator)
                                                    throws java.lang.Exception
                            -
                            Description copied from interface: IReport
                            +
                            Description copied from interface: IReport
                            Convert to CSV the evaluator results.
                            Parameters:
                            @@ -398,15 +442,15 @@

                            toCSV

                          - +
                          • toString

                            -
                            public java.lang.String toString(IEvaluator evaluator)
                            +
                            public java.lang.String toString​(IEvaluator evaluator)
                                                       throws java.lang.Exception
                            -
                            Description copied from interface: IReport
                            +
                            Description copied from interface: IReport
                            Convert to plain text the evaluator results.
                            Parameters:
                            @@ -418,14 +462,14 @@

                            toString

                          - +
                          • configure

                            -
                            public void configure(org.apache.commons.configuration2.Configuration configuration)
                            -
                            Description copied from interface: IConfiguration
                            +
                            public void configure​(org.apache.commons.configuration2.Configuration configuration)
                            +
                            Description copied from interface: IConfiguration
                            Method to configure the class with the given configuration.
                            Parameters:
                            @@ -435,21 +479,25 @@

                            configure

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/report/BaseMIMLReport.svg b/documentation/apidoc/miml/report/BaseMIMLReport.svg new file mode 100644 index 0000000..9f01442 --- /dev/null +++ b/documentation/apidoc/miml/report/BaseMIMLReport.svg @@ -0,0 +1,36 @@ +BaseMIMLReportmiml.reportBaseMIMLReport(List<String>, String, boolean, boolean, boolean)BaseMIMLReport()crossValidationToCSV(EvaluatorCV): StringholdoutToCSV(EvaluatorHoldout): StringcrossValidationToString(EvaluatorCV): StringholdoutToString(EvaluatorHoldout): StringtoCSV(IEvaluator): StringtoString(IEvaluator): Stringconfigure(Configuration): voidMIMLReportmiml.reportUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/report/IReport.html b/documentation/apidoc/miml/report/IReport.html old mode 100755 new mode 100644 index 6319895..a3dbe2f --- a/documentation/apidoc/miml/report/IReport.html +++ b/documentation/apidoc/miml/report/IReport.html @@ -1,12 +1,22 @@ - + - + IReport - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.report
                      +
                      Package miml.report

                      Interface IReport

                      @@ -101,10 +126,9 @@

                      Interface IReport

                    • All Known Implementing Classes:
                      -
                      BaseMIMLReport, MIMLReport
                      +
                      BaseMIMLReport, MIMLReport

                      -
                      public interface IReport
                      Interface for generate reports with the format specified.
                      @@ -120,38 +144,44 @@

                      Interface IReport

                    • @@ -159,18 +189,19 @@

                      Method Summary

                      • +
                          -
                        • +
                        • Method Detail

                          - +
                          • toCSV

                            -
                            java.lang.String toCSV(IEvaluator evaluator)
                            +
                            java.lang.String toCSV​(IEvaluator evaluator)
                                             throws java.lang.Exception
                            Convert to CSV the evaluator results.
                            @@ -183,13 +214,13 @@

                            toCSV

                          - +
                          • toString

                            -
                            java.lang.String toString(IEvaluator evaluator)
                            +
                            java.lang.String toString​(IEvaluator evaluator)
                                                throws java.lang.Exception
                            Convert to plain text the evaluator results.
                            @@ -202,13 +233,13 @@

                            toString

                          - +
                          • saveReport

                            -
                            void saveReport(java.lang.String report)
                            +
                            void saveReport​(java.lang.String report)
                                      throws java.io.FileNotFoundException
                            Save in a file the specified report.
                            @@ -221,21 +252,25 @@

                            saveReport

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/report/IReport.svg b/documentation/apidoc/miml/report/IReport.svg new file mode 100644 index 0000000..43b20e2 --- /dev/null +++ b/documentation/apidoc/miml/report/IReport.svg @@ -0,0 +1,24 @@ +IReportmiml.reporttoCSV(IEvaluator): StringtoString(IEvaluator): StringsaveReport(String): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/report/MIMLReport.html b/documentation/apidoc/miml/report/MIMLReport.html old mode 100755 new mode 100644 index 725b2e4..5343af2 --- a/documentation/apidoc/miml/report/MIMLReport.html +++ b/documentation/apidoc/miml/report/MIMLReport.html @@ -1,12 +1,22 @@ - + - + MIMLReport - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +
                      -
                      miml.report
                      +
                      Package miml.report

                      Class MIMLReport

                      @@ -109,17 +134,16 @@

                      Class MIMLReport

                    • All Implemented Interfaces:
                      -
                      IConfiguration, IReport
                      +
                      IConfiguration, IReport
                      Direct Known Subclasses:
                      -
                      BaseMIMLReport
                      +
                      BaseMIMLReport

                      -
                      public abstract class MIMLReport
                       extends java.lang.Object
                      -implements IReport, IConfiguration
                      +implements IReport, IConfiguration
                      Abstract class for a MIMLReport.
                      Version:
                      @@ -134,186 +158,214 @@

                      Class MIMLReport

                      • +
                          -
                        • +
                        • Field Summary

                          - +
                          - + + - + - + - + - + - +
                          Fields 
                          Modifier and TypeField and DescriptionFieldDescription
                          protected java.lang.Stringfilename +filename
                          The name of the file where report is saved.
                          protected booleanheader +header
                          If the header is going to be printed.
                          protected booleanlabels +labels
                          If macro measures are broken down by labels.
                          protected java.util.List<java.lang.String>measures +measures
                          The measures shown in the report.
                          protected booleanstd +std
                          If measures' standard deviation are shown.
                        +
                        +
                          -
                        • +
                        • Constructor Summary

                          - +
                          - + + - + - +
                          Constructors 
                          Constructor and DescriptionConstructorDescription
                          MIMLReport() +MIMLReport()
                          No-argument constructor for xml configuration.
                          MIMLReport(java.util.List<java.lang.String> measures, +MIMLReport​(java.util.List<java.lang.String> measures, java.lang.String filename, boolean std, boolean labels, - boolean header) + boolean header)
                          Basic constructor to initialize the report.
                        +
                        +
                          -
                        • +
                        • Method Summary

                          - +
                          - + + - + - + - + - + - + - + - + - + - + - + - + - +
                          All Methods Instance Methods Concrete Methods 
                          Modifier and TypeMethod and DescriptionMethodDescription
                          protected java.util.List<mulan.evaluation.measure.Measure>filterMeasures(java.util.List<mulan.evaluation.measure.Measure> allMeasures) +filterMeasures​(java.util.List<mulan.evaluation.measure.Measure> allMeasures)
                          Filter measures chosen to be shown in the experiment report.
                          java.lang.StringgetFilename() +getFilename()
                          Gets the filename.
                          java.util.List<java.lang.String>getMeasures() +getMeasures()
                          Gets the measures shown in the report.
                          booleanisHeader() +isHeader()
                          Checks if header is shown.
                          booleanisLabels() +isLabels()
                          Checks if measure for each label (macro-averaged measures) is shown.
                          booleanisStd() +isStd()
                          Checks if std is going to be shown (only cross-validation).
                          voidsaveReport(java.lang.String report) +saveReport​(java.lang.String report)
                          Save in a file the specified report.
                          voidsetFilename(java.lang.String filename) +setFilename​(java.lang.String filename)
                          Sets the name of the file.
                          voidsetHeader(boolean header) +setHeader​(boolean header)
                          Sets if header is shown.
                          voidsetLabels(boolean labels) +setLabels​(boolean labels)
                          Sets if measure for each label (macro-averaged measures) is shown.
                          voidsetMeasures(java.util.List<java.lang.String> measures) +setMeasures​(java.util.List<java.lang.String> measures)
                          Sets the measures shown in the report.
                          voidsetStd(boolean std) +setStd​(boolean std)
                          Sets if the std is going to be shown (only cross-validation).
                            -
                          • +
                          • Methods inherited from class java.lang.Object

                            clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                        +
                    • @@ -321,12 +373,13 @@

                      Methods inherited from interface miml.core.
                    • +
                        -
                      • +
                      • Field Detail

                        - +
                          @@ -336,7 +389,7 @@

                          measures

                          The measures shown in the report.
                        - +
                          @@ -346,7 +399,7 @@

                          filename

                          The name of the file where report is saved.
                        - +
                          @@ -356,7 +409,7 @@

                          std

                          If measures' standard deviation are shown.
                        - +
                          @@ -366,7 +419,7 @@

                          labels

                          If macro measures are broken down by labels.
                        - +
                          @@ -378,19 +431,21 @@

                          header

                      +
                      +
                        -
                      • +
                      • Constructor Detail

                        - +
                        • MIMLReport

                          -
                          public MIMLReport(java.util.List<java.lang.String> measures,
                          +
                          public MIMLReport​(java.util.List<java.lang.String> measures,
                                             java.lang.String filename,
                                             boolean std,
                                             boolean labels,
                          @@ -409,7 +464,7 @@ 

                          MIMLReport

                        - +
                          @@ -421,19 +476,21 @@

                          MIMLReport

                      +
                      +
                        -
                      • +
                      • Method Detail

                        - +
                        • filterMeasures

                          -
                          protected java.util.List<mulan.evaluation.measure.Measure> filterMeasures(java.util.List<mulan.evaluation.measure.Measure> allMeasures)
                          +
                          protected java.util.List<mulan.evaluation.measure.Measure> filterMeasures​(java.util.List<mulan.evaluation.measure.Measure> allMeasures)
                                                                                              throws java.lang.Exception
                          Filter measures chosen to be shown in the experiment report.
                          @@ -446,18 +503,18 @@

                          filterMeasures

                        - +
                        • saveReport

                          -
                          public void saveReport(java.lang.String report)
                          +
                          public void saveReport​(java.lang.String report)
                                           throws java.io.FileNotFoundException
                          Save in a file the specified report.
                          Specified by:
                          -
                          saveReport in interface IReport
                          +
                          saveReport in interface IReport
                          Parameters:
                          report - The report.
                          Throws:
                          @@ -465,13 +522,13 @@

                          saveReport

                        - +
                        • getMeasures

                          -
                          public java.util.List<java.lang.String> getMeasures()
                          +
                          public java.util.List<java.lang.String> getMeasures()
                          Gets the measures shown in the report.
                          Returns:
                          @@ -479,13 +536,13 @@

                          getMeasures

                        - +
                        • setMeasures

                          -
                          public void setMeasures(java.util.List<java.lang.String> measures)
                          +
                          public void setMeasures​(java.util.List<java.lang.String> measures)
                                            throws java.lang.Exception
                          Sets the measures shown in the report.
                          @@ -496,13 +553,13 @@

                          setMeasures

                        - +
                        • getFilename

                          -
                          public java.lang.String getFilename()
                          +
                          public java.lang.String getFilename()
                          Gets the filename.
                          Returns:
                          @@ -510,13 +567,13 @@

                          getFilename

                        - +
                        • setFilename

                          -
                          public void setFilename(java.lang.String filename)
                          +
                          public void setFilename​(java.lang.String filename)
                          Sets the name of the file.
                          Parameters:
                          @@ -524,13 +581,13 @@

                          setFilename

                        - +
                        • isStd

                          -
                          public boolean isStd()
                          +
                          public boolean isStd()
                          Checks if std is going to be shown (only cross-validation).
                          Returns:
                          @@ -538,13 +595,13 @@

                          isStd

                        - +
                        • setStd

                          -
                          public void setStd(boolean std)
                          +
                          public void setStd​(boolean std)
                          Sets if the std is going to be shown (only cross-validation).
                          Parameters:
                          @@ -552,13 +609,13 @@

                          setStd

                        - +
                        • isLabels

                          -
                          public boolean isLabels()
                          +
                          public boolean isLabels()
                          Checks if measure for each label (macro-averaged measures) is shown.
                          Returns:
                          @@ -566,13 +623,13 @@

                          isLabels

                        - +
                        • setLabels

                          -
                          public void setLabels(boolean labels)
                          +
                          public void setLabels​(boolean labels)
                          Sets if measure for each label (macro-averaged measures) is shown.
                          Parameters:
                          @@ -580,13 +637,13 @@

                          setLabels

                        - +
                        • isHeader

                          -
                          public boolean isHeader()
                          +
                          public boolean isHeader()
                          Checks if header is shown.
                          Returns:
                          @@ -594,13 +651,13 @@

                          isHeader

                        - +
                        • setHeader

                          -
                          public void setHeader(boolean header)
                          +
                          public void setHeader​(boolean header)
                          Sets if header is shown.
                          Parameters:
                          @@ -610,21 +667,25 @@

                          setHeader

                      +
                    • +

                      + diff --git a/documentation/apidoc/miml/report/MIMLReport.svg b/documentation/apidoc/miml/report/MIMLReport.svg new file mode 100644 index 0000000..ac0f267 --- /dev/null +++ b/documentation/apidoc/miml/report/MIMLReport.svg @@ -0,0 +1,56 @@ +MIMLReportmiml.reportmeasures: List<String>filename: Stringstd: booleanlabels: booleanheader: booleanMIMLReport(List<String>, String, boolean, boolean, boolean)MIMLReport()filterMeasures(List<Measure>): List<Measure>saveReport(String): voidgetMeasures(): List<String>setMeasures(List<String>): voidgetFilename(): StringsetFilename(String): voidisStd(): booleansetStd(boolean): voidisLabels(): booleansetLabels(boolean): voidisHeader(): booleansetHeader(boolean): voidIReportmiml.reporttoCSV(IEvaluator): StringtoString(IEvaluator): StringsaveReport(String): voidIConfigurationmiml.coreconfigure(Configuration): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/report/class-use/BaseMIMLReport.html b/documentation/apidoc/miml/report/class-use/BaseMIMLReport.html old mode 100755 new mode 100644 index 7c2894a..aea1c12 --- a/documentation/apidoc/miml/report/class-use/BaseMIMLReport.html +++ b/documentation/apidoc/miml/report/class-use/BaseMIMLReport.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.report.BaseMIMLReport - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.report.BaseMIMLReport

                      No usage of miml.report.BaseMIMLReport
                      +
                      + diff --git a/documentation/apidoc/miml/report/class-use/IReport.html b/documentation/apidoc/miml/report/class-use/IReport.html old mode 100755 new mode 100644 index 930e355..818b1b5 --- a/documentation/apidoc/miml/report/class-use/IReport.html +++ b/documentation/apidoc/miml/report/class-use/IReport.html @@ -1,12 +1,22 @@ - + - + Uses of Interface miml.report.IReport - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Interface
                      miml.report.IReport

                      +
                      + diff --git a/documentation/apidoc/miml/report/class-use/MIMLReport.html b/documentation/apidoc/miml/report/class-use/MIMLReport.html old mode 100755 new mode 100644 index 26ada63..f3bc99d --- a/documentation/apidoc/miml/report/class-use/MIMLReport.html +++ b/documentation/apidoc/miml/report/class-use/MIMLReport.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.report.MIMLReport - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.report.MIMLReport

                      +
                      + diff --git a/documentation/apidoc/miml/report/package-frame.html b/documentation/apidoc/miml/report/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/report/package-summary.html b/documentation/apidoc/miml/report/package-summary.html old mode 100755 new mode 100644 index 971f5d3..4b390e5 --- a/documentation/apidoc/miml/report/package-summary.html +++ b/documentation/apidoc/miml/report/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.report - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Package miml.report

                      + +
                        -
                      • +
                      • Method Summary

                        - +
                        - + + - +
                        All Methods Static Methods Concrete Methods 
                        Modifier and TypeMethod and DescriptionMethodDescription
                        static voidmain(java.lang.String[] args) +main​(java.lang.String[] args)
                        The main method to configure and run an algorithm.
                          -
                        • +
                        • Methods inherited from class java.lang.Object

                          @@ -170,6 +201,7 @@

                          Methods inherited from class java.lang.Object

                      +
                      @@ -177,12 +209,13 @@

                      Methods inherited from class java.lang.Object

                      • +
                          -
                        • +
                        • Constructor Detail

                          - +
                            @@ -193,19 +226,21 @@

                            RunAlgorithm

                        +
                        +
                          -
                        • +
                        • Method Detail

                          - +
                          • main

                            -
                            public static void main(java.lang.String[] args)
                            +
                            public static void main​(java.lang.String[] args)
                            The main method to configure and run an algorithm.
                            Parameters:
                            @@ -215,21 +250,25 @@

                            main

                        +
                      +
                      + diff --git a/documentation/apidoc/miml/run/RunAlgorithm.svg b/documentation/apidoc/miml/run/RunAlgorithm.svg new file mode 100644 index 0000000..eda526e --- /dev/null +++ b/documentation/apidoc/miml/run/RunAlgorithm.svg @@ -0,0 +1,22 @@ +RunAlgorithmmiml.runmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/run/class-use/RunAlgorithm.html b/documentation/apidoc/miml/run/class-use/RunAlgorithm.html old mode 100755 new mode 100644 index 0ce70d8..288eb75 --- a/documentation/apidoc/miml/run/class-use/RunAlgorithm.html +++ b/documentation/apidoc/miml/run/class-use/RunAlgorithm.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.run.RunAlgorithm - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Uses of Class
                      miml.run.RunAlgorithm

                      No usage of miml.run.RunAlgorithm
                      +
                      + diff --git a/documentation/apidoc/miml/run/package-frame.html b/documentation/apidoc/miml/run/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/run/package-summary.html b/documentation/apidoc/miml/run/package-summary.html old mode 100755 new mode 100644 index 11fb329..757d721 --- a/documentation/apidoc/miml/run/package-summary.html +++ b/documentation/apidoc/miml/run/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.run - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                      + +
                      +

                      Package miml.run

                      • - +
                        @@ -83,7 +108,7 @@

                        Package miml.run

                        - +
                        Class Summary 
                        Class
                        RunAlgorithmRunAlgorithm
                        Class that allow run any algorithm of the library configured by a file configuration.
                        @@ -94,16 +119,19 @@

                        Package miml.run

                        + + diff --git a/documentation/apidoc/miml/run/package-tree.html b/documentation/apidoc/miml/run/package-tree.html old mode 100755 new mode 100644 index 4db8bd5..0a326fb --- a/documentation/apidoc/miml/run/package-tree.html +++ b/documentation/apidoc/miml/run/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.run Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Hierarchy For Package miml.run

                        Package Hierarchies: @@ -77,25 +102,30 @@

                        Hierarchy For Package miml.run

                        +

                        Class Hierarchy

                        +
                        +
                        + diff --git a/documentation/apidoc/miml/run/package-use.html b/documentation/apidoc/miml/run/package-use.html old mode 100755 new mode 100644 index d0a0119..1aeea75 --- a/documentation/apidoc/miml/run/package-use.html +++ b/documentation/apidoc/miml/run/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.run - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Uses of Package
                        miml.run

                        No usage of miml.run
                        +
                        + diff --git a/documentation/apidoc/miml/run/package.svg b/documentation/apidoc/miml/run/package.svg new file mode 100644 index 0000000..7d3205a --- /dev/null +++ b/documentation/apidoc/miml/run/package.svg @@ -0,0 +1,23 @@ +miml.runRunAlgorithmmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.html old mode 100755 new mode 100644 index 0cf8f78..afd6b62 --- a/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.html @@ -1,12 +1,22 @@ - + - + BRTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +
                        -
                        miml.transformation.mimlTOmi
                        +

                        Class BRTransformation

                        @@ -109,10 +134,9 @@

                        Class BRTransformation

                      • All Implemented Interfaces:
                        -
                        java.io.Serializable
                        +
                        java.io.Serializable

                        -
                        public class BRTransformation
                         extends java.lang.Object
                         implements java.io.Serializable
                        @@ -133,108 +157,125 @@

                        Class BRTransformation

                      • @@ -249,12 +291,13 @@

                        Methods inherited from class java.lang.Object

                        • +
                            -
                          • +
                          • Field Detail

                            - +
                              @@ -268,7 +311,7 @@

                              serialVersionUID

                            - +
                              @@ -278,31 +321,33 @@

                              BRT

                              Binary Relevance Transformation.
                            - +
                          +
                          +
                            -
                          • +
                          • Constructor Detail

                            - +
                            • BRTransformation

                              -
                              public BRTransformation(MIMLInstances dataSet)
                              +
                              public BRTransformation​(MIMLInstances dataSet)
                              Constructor.
                              Parameters:
                              @@ -312,19 +357,21 @@

                              BRTransformation

                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • transformBag

                              -
                              public weka.core.Instance transformBag(MIMLBag instance,
                              +
                              public weka.core.Instance transformBag​(MIMLBag instance,
                                                                      int labelToKeep)
                              Removes all label attributes except labelToKeep.
                              @@ -336,13 +383,13 @@

                              transformBag

                            - +
                            • transformBag

                              -
                              public weka.core.Instance transformBag(int bagIndex,
                              +
                              public weka.core.Instance transformBag​(int bagIndex,
                                                                      int labelToKeep)
                                                               throws java.lang.Exception
                              Removes all label attributes except labelToKeep.
                              @@ -357,13 +404,13 @@

                              transformBag

                            - +
                            • transformBag

                              -
                              public static weka.core.Instance transformBag(MIMLBag instance,
                              +
                              public static weka.core.Instance transformBag​(MIMLBag instance,
                                                                             int[] labelIndices,
                                                                             int indexToKeep)
                              Remove all label attributes except label at position indexToKeep.
                              @@ -378,13 +425,13 @@

                              transformBag

                            - +
                            • transformBags

                              -
                              public weka.core.Instances transformBags(int labelToKeep)
                              +
                              public weka.core.Instances transformBags​(int labelToKeep)
                                                                 throws java.lang.Exception
                              Remove all label attributes except labelToKeep.
                              @@ -397,13 +444,13 @@

                              transformBags

                            - +
                            • transformBags

                              -
                              public static weka.core.Instances transformBags(MIMLInstances dataSet,
                              +
                              public static weka.core.Instances transformBags​(MIMLInstances dataSet,
                                                                               int[] labelIndices,
                                                                               int indexToKeep)
                                                                        throws java.lang.Exception
                              @@ -423,21 +470,25 @@

                              transformBags

                          +
                        +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.svg new file mode 100644 index 0000000..9b78d8c --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOmi/BRTransformation.svg @@ -0,0 +1,36 @@ +BRTransformationmiml.transformation.mimlTOmiserialVersionUID: longBRT: BinaryRelevanceTransformationdataSet: MIMLInstancesBRTransformation(MIMLInstances)transformBag(MIMLBag, int): InstancetransformBag(int, int): InstancetransformBag(MIMLBag, int[], int): InstancetransformBags(int): InstancestransformBags(MIMLInstances, int[], int): InstancesSerializablejava.ioUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.html old mode 100755 new mode 100644 index ac4ecc8..c98b6b7 --- a/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.html @@ -1,12 +1,22 @@ - + - + LPTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +
                        -
                        miml.transformation.mimlTOmi
                        +

                        Class LPTransformation

                        @@ -109,10 +134,9 @@

                        Class LPTransformation

                      • All Implemented Interfaces:
                        -
                        java.io.Serializable
                        +
                        java.io.Serializable

                        -
                        public class LPTransformation
                         extends java.lang.Object
                         implements java.io.Serializable
                        @@ -133,81 +157,95 @@

                        Class LPTransformation

                      • @@ -222,12 +261,13 @@

                        Methods inherited from class java.lang.Object

                        • +
                          +
                          +
                            -
                          • +
                          • Constructor Detail

                            - +
                              @@ -271,19 +313,21 @@

                              LPTransformation

                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • getLPT

                              -
                              public mulan.transformations.LabelPowersetTransformation getLPT()
                              +
                              public mulan.transformations.LabelPowersetTransformation getLPT()
                              Returns the format of the transformed instances.
                              Returns:
                              @@ -291,13 +335,13 @@

                              getLPT

                            - +
                            • transformBag

                              -
                              public weka.core.Instance transformBag(MIMLBag bag,
                              +
                              public weka.core.Instance transformBag​(MIMLBag bag,
                                                                      int[] labelIndices)
                                                               throws java.lang.Exception
                              @@ -311,13 +355,13 @@

                              transformBag

                            - +
                            • transformBags

                              -
                              public weka.core.Instances transformBags(MIMLInstances dataSet)
                              +
                              public weka.core.Instances transformBags​(MIMLInstances dataSet)
                                                                 throws java.lang.Exception
                              Parameters:
                              @@ -331,21 +375,25 @@

                              transformBags

                          +
                        +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.svg new file mode 100644 index 0000000..c289332 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOmi/LPTransformation.svg @@ -0,0 +1,32 @@ +LPTransformationmiml.transformation.mimlTOmiserialVersionUID: longLPT: MIMLLabelPowersetTransformationgetLPT(): LabelPowersetTransformationtransformBag(MIMLBag, int[]): InstancetransformBags(MIMLInstances): InstancesSerializablejava.ioUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.html old mode 100755 new mode 100644 index e8494bc..62a6c52 --- a/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.html @@ -1,12 +1,22 @@ - + - + MIMLLabelPowersetTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +
                        -
                        miml.transformation.mimlTOmi
                        +

                        Class MIMLLabelPowersetTransformation

                        @@ -114,10 +139,9 @@

                        Class MIMLLabelP
                      • All Implemented Interfaces:
                        -
                        java.io.Serializable
                        +
                        java.io.Serializable

                        -
                        class MIMLLabelPowersetTransformation
                         extends mulan.transformations.LabelPowersetTransformation
                        Class that uses LabelPowerset transformation to convert MIMLInstances to MIL @@ -135,68 +159,79 @@

                        Class MIMLLabelP
                        • +
                          +
                          +
                          +
                          +
                            -
                          • +
                          • Method Summary

                            - +
                            - + + - + +
                            All Methods Instance Methods Concrete Methods 
                            Modifier and TypeMethod and DescriptionMethodDescription
                            weka.core.InstancetransformInstance(weka.core.Instance instance, - int[] labelIndices) transformInstance​(weka.core.Instance instance, + int[] labelIndices) 
                              -
                            • +
                            • Methods inherited from class mulan.transformations.LabelPowersetTransformation

                              getTransformedFormat, transformInstances
                              -
                            • +
                            • Methods inherited from class java.lang.Object

                              @@ -204,6 +239,7 @@

                              Methods inherited from class java.lang.Object

                          +

                        @@ -211,12 +247,13 @@

                        Methods inherited from class java.lang.Object

                        • +
                            -
                          • +
                          • Field Detail

                            - +
                              @@ -231,13 +268,15 @@

                              serialVersionUID

                          +
                          +
                            -
                          • +
                          • Constructor Detail

                            - +
                              @@ -248,19 +287,21 @@

                              MIMLLabelPowersetTransformation

                          +
                          +
                            -
                          • +
                          • Method Detail

                            - +
                            • transformInstance

                              -
                              public weka.core.Instance transformInstance(weka.core.Instance instance,
                              +
                              public weka.core.Instance transformInstance​(weka.core.Instance instance,
                                                                           int[] labelIndices)
                                                                    throws java.lang.Exception
                              @@ -278,21 +319,25 @@

                              transformInstance

                          +
                      • +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.svg new file mode 100644 index 0000000..5b901bc --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOmi/MIMLLabelPowersetTransformation.svg @@ -0,0 +1,29 @@ +MIMLLabelPowersetTransformationmiml.transformation.mimlTOmiserialVersionUID: longtransformInstance(Instance, int[]): InstanceLabelPowersetTransformationmulan.transformationsUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/BRTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/BRTransformation.html old mode 100755 new mode 100644 index a6763d1..8c11f94 --- a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/BRTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/BRTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOmi.BRTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Uses of Class
                        miml.transformation.mimlTOmi.BRTransformation

                        No usage of miml.transformation.mimlTOmi.BRTransformation
                        +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/LPTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/LPTransformation.html old mode 100755 new mode 100644 index a7f9508..fa2722c --- a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/LPTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/LPTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOmi.LPTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Uses of Class
                        miml.transformation.mimlTOmi.LPTransformation

                        No usage of miml.transformation.mimlTOmi.LPTransformation
                        +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/MIMLLabelPowersetTransformation.html b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/MIMLLabelPowersetTransformation.html old mode 100755 new mode 100644 index b349f92..0cceda5 --- a/documentation/apidoc/miml/transformation/mimlTOmi/class-use/MIMLLabelPowersetTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/class-use/MIMLLabelPowersetTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Uses of Class
                        miml.transformation.mimlTOmi.MIMLLabelPowersetTransformation

                        +
                        + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/package-frame.html b/documentation/apidoc/miml/transformation/mimlTOmi/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/package-summary.html b/documentation/apidoc/miml/transformation/mimlTOmi/package-summary.html old mode 100755 new mode 100644 index 3e8e4bd..3bf96d1 --- a/documentation/apidoc/miml/transformation/mimlTOmi/package-summary.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.transformation.mimlTOmi - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                        + +
                        +

                        Package miml.transformation.mimlTOmi

                        • - +
                          @@ -83,21 +108,21 @@

                          Package miml.transformation.mimlTOmi

                          - + - + - +
                          Class Summary 
                          Class
                          BRTransformationBRTransformation
                          Class that uses Binary Relevance transformation to convert MIMLInstances to MIL Instances with relational attribute.
                          LPTransformationLPTransformation
                          Class that uses LabelPowerset transformation to convert MIMLInstances to MIL Instances with relational attribute.
                          MIMLLabelPowersetTransformationMIMLLabelPowersetTransformation
                          Class that uses LabelPowerset transformation to convert MIMLInstances to MIL Instances with relational attribute.
                          @@ -108,16 +133,19 @@

                          Package miml.transformation.mimlTOmi

                          + + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/package-tree.html b/documentation/apidoc/miml/transformation/mimlTOmi/package-tree.html old mode 100755 new mode 100644 index f1f3366..bb2a351 --- a/documentation/apidoc/miml/transformation/mimlTOmi/package-tree.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.transformation.mimlTOmi Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Hierarchy For Package miml.transformation.mimlTOmi

                          Package Hierarchies: @@ -77,31 +102,36 @@

                          Hierarchy For Package miml.transformation.mimlTOmi

                          +

                          Class Hierarchy

                            -
                          • java.lang.Object +
                          • java.lang.Object
                          +
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOmi/package-use.html b/documentation/apidoc/miml/transformation/mimlTOmi/package-use.html old mode 100755 new mode 100644 index fd1f6c4..a61fd77 --- a/documentation/apidoc/miml/transformation/mimlTOmi/package-use.html +++ b/documentation/apidoc/miml/transformation/mimlTOmi/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.transformation.mimlTOmi - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Package
                          miml.transformation.mimlTOmi

                          + +
                          +
                          +
                          +
                          @@ -247,12 +287,13 @@

                          Methods inherited from class java.lang.Object

                          • +
                              -
                            • +
                            • Field Detail

                              - +
                                @@ -268,19 +309,21 @@

                                serialVersionUID

                            +
                            +
                              -
                            • +
                            • Constructor Detail

                              - +
                              • ArithmeticTransformation

                                -
                                public ArithmeticTransformation(MIMLInstances dataset)
                                +
                                public ArithmeticTransformation​(MIMLInstances dataset)
                                                          throws java.lang.Exception
                                Constructor.
                                @@ -291,7 +334,7 @@

                                ArithmeticTransformation

                              - +
                                @@ -302,25 +345,28 @@

                                ArithmeticTransformation

                            +
                            +
                              -
                            • +
                            • Method Detail

                              - +
                              • transformDataset

                                -
                                public mulan.data.MultiLabelInstances transformDataset()
                                +
                                public mulan.data.MultiLabelInstances transformDataset()
                                                                                 throws java.lang.Exception
                                -
                                Description copied from class: MIMLtoML
                                -
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances. To call this + method is the dataset must be previously set eg. in the constructor.
                                Specified by:
                                -
                                transformDataset in class MIMLtoML
                                +
                                transformDataset in class MIMLtoML
                                Returns:
                                MultiLabelInstances.
                                Throws:
                                @@ -328,19 +374,19 @@

                                transformDataset

                              - +
                              • transformDataset

                                -
                                public mulan.data.MultiLabelInstances transformDataset(MIMLInstances dataset)
                                +
                                public mulan.data.MultiLabelInstances transformDataset​(MIMLInstances dataset)
                                                                                 throws java.lang.Exception
                                -
                                Description copied from class: MIMLtoML
                                -
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances.
                                Specified by:
                                -
                                transformDataset in class MIMLtoML
                                +
                                transformDataset in class MIMLtoML
                                Parameters:
                                dataset - The dataset to be transformed
                                Returns:
                                @@ -350,19 +396,19 @@

                                transformDataset

                              - +
                              • transformInstance

                                -
                                public weka.core.Instance transformInstance(MIMLBag bag)
                                +
                                public weka.core.Instance transformInstance​(MIMLBag bag)
                                                                      throws java.lang.Exception
                                -
                                Description copied from class: MIMLtoML
                                -
                                Transforms MIMLBag into Instance.
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLBag into Instance.
                                Specified by:
                                -
                                transformInstance in class MIMLtoML
                                +
                                transformInstance in class MIMLtoML
                                Parameters:
                                bag - The Bag to be transformed.
                                Returns:
                                @@ -372,14 +418,14 @@

                                transformInstance

                              - +
                              • transformInstance

                                -
                                public weka.core.Instance transformInstance(MIMLInstances dataset,
                                -                                            MIMLBag bag)
                                +
                                public weka.core.Instance transformInstance​(MIMLInstances dataset,
                                +                                            MIMLBag bag)
                                                                      throws java.lang.Exception
                                Throws:
                                @@ -389,21 +435,25 @@

                                transformInstance

                            +
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/ArithmeticTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOml/ArithmeticTransformation.svg new file mode 100644 index 0000000..226b668 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/ArithmeticTransformation.svg @@ -0,0 +1,38 @@ +ArithmeticTransformationmiml.transformation.mimlTOmlserialVersionUID: longArithmeticTransformation(MIMLInstances)ArithmeticTransformation()transformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstancetransformInstance(MIMLInstances, MIMLBag): InstanceMIMLtoMLmiml.transformation.mimlTOmltransformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.html old mode 100755 new mode 100644 index df26094..f6d09b1 --- a/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.html @@ -1,12 +1,22 @@ - + - + GeometricTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +
                          -
                          miml.transformation.mimlTOml
                          +

                          Class GeometricTransformation

                          @@ -100,7 +125,7 @@

                          Class GeometricTransform
                        • java.lang.Object
                        • +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.svg new file mode 100644 index 0000000..a7eefa3 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/GeometricTransformation.svg @@ -0,0 +1,38 @@ +GeometricTransformationmiml.transformation.mimlTOmlserialVersionUID: longGeometricTransformation(MIMLInstances)GeometricTransformation()transformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstancetransformInstance(MIMLInstances, MIMLBag): InstanceMIMLtoMLmiml.transformation.mimlTOmltransformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOml/KMeansTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/KMeansTransformation.html new file mode 100644 index 0000000..73ef973 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/KMeansTransformation.html @@ -0,0 +1,1026 @@ + + + + + +KMeansTransformation + + + + + + + + + + + + + + + +
                          + +
                          + +
                          +
                          + +

                          Class KMeansTransformation

                          +
                          +
                          + +
                          +
                            +
                          • +
                            +
                            All Implemented Interfaces:
                            +
                            java.io.Serializable
                            +
                            +
                            +
                            public class KMeansTransformation
                            +extends MIMLtoML
                            +
                            Class implementing the kmeans-based transformation described in [1] to + transform an MIML problem to ML. + + [1] Li, Y. F., Hu, J. H., Jiang, Y., and Zhou, Z. H. (2012). Towards + discovering what patterns trigger what labels. In Proceedings of the AAAI + Conference on Artificial Intelligence (Vol. 26, No. 1, pp. 1012-1018). + + This class requires method transformDataset to have been executed before + executing transformInstance method.
                            +
                            +
                            Version:
                            +
                            20231115
                            +
                            Author:
                            +
                            Eva Gibaja
                            +
                            See Also:
                            +
                            Serialized Form
                            +
                            +
                          • +
                          +
                          +
                          +
                            +
                          • + +
                            +
                              +
                            • + + +

                              Field Summary

                              + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                              Fields 
                              Modifier and TypeFieldDescription
                              protected weka.clusterers.SimpleKMeansclusterer +
                              Clusterer.
                              +
                              protected booleanclusteringDone +
                              Whether the clustering step has been executed or not.
                              +
                              protected double[]delta +
                              The delta value for each cluster obtained as the average distance between + instances in each cluster
                              +
                              protected weka.core.EuclideanDistancedfunc 
                              protected intnumClusters +
                              The number of clusters.
                              +
                              protected doublepercentage +
                              If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of training bags in the dataset.
                              +
                              protected weka.core.Instancesprototypes +
                              Clustering prototypes obtained each one as the nearest instance to each + centroid.
                              +
                              protected intseed +
                              The seed for kmeans clustering.
                              +
                              private static longserialVersionUID +
                              For serialization.
                              +
                              + +
                            • +
                            +
                            + +
                            + +
                            + +
                            +
                              +
                            • + + +

                              Method Summary

                              + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                              All Methods Instance Methods Concrete Methods 
                              Modifier and TypeMethodDescription
                              protected int[]clusterAssignment​(double[][] distanceMatrix) +
                              Computes a vector of nInstances with the index of the cluster assigned to + each instance.
                              +
                              protected double[]computeDelta​(int[] clusterAssignment, + weka.core.Instances singleInstances) +
                              Computes the delta value for each cluster that is used for similarity + computation.
                              +
                              protected double[][]computeDistanceMatrix​(weka.core.Instances centroids, + weka.core.Instances singleInstances) +
                              Computes the distance matrix between centroids and single instances used for + clustering.
                              +
                              protected int[]computeIndexPrototypes​(double[][] distanceMatrix) +
                              Computes a vector of nClusters elements with the index of the prototypes + obtained as the closest instance to each centroid.
                              +
                              (package private) voidconfigureClusterer() +
                              Determines the number of cluster depending on the values of the properties + percentage and numClusters.
                              +
                              intgetNumClusters() +
                              Returns the number of clusters.
                              +
                              doublegetPercentage() 
                              intgetSeed() +
                              Returns the value of the seed of the clusterer.
                              +
                              protected voidprepareTemplate() +
                              Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances.
                              +
                              voidsetNumClusters​(int numClusters) +
                              Sets the number of clusters to perform clustering in both the transformer and + in the clusterer.
                              +
                              voidsetPercentage​(double percentage) 
                              voidsetSeed​(int seed) +
                              Sets the value of the seed used for clustering in both the transformer and in + the clusterer.
                              +
                              protected doublesimilarity​(weka.core.Instance centroid, + MIMLBag bag, + double delta_k) +
                              Computes similarity between a centroid, represented by a single instance, and + a bag.
                              +
                              mulan.data.MultiLabelInstancestransformDataset() +
                              Transforms MIMLInstances into MultiLabelInstances.
                              +
                              mulan.data.MultiLabelInstancestransformDataset​(MIMLInstances dataset) +
                              Transforms MIMLInstances into MultiLabelInstances.
                              +
                              weka.core.InstancetransformInstance​(MIMLBag bag) +
                              Transforms MIMLBag into Instance.
                              +
                              + +
                                +
                              • + + +

                                Methods inherited from class java.lang.Object

                                +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                              • +
                              +
                            • +
                            +
                            +
                          • +
                          +
                          +
                          +
                            +
                          • + +
                            +
                              +
                            • + + +

                              Field Detail

                              + + + +
                                +
                              • +

                                serialVersionUID

                                +
                                private static final long serialVersionUID
                                +
                                For serialization.
                                +
                                +
                                See Also:
                                +
                                Constant Field Values
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                clusterer

                                +
                                protected weka.clusterers.SimpleKMeans clusterer
                                +
                                Clusterer.
                                +
                              • +
                              + + + +
                                +
                              • +

                                percentage

                                +
                                protected double percentage
                                +
                                If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of training bags in the dataset. For + instance 0.2 represents that the number of clusters is the 20% of the number + of training bags, 0.45 a 45%, and so on. If this value is -1 the number of + clusters to consider is represented by numClusters property. If the number of + clusters is not set neither by percentage nor by the numClusters property, it + will be considered by default a 50% of the number of training bags in the + dataset. If both the percentage and the numClusters are set, the percentage + will be applied.
                                +
                              • +
                              + + + +
                                +
                              • +

                                numClusters

                                +
                                protected int numClusters
                                +
                                The number of clusters.
                                +
                              • +
                              + + + +
                                +
                              • +

                                seed

                                +
                                protected int seed
                                +
                                The seed for kmeans clustering. By default 1.
                                +
                              • +
                              + + + +
                                +
                              • +

                                clusteringDone

                                +
                                protected boolean clusteringDone
                                +
                                Whether the clustering step has been executed or not.
                                +
                              • +
                              + + + +
                                +
                              • +

                                prototypes

                                +
                                protected weka.core.Instances prototypes
                                +
                                Clustering prototypes obtained each one as the nearest instance to each + centroid.
                                +
                              • +
                              + + + +
                                +
                              • +

                                delta

                                +
                                protected double[] delta
                                +
                                The delta value for each cluster obtained as the average distance between + instances in each cluster
                                +
                              • +
                              + + + +
                                +
                              • +

                                dfunc

                                +
                                protected weka.core.EuclideanDistance dfunc
                                +
                              • +
                              +
                            • +
                            +
                            + +
                            +
                              +
                            • + + +

                              Constructor Detail

                              + + + +
                                +
                              • +

                                KMeansTransformation

                                +
                                public KMeansTransformation​(MIMLInstances dataset,
                                +                            weka.clusterers.SimpleKMeans clusterer)
                                +                     throws java.lang.Exception
                                +
                                Constructor.
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                clusterer - An instance of KMedoids.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                KMeansTransformation

                                +
                                public KMeansTransformation​(MIMLInstances dataset)
                                +                     throws java.lang.Exception
                                +
                                Constructor. Uses the same default number of clusters as KiSar: 50% of number + of bags
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                KMeansTransformation

                                +
                                public KMeansTransformation()
                                +
                                Constructor.
                                +
                              • +
                              +
                            • +
                            +
                            + +
                            +
                              +
                            • + + +

                              Method Detail

                              + + + +
                                +
                              • +

                                transformDataset

                                +
                                public mulan.data.MultiLabelInstances transformDataset()
                                +                                                throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances. To call this + method is the dataset must be previously set eg. in the constructor.
                                +
                                +
                                Specified by:
                                +
                                transformDataset in class MIMLtoML
                                +
                                Returns:
                                +
                                MultiLabelInstances.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                transformDataset

                                +
                                public mulan.data.MultiLabelInstances transformDataset​(MIMLInstances dataset)
                                +                                                throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                +
                                Specified by:
                                +
                                transformDataset in class MIMLtoML
                                +
                                Parameters:
                                +
                                dataset - The dataset to be transformed
                                +
                                Returns:
                                +
                                MultiLabelInstances.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                transformInstance

                                +
                                public weka.core.Instance transformInstance​(MIMLBag bag)
                                +                                     throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLBag into Instance.
                                +
                                +
                                Specified by:
                                +
                                transformInstance in class MIMLtoML
                                +
                                Parameters:
                                +
                                bag - The Bag to be transformed.
                                +
                                Returns:
                                +
                                Instance
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                prepareTemplate

                                +
                                protected void prepareTemplate()
                                +                        throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances. This template includes: the bag label attribute, all + attributes in the relational attribute as independent attributes and label + attributes. For instance, in the relation above, the resulting template is + showed. + + @relation toy
                                + @attribute id {bag1,bag2}
                                + @attribute bag relational
                                + @attribute f1 numeric
                                + @attribute f2 numeric
                                + @attribute f3 numeric
                                + @end bag
                                + @attribute label1 {0,1}
                                + @attribute label2 {0,1}
                                + @attribute label3 {0,1}
                                + @attribute label4 {0,1}
                                + + @relation template
                                + @attribute id {bag1,bag2}
                                + @attribute f1 numeric
                                + @attribute f2 numeric
                                + @attribute f3 numeric
                                + * @attribute label1 {0,1}
                                + @attribute label2 {0,1}
                                + @attribute label3 {0,1}
                                + @attribute label4 {0,1}
                                +
                                +
                                Overrides:
                                +
                                prepareTemplate in class MIMLtoML
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                computeDistanceMatrix

                                +
                                protected double[][] computeDistanceMatrix​(weka.core.Instances centroids,
                                +                                           weka.core.Instances singleInstances)
                                +
                                Computes the distance matrix between centroids and single instances used for + clustering.
                                +
                                +
                                Parameters:
                                +
                                centroids - The centroids obtained by kmeans clustering.
                                +
                                singleInstances - The single-instance instances used for clustering.
                                +
                                Returns:
                                +
                                A matrix of double in which matrix[i][k] stores the distance from + instance i to centroid k.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                computeIndexPrototypes

                                +
                                protected int[] computeIndexPrototypes​(double[][] distanceMatrix)
                                +                                throws java.lang.Exception
                                +
                                Computes a vector of nClusters elements with the index of the prototypes + obtained as the closest instance to each centroid.
                                +
                                +
                                Parameters:
                                +
                                distanceMatrix - A matrix of nInstancesxnClusters with the distance + between centroids and single-instances used for + clustering . Matrix[i][k] is the distance from instance + i to centroid k.
                                +
                                Returns:
                                +
                                A vector with the index of the prototypes in the dataset of + single-instances used for clustering. This vector is obtained as the + index of the minimum row of each column.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                clusterAssignment

                                +
                                protected int[] clusterAssignment​(double[][] distanceMatrix)
                                +
                                Computes a vector of nInstances with the index of the cluster assigned to + each instance.
                                +
                                +
                                Parameters:
                                +
                                distanceMatrix - A matrix of nInstancesxnClusters with the distance + between centroids and single-instances used for + clustering . Matrix[i][k] is the distance from instance + i to centroid k.
                                +
                                Returns:
                                +
                                A vector with the index of the cluster assigned to each instance. + This vector is obtained as the index of the minimum column of each + row.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                similarity

                                +
                                protected double similarity​(weka.core.Instance centroid,
                                +                            MIMLBag bag,
                                +                            double delta_k)
                                +                     throws java.lang.Exception
                                +
                                Computes similarity between a centroid, represented by a single instance, and + a bag. The value is computed as Gaussian distance.
                                +
                                +
                                Parameters:
                                +
                                centroid - A centroid.
                                +
                                bag - A bag.
                                +
                                delta_k - A vector with a delta value for each centroid.
                                +
                                Returns:
                                +
                                The similarity, a value normalized to [0,1].
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                computeDelta

                                +
                                protected double[] computeDelta​(int[] clusterAssignment,
                                +                                weka.core.Instances singleInstances)
                                +
                                Computes the delta value for each cluster that is used for similarity + computation. This value is computed as the average distance between all pair + of instances in each cluster.
                                +
                                +
                                Parameters:
                                +
                                clusterAssignment - A vector of nInstances elements with the indices of + the clusters assigned to each one.
                                +
                                singleInstances - The instances used for clustering.
                                +
                                Returns:
                                +
                                A vector of nClusters with the delta value for each cluster.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                configureClusterer

                                +
                                void configureClusterer()
                                +                 throws java.lang.Exception
                                +
                                Determines the number of cluster depending on the values of the properties + percentage and numClusters. Sets the number of clusters and the seed for + clustering.
                                +
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getSeed

                                +
                                public int getSeed()
                                +
                                Returns the value of the seed of the clusterer.
                                +
                                +
                                Returns:
                                +
                                int
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setSeed

                                +
                                public void setSeed​(int seed)
                                +
                                Sets the value of the seed used for clustering in both the transformer and in + the clusterer. If the clusterer is null the value of the property is only set + in the transformer and the transformDataset method will establish this seed + value in the clusterer after creating it.
                                +
                                +
                                Parameters:
                                +
                                seed - The seed
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getNumClusters

                                +
                                public int getNumClusters()
                                +                   throws java.lang.Exception
                                +
                                Returns the number of clusters.
                                +
                                +
                                Returns:
                                +
                                Returns the number of clusters to perform clustering.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setNumClusters

                                +
                                public void setNumClusters​(int numClusters)
                                +                    throws java.lang.Exception
                                +
                                Sets the number of clusters to perform clustering in both the transformer and + in the clusterer. If the clusterer is null the value of the property is only + set in the transformer and the transformDataset method will establish this + numClusters value in the clusterer after creating it.
                                +
                                +
                                Parameters:
                                +
                                numClusters - A number of clusters.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getPercentage

                                +
                                public double getPercentage()
                                +
                              • +
                              + + + +
                                +
                              • +

                                setPercentage

                                +
                                public void setPercentage​(double percentage)
                                +
                              • +
                              +
                            • +
                            +
                            +
                          • +
                          +
                          +
                          +
                          + + + + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.html b/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.html old mode 100755 new mode 100644 index ba9adb4..dbf81d0 --- a/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.html @@ -1,12 +1,22 @@ - + - + MIMLtoML - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +
                          -
                          miml.transformation.mimlTOml
                          +

                          Class MIMLtoML

                          @@ -109,14 +134,13 @@

                          Class MIMLtoML

                        • All Implemented Interfaces:
                          -
                          java.io.Serializable
                          +
                          java.io.Serializable
                          Direct Known Subclasses:
                          -
                          ArithmeticTransformation, GeometricTransformation, MinMaxTransformation
                          +
                          ArithmeticTransformation, GeometricTransformation, KMeansTransformation, MedoidTransformation, MinMaxTransformation

                          -
                          public abstract class MIMLtoML
                           extends java.lang.Object
                           implements java.io.Serializable
                          @@ -136,108 +160,134 @@

                          Class MIMLtoML

                        • @@ -252,12 +303,13 @@

                          Methods inherited from class java.lang.Object

                          • +
                              -
                            • +
                            • Field Detail

                              - +
                                @@ -271,7 +323,7 @@

                                serialVersionUID

                              - +
                                @@ -281,7 +333,7 @@

                                updatedLabelIndices

                                Array of updated label indices.
                              - +
                                @@ -291,50 +343,70 @@

                                template

                                Template to store Instances.
                              - +
                            +
                            +
                              -
                            • +
                            • Constructor Detail

                              - + + + +
                                +
                              • +

                                MIMLtoML

                                +
                                public MIMLtoML​(MIMLInstances dataset)
                                +
                                Constructor that sets the dataset
                                +
                                +
                                Parameters:
                                +
                                dataset - The dataset to be transformed.
                                +
                                +
                              • +
                              +
                              • MIMLtoML

                                public MIMLtoML()
                                +
                                Constructor that does not sets the dataset
                            +
                            +
                              -
                            • +
                            • Method Detail

                              - +
                              • transformDataset

                                -
                                public abstract mulan.data.MultiLabelInstances transformDataset()
                                +
                                public abstract mulan.data.MultiLabelInstances transformDataset()
                                                                                          throws java.lang.Exception
                                -
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                Transforms MIMLInstances into MultiLabelInstances. To call this + method is the dataset must be previously set eg. in the constructor.
                                Returns:
                                MultiLabelInstances.
                                @@ -343,15 +415,15 @@

                                transformDataset

                              - +
                              • transformDataset

                                -
                                public abstract mulan.data.MultiLabelInstances transformDataset(MIMLInstances dataset)
                                +
                                public abstract mulan.data.MultiLabelInstances transformDataset​(MIMLInstances dataset)
                                                                                          throws java.lang.Exception
                                -
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                Transforms MIMLInstances into MultiLabelInstances.
                                Parameters:
                                dataset - The dataset to be transformed
                                @@ -362,15 +434,15 @@

                                transformDataset

                              - +
                              • transformInstance

                                -
                                public abstract weka.core.Instance transformInstance(MIMLBag bag)
                                +
                                public abstract weka.core.Instance transformInstance​(MIMLBag bag)
                                                                               throws java.lang.Exception
                                -
                                Transforms MIMLBag into Instance.
                                +
                                Transforms MIMLBag into Instance.
                                Parameters:
                                bag - The Bag to be transformed.
                                @@ -381,13 +453,13 @@

                                transformInstance

                              - +
                              • prepareTemplate

                                -
                                protected void prepareTemplate()
                                +
                                protected void prepareTemplate()
                                                         throws java.lang.Exception
                                Prepares a template to perform the transformation from MIMLInstances to MultiLabelInstances. This template includes: the bag label attribute, all @@ -422,13 +494,13 @@

                                prepareTemplate

                              - +
                              • minimax

                                -
                                public static double[] minimax(weka.core.Instances data,
                                +
                                public static double[] minimax​(weka.core.Instances data,
                                                                int attIndex)
                                Get the minimal and maximal value of a certain attribute in a data set.
                                @@ -443,21 +515,25 @@

                                minimax

                            +
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.svg b/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.svg new file mode 100644 index 0000000..62024b1 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/MIMLtoML.svg @@ -0,0 +1,36 @@ +MIMLtoMLmiml.transformation.mimlTOmlserialVersionUID: longupdatedLabelIndices: int[]template: Instancesdataset: MIMLInstancestransformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstanceprepareTemplate(): voidminimax(Instances, int): double[]Serializablejava.ioUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOml/MedoidTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/MedoidTransformation.html new file mode 100644 index 0000000..be2d8bd --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/MedoidTransformation.html @@ -0,0 +1,1094 @@ + + + + + +MedoidTransformation + + + + + + + + + + + + + + + +
                          + +
                          + +
                          +
                          + +

                          Class MedoidTransformation

                          +
                          +
                          + +
                          +
                            +
                          • +
                            +
                            All Implemented Interfaces:
                            +
                            java.io.Serializable
                            +
                            +
                            +
                            public class MedoidTransformation
                            +extends MIMLtoML
                            +
                            Class implementing the medoid-based transformation described in [1] to + transform an MIML problem to ML. + + [1] Zhou, Z. H., Zhang, M. L., Huang, S. J., & Li, Y. F. (2012). + Multi-instance multi-label learning. Artificial Intelligence, 176(1), + 2291-2320. + + This class requires method transformDataset to have been executed before + executing transformInstance method.
                            +
                            +
                            Version:
                            +
                            20230412
                            +
                            Author:
                            +
                            Eva Gibaja
                            +
                            See Also:
                            +
                            Serialized Form
                            +
                            +
                          • +
                          +
                          +
                          +
                            +
                          • + +
                            +
                              +
                            • + + +

                              Field Summary

                              + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                              Fields 
                              Modifier and TypeFieldDescription
                              protected KMedoidsclusterer +
                              Clusterer.
                              +
                              protected booleanclusteringDone +
                              Whether the clustering step has been executed or not.
                              +
                              protected java.lang.Booleannormalize +
                              True if the resulting transformed dataset will be normalized to (0,1) with + min-max normalization.
                              +
                              protected intnumClusters +
                              The number of clusters for kmedoids.
                              +
                              protected doublepercentage +
                              If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of bags of the dataset.
                              +
                              protected intseed +
                              The seed for kmedoids clustering.
                              +
                              private static longserialVersionUID +
                              For serialization
                              +
                              + +
                            • +
                            +
                            + +
                            + +
                            + +
                            +
                              +
                            • + + +

                              Method Summary

                              + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
                              All Methods Instance Methods Concrete Methods 
                              Modifier and TypeMethodDescription
                              protected voidclusteringStep() 
                              (package private) voidconfigureClusterer() +
                              Determines the number of cluster depending on the values of the properties + percentage and numClusters.
                              +
                              IDistancegetDistanceFunction() +
                              Returns the distance function used for clustering.
                              +
                              intgetMaxIterations() +
                              Gets the maximum number of iterations used by the clusterer.
                              +
                              java.lang.BooleangetNormalize() +
                              Returns the value of the property normalize.
                              +
                              intgetNumClusters() +
                              Returns the number of clusters.
                              +
                              doublegetPercentage() +
                              Gets the value of the percentage property.
                              +
                              protected mulan.data.MultiLabelInstancesnormalize​(mulan.data.MultiLabelInstances dataset) +
                              Normalizes a multi-label dataset performing min-max normalization.
                              +
                              protected voidprepareTemplate() +
                              Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances.
                              +
                              voidsetDistanceFunction​(IDistance distanceFunction) +
                              Sets the distance function to use for clustering.
                              +
                              voidsetMaxIterations​(int maxIterations) +
                              Sets the maximum number of iterations for clustering.
                              +
                              voidsetNormalize​(java.lang.Boolean normalize) +
                              Sets the property normalized.
                              +
                              voidsetNumClusters​(int numClusters) +
                              Sets the number of clusters to perform clustering in both the transformer and + in the clusterer.
                              +
                              voidsetPercentage​(double percentage) +
                              Sets the value of the percentage property.
                              +
                              voidsetSeed​(int seed) +
                              Sets the value of the seed used for clustering in both the transformer and in + the clusterer.
                              +
                              mulan.data.MultiLabelInstancestransformDataset() +
                              Transforms MIMLInstances into MultiLabelInstances.
                              +
                              mulan.data.MultiLabelInstancestransformDataset​(MIMLInstances dataset) +
                              Transforms MIMLInstances into MultiLabelInstances.
                              +
                              weka.core.InstancetransformInstance​(MIMLBag bag) +
                              Transforms MIMLBag into Instance.
                              +
                              + +
                                +
                              • + + +

                                Methods inherited from class java.lang.Object

                                +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                              • +
                              +
                            • +
                            +
                            +
                          • +
                          +
                          +
                          +
                            +
                          • + +
                            +
                              +
                            • + + +

                              Field Detail

                              + + + +
                                +
                              • +

                                serialVersionUID

                                +
                                private static final long serialVersionUID
                                +
                                For serialization
                                +
                                +
                                See Also:
                                +
                                Constant Field Values
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                clusterer

                                +
                                protected KMedoids clusterer
                                +
                                Clusterer.
                                +
                              • +
                              + + + +
                                +
                              • +

                                normalize

                                +
                                protected java.lang.Boolean normalize
                                +
                                True if the resulting transformed dataset will be normalized to (0,1) with + min-max normalization. By default False. If a learning algorithm that uses a + NormalizableDistance is going to be used after transformation, normalization + is not needed.
                                +
                              • +
                              + + + +
                                +
                              • +

                                percentage

                                +
                                protected double percentage
                                +
                                If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of bags of the dataset. For instance 0.2 + represents that the number of clusters is the 20% of the training bags, 0.45 + a 45%, and so on. If this value is -1 the number of clusters to consider is + represented by numClusters property. If the number of clusters is not set + neither by percentage nor by the numClusters property, it will be considered + by default a 20% of the number of training bags in the dataset. If both the + percentage and the numClusters are set, the percentage will be applied.
                                +
                              • +
                              + + + +
                                +
                              • +

                                numClusters

                                +
                                protected int numClusters
                                +
                                The number of clusters for kmedoids.
                                +
                              • +
                              + + + +
                                +
                              • +

                                clusteringDone

                                +
                                protected boolean clusteringDone
                                +
                                Whether the clustering step has been executed or not.
                                +
                              • +
                              + + + +
                                +
                              • +

                                seed

                                +
                                protected int seed
                                +
                                The seed for kmedoids clustering. By default 1.
                                +
                              • +
                              +
                            • +
                            +
                            + +
                            +
                              +
                            • + + +

                              Constructor Detail

                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation​(MIMLInstances dataset)
                                +                     throws java.lang.Exception
                                +
                                Constructor. Uses the same default number of clusters as MIMLSVM: 20% of + number of bags
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation​(MIMLInstances dataset,
                                +                            KMedoids kmedoids,
                                +                            boolean normalize)
                                +                     throws java.lang.Exception
                                +
                                Constructor.
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                kmedoids - An instance of kmedoids.
                                +
                                normalize - If true, the resulting transformed dataset will be + normalized to (0,1) with min-max normalization. If a + learning algorithm that uses a NormalizableDistance is going + to be used, normalization is not needed.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation​(MIMLInstances dataset,
                                +                            IDistance metric,
                                +                            int numClusters)
                                +                     throws java.lang.Exception
                                +
                                Constructor.
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                numClusters - The number of clusters for kmedoids.
                                +
                                metric - The distance function to be used by kmedoids.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation​(MIMLInstances dataset,
                                +                            int numClusters)
                                +                     throws java.lang.Exception
                                +
                                Constructor.
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                numClusters - number of clusters for kmedoids.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation​(MIMLInstances dataset,
                                +                            double percentage)
                                +                     throws java.lang.Exception
                                +
                                Constructor.
                                +
                                +
                                Parameters:
                                +
                                dataset - MIMLInstances dataset.
                                +
                                percentage - The number of clusters for kmedoids as a percentage of the + number of bags. It is a value in (0,1). For instance, 0.2 + is 20%.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                MedoidTransformation

                                +
                                public MedoidTransformation()
                                +
                                Constructor.
                                +
                              • +
                              +
                            • +
                            +
                            + +
                            +
                              +
                            • + + +

                              Method Detail

                              + + + +
                                +
                              • +

                                clusteringStep

                                +
                                protected void clusteringStep()
                                +                       throws java.lang.Exception
                                +
                                +
                                Throws:
                                +
                                java.lang.Exception
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                transformDataset

                                +
                                public mulan.data.MultiLabelInstances transformDataset()
                                +                                                throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances. To call this + method is the dataset must be previously set eg. in the constructor.
                                +
                                +
                                Specified by:
                                +
                                transformDataset in class MIMLtoML
                                +
                                Returns:
                                +
                                MultiLabelInstances.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                transformDataset

                                +
                                public mulan.data.MultiLabelInstances transformDataset​(MIMLInstances dataset)
                                +                                                throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLInstances into MultiLabelInstances.
                                +
                                +
                                Specified by:
                                +
                                transformDataset in class MIMLtoML
                                +
                                Parameters:
                                +
                                dataset - The dataset to be transformed
                                +
                                Returns:
                                +
                                MultiLabelInstances.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                normalize

                                +
                                protected mulan.data.MultiLabelInstances normalize​(mulan.data.MultiLabelInstances dataset)
                                +                                            throws java.lang.Exception
                                +
                                Normalizes a multi-label dataset performing min-max normalization.
                                +
                                +
                                Parameters:
                                +
                                dataset - The dataset to be normalized.
                                +
                                Returns:
                                +
                                Returns the normalized dataset as MultiLabelInstances.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getNormalize

                                +
                                public java.lang.Boolean getNormalize()
                                +
                                Returns the value of the property normalize.
                                +
                                +
                                Returns:
                                +
                                The value of the property normalize.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setNormalize

                                +
                                public void setNormalize​(java.lang.Boolean normalize)
                                +
                                Sets the property normalized. If true, the resulting transformed multi-label + dataset will be normalized after transformation.
                                +
                                +
                                Parameters:
                                +
                                normalize - The value of the property to be set.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                transformInstance

                                +
                                public weka.core.Instance transformInstance​(MIMLBag bag)
                                +                                     throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Transforms MIMLBag into Instance.
                                +
                                +
                                Specified by:
                                +
                                transformInstance in class MIMLtoML
                                +
                                Parameters:
                                +
                                bag - The Bag to be transformed.
                                +
                                Returns:
                                +
                                Instance
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                prepareTemplate

                                +
                                protected void prepareTemplate()
                                +                        throws java.lang.Exception
                                +
                                Description copied from class: MIMLtoML
                                +
                                Prepares a template to perform the transformation from MIMLInstances to + MultiLabelInstances. This template includes: the bag label attribute, all + attributes in the relational attribute as independent attributes and label + attributes. For instance, in the relation above, the resulting template is + showed. + + @relation toy
                                + @attribute id {bag1,bag2}
                                + @attribute bag relational
                                + @attribute f1 numeric
                                + @attribute f2 numeric
                                + @attribute f3 numeric
                                + @end bag
                                + @attribute label1 {0,1}
                                + @attribute label2 {0,1}
                                + @attribute label3 {0,1}
                                + @attribute label4 {0,1}
                                + + @relation template
                                + @attribute id {bag1,bag2}
                                + @attribute f1 numeric
                                + @attribute f2 numeric
                                + @attribute f3 numeric
                                + * @attribute label1 {0,1}
                                + @attribute label2 {0,1}
                                + @attribute label3 {0,1}
                                + @attribute label4 {0,1}
                                +
                                +
                                Overrides:
                                +
                                prepareTemplate in class MIMLtoML
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                configureClusterer

                                +
                                void configureClusterer()
                                +                 throws java.lang.Exception
                                +
                                Determines the number of cluster depending on the values of the properties + percentage and numClusters.
                                +
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getNumClusters

                                +
                                public int getNumClusters()
                                +                   throws java.lang.Exception
                                +
                                Returns the number of clusters.
                                +
                                +
                                Returns:
                                +
                                Returns the number of clusters to perform clustering.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setNumClusters

                                +
                                public void setNumClusters​(int numClusters)
                                +                    throws java.lang.Exception
                                +
                                Sets the number of clusters to perform clustering in both the transformer and + in the clusterer. If the clusterer is null the value of the property is only + set in the transformer and the transformDataset method will establish this + numClusters value in the clusterer after creating it.
                                +
                                +
                                Parameters:
                                +
                                numClusters - A number of clusters.
                                +
                                Throws:
                                +
                                java.lang.Exception - To be handled in an upper level.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getPercentage

                                +
                                public double getPercentage()
                                +
                                Gets the value of the percentage property.
                                +
                                +
                                Returns:
                                +
                                The percentage of the train instances used as
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setPercentage

                                +
                                public void setPercentage​(double percentage)
                                +
                                Sets the value of the percentage property.
                                +
                                +
                                Parameters:
                                +
                                percentage - The percentage value in [0, 1], for instance 0.2 means that + the number of clusters is 20% the number of bags.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getMaxIterations

                                +
                                public int getMaxIterations()
                                +
                                Gets the maximum number of iterations used by the clusterer.
                                +
                                +
                                Returns:
                                +
                                The maximum number of iterations.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setMaxIterations

                                +
                                public void setMaxIterations​(int maxIterations)
                                +
                                Sets the maximum number of iterations for clustering. This method must be + called before clustering.
                                +
                                +
                                Parameters:
                                +
                                maxIterations - The maximum number of iterations for clustering.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                getDistanceFunction

                                +
                                public IDistance getDistanceFunction()
                                +
                                Returns the distance function used for clustering.
                                +
                                +
                                Returns:
                                +
                                The distance function used for clustering.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setDistanceFunction

                                +
                                public void setDistanceFunction​(IDistance distanceFunction)
                                +
                                Sets the distance function to use for clustering. This method must be called + before clustering.
                                +
                                +
                                Parameters:
                                +
                                distanceFunction - The distance function used for clustering.
                                +
                                +
                              • +
                              + + + +
                                +
                              • +

                                setSeed

                                +
                                public void setSeed​(int seed)
                                +
                                Sets the value of the seed used for clustering in both the transformer and in + the clusterer. If the clusterer is null the value of the property is only set + in the transformer and the transformDataset method will establish this seed + value in the clusterer after creating it.
                                +
                                +
                                Parameters:
                                +
                                seed - The seed
                                +
                                +
                              • +
                              +
                            • +
                            +
                            +
                          • +
                          +
                          +
                          +
                          + + + + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.html old mode 100755 new mode 100644 index c77f8f3..b23f67e --- a/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.html @@ -1,12 +1,22 @@ - + - + MinMaxTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +
                          -
                          miml.transformation.mimlTOml
                          +

                          Class MinMaxTransformation

                          @@ -100,7 +125,7 @@

                          Class MinMaxTransformation<
                        • java.lang.Object
                        • +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.svg new file mode 100644 index 0000000..7e2129f --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/MinMaxTransformation.svg @@ -0,0 +1,39 @@ +MinMaxTransformationmiml.transformation.mimlTOmlserialVersionUID: longMinMaxTransformation(MIMLInstances)MinMaxTransformation()transformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstancetransformInstance(MIMLInstances, MIMLBag): InstanceprepareTemplate(): voidMIMLtoMLmiml.transformation.mimlTOmltransformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): InstanceUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.html old mode 100755 new mode 100644 index 2c074be..1410f40 --- a/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.html @@ -1,12 +1,22 @@ - + - + PropositionalTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +
                          -
                          miml.transformation.mimlTOml
                          +

                          Class PropositionalTransformation

                          @@ -107,10 +132,14 @@

                          Class PropositionalT
                          • +
                            +
                            All Implemented Interfaces:
                            +
                            java.io.Serializable
                            +

                            -
                            public class PropositionalTransformation
                            -extends java.lang.Object
                            +extends java.lang.Object +implements java.io.Serializable
                            Class that performs a propositionalTransformation to convert a MIMLInstances dataset to MultiLabelInstances. This transformation transforms each Bag into a set if instances, one for each instance in the bag of the instances in the @@ -120,6 +149,8 @@

                            Class PropositionalT
                            20210614
                            Author:
                            Eva Gibaja
                            +
                            See Also:
                            +
                            Serialized Form

                          @@ -128,132 +159,162 @@

                          Class PropositionalT

                          @@ -268,12 +330,27 @@

                          Methods inherited from class java.lang.Object

                          • +
                              -
                            • +
                            • Field Detail

                              - + + + +
                                +
                              • +

                                serialVersionUID

                                +
                                private static final long serialVersionUID
                                +
                                For serialization.
                                +
                                +
                                See Also:
                                +
                                Constant Field Values
                                +
                                +
                              • +
                              +
                                @@ -283,7 +360,7 @@

                                updatedLabelIndices

                                Array of updated label indices.
                              - +
                                @@ -293,17 +370,17 @@

                                template

                                Template to store Instances.
                              - + - +
                                @@ -313,7 +390,7 @@

                                removeFilter

                                Filter
                              - +
                                @@ -325,19 +402,21 @@

                                includeBagId

                            +
                            +
                              -
                            • +
                            • Constructor Detail

                              - +
                              • PropositionalTransformation

                                -
                                public PropositionalTransformation(MIMLInstances dataset)
                                +
                                public PropositionalTransformation​(MIMLInstances dataset)
                                                             throws java.lang.Exception
                                Constructor.
                                @@ -348,13 +427,13 @@

                                PropositionalTransformation

                              - +
                              • PropositionalTransformation

                                -
                                public PropositionalTransformation(MIMLInstances dataset,
                                +
                                public PropositionalTransformation​(MIMLInstances dataset,
                                                                    boolean includeBagId)
                                                             throws java.lang.Exception
                                Constructor.
                                @@ -370,19 +449,21 @@

                                PropositionalTransformation

                            +
                            +
                              -
                            • +
                            • Method Detail

                              - +
                              • isIncludeBagId

                                -
                                public boolean isIncludeBagId()
                                +
                                public boolean isIncludeBagId()
                                Returns the value of includeBagId property.
                                Returns:
                                @@ -390,13 +471,13 @@

                                isIncludeBagId

                              - +
                              • setIncludeBagId

                                -
                                public void setIncludeBagId(boolean includeBagId)
                                +
                                public void setIncludeBagId​(boolean includeBagId)
                                Sets the value for includeBagId property.
                                Parameters:
                                @@ -405,13 +486,13 @@

                                setIncludeBagId

                              - +
                              • transformDataset

                                -
                                public mulan.data.MultiLabelInstances transformDataset()
                                +
                                public mulan.data.MultiLabelInstances transformDataset()
                                                                                 throws java.lang.Exception
                                Throws:
                                @@ -419,13 +500,13 @@

                                transformDataset

                              - +
                              • transformDataset

                                -
                                public mulan.data.MultiLabelInstances transformDataset(MIMLInstances dataset)
                                +
                                public mulan.data.MultiLabelInstances transformDataset​(MIMLInstances dataset)
                                                                                 throws java.lang.Exception
                                Throws:
                                @@ -433,13 +514,13 @@

                                transformDataset

                              - +
                              • transformInstance

                                -
                                public mulan.data.MultiLabelInstances transformInstance(MIMLBag bag)
                                +
                                public mulan.data.MultiLabelInstances transformInstance​(MIMLBag bag)
                                                                                  throws java.lang.Exception
                                Throws:
                                @@ -447,14 +528,14 @@

                                transformInstance

                              - +
                              • transformInstance

                                -
                                public mulan.data.MultiLabelInstances transformInstance(MIMLInstances dataset,
                                -                                                        MIMLBag bag)
                                +
                                public mulan.data.MultiLabelInstances transformInstance​(MIMLInstances dataset,
                                +                                                        MIMLBag bag)
                                                                                  throws java.lang.Exception
                                Throws:
                                @@ -462,13 +543,13 @@

                                transformInstance

                              - +
                              • prepareTemplate

                                -
                                protected void prepareTemplate()
                                +
                                protected void prepareTemplate()
                                                         throws java.lang.Exception
                                Prepares a template to perform the transformation from MIMLInstances to MultiLabelInstances. This template includes: the bag label attribute, all @@ -503,13 +584,13 @@

                                prepareTemplate

                              - +
                              • removeBagId

                                -
                                public static mulan.data.MultiLabelInstances removeBagId(mulan.data.MultiLabelInstances mlDataSetWithBagId)
                                +
                                public static mulan.data.MultiLabelInstances removeBagId​(mulan.data.MultiLabelInstances mlDataSetWithBagId)
                                                                                   throws java.lang.Exception
                                Removes the bagId attribute in MultiLabelInstances.
                                @@ -526,21 +607,25 @@

                                removeBagId

                            +
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.svg b/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.svg new file mode 100644 index 0000000..23392eb --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/PropositionalTransformation.svg @@ -0,0 +1,36 @@ +PropositionalTransformationmiml.transformation.mimlTOmlupdatedLabelIndices: int[]template: Instancesdataset: MIMLInstancesremoveFilter: RemoveincludeBagId: booleanPropositionalTransformation(MIMLInstances)PropositionalTransformation(MIMLInstances, boolean)isIncludeBagId(): booleansetIncludeBagId(boolean): voidtransformDataset(): MultiLabelInstancestransformDataset(MIMLInstances): MultiLabelInstancestransformInstance(MIMLBag): MultiLabelInstancestransformInstance(MIMLInstances, MIMLBag): MultiLabelInstancesprepareTemplate(): voidremoveBagId(MultiLabelInstances): MultiLabelInstancesUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/ArithmeticTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/ArithmeticTransformation.html old mode 100755 new mode 100644 index 12c3f3b..fcaaa60 --- a/documentation/apidoc/miml/transformation/mimlTOml/class-use/ArithmeticTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/ArithmeticTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOml.ArithmeticTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.ArithmeticTransformation

                          No usage of miml.transformation.mimlTOml.ArithmeticTransformation
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/GeometricTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/GeometricTransformation.html old mode 100755 new mode 100644 index 0325fe1..ca9e497 --- a/documentation/apidoc/miml/transformation/mimlTOml/class-use/GeometricTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/GeometricTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOml.GeometricTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.GeometricTransformation

                          No usage of miml.transformation.mimlTOml.GeometricTransformation
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/KMeansTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/KMeansTransformation.html new file mode 100644 index 0000000..f7488d1 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/KMeansTransformation.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.transformation.mimlTOml.KMeansTransformation + + + + + + + + + + + + + + + +
                          + +
                          +
                          +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.KMeansTransformation

                          +
                          +
                          No usage of miml.transformation.mimlTOml.KMeansTransformation
                          +
                          + + + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/MIMLtoML.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MIMLtoML.html old mode 100755 new mode 100644 index 37d617e..0e15989 --- a/documentation/apidoc/miml/transformation/mimlTOml/class-use/MIMLtoML.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MIMLtoML.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOml.MIMLtoML - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.MIMLtoML

                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/MedoidTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MedoidTransformation.html new file mode 100644 index 0000000..7dd0233 --- /dev/null +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MedoidTransformation.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.transformation.mimlTOml.MedoidTransformation + + + + + + + + + + + + + + + +
                          + +
                          +
                          +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.MedoidTransformation

                          +
                          +
                          No usage of miml.transformation.mimlTOml.MedoidTransformation
                          +
                          + + + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/MinMaxTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MinMaxTransformation.html old mode 100755 new mode 100644 index 5923baa..7d050cf --- a/documentation/apidoc/miml/transformation/mimlTOml/class-use/MinMaxTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/MinMaxTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOml.MinMaxTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.MinMaxTransformation

                          No usage of miml.transformation.mimlTOml.MinMaxTransformation
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/class-use/PropositionalTransformation.html b/documentation/apidoc/miml/transformation/mimlTOml/class-use/PropositionalTransformation.html old mode 100755 new mode 100644 index f25c502..e0b94e6 --- a/documentation/apidoc/miml/transformation/mimlTOml/class-use/PropositionalTransformation.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/class-use/PropositionalTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.transformation.mimlTOml.PropositionalTransformation - + + + + + + + + + +var pathtoroot = "../../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Uses of Class
                          miml.transformation.mimlTOml.PropositionalTransformation

                          No usage of miml.transformation.mimlTOml.PropositionalTransformation
                          +
                          + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/package-frame.html b/documentation/apidoc/miml/transformation/mimlTOml/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/transformation/mimlTOml/package-summary.html b/documentation/apidoc/miml/transformation/mimlTOml/package-summary.html old mode 100755 new mode 100644 index 4d6f300..a6ef7d7 --- a/documentation/apidoc/miml/transformation/mimlTOml/package-summary.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.transformation.mimlTOml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                          + +
                          +

                          Package miml.transformation.mimlTOml

                          • - +
                            @@ -83,34 +108,48 @@

                            Package miml.transformation.mimlTOml

                            - + - + - + + + + + + + + + - + - +
                            Class Summary 
                            Class
                            ArithmeticTransformationArithmeticTransformation
                            Class that performs an arithmetic transformation to convert a MIMLInstances class to MultiLabelInstances.
                            GeometricTransformationGeometricTransformation
                            Class that performs a geometric transformation to convert a MIMLInstances class to MultiLabelInstances.
                            MIMLtoMLKMeansTransformation +
                            Class implementing the kmeans-based transformation described in [1] to + transform an MIML problem to ML
                            +
                            MedoidTransformation +
                            Class implementing the medoid-based transformation described in [1] to + transform an MIML problem to ML
                            +
                            MIMLtoML
                            Abstract class to transform MIMLInstances into MultiLabelInstances.
                            MinMaxTransformationMinMaxTransformation
                            Class that performs a miniMaxc transformation to convert a MIMLInstances class to MultiLabelInstances.
                            PropositionalTransformationPropositionalTransformation
                            Class that performs a propositionalTransformation to convert a MIMLInstances dataset to MultiLabelInstances.
                            @@ -121,16 +160,19 @@

                            Package miml.transformation.mimlTOml

                            + + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/package-tree.html b/documentation/apidoc/miml/transformation/mimlTOml/package-tree.html old mode 100755 new mode 100644 index 8c5ad43..747decc --- a/documentation/apidoc/miml/transformation/mimlTOml/package-tree.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/package-tree.html @@ -1,12 +1,22 @@ - + - + miml.transformation.mimlTOml Class Hierarchy - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Hierarchy For Package miml.transformation.mimlTOml

                            Package Hierarchies: @@ -77,32 +102,39 @@

                            Hierarchy For Package miml.transformation.mimlTOml

                            +

                            Class Hierarchy

                            +
                            +
                            + diff --git a/documentation/apidoc/miml/transformation/mimlTOml/package-use.html b/documentation/apidoc/miml/transformation/mimlTOml/package-use.html old mode 100755 new mode 100644 index 2d685f7..780b50f --- a/documentation/apidoc/miml/transformation/mimlTOml/package-use.html +++ b/documentation/apidoc/miml/transformation/mimlTOml/package-use.html @@ -1,12 +1,22 @@ - + - + Uses of Package miml.transformation.mimlTOml - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Package
                            miml.transformation.mimlTOml

                            + + +
                            +
                              +
                            • + + +

                              Method Summary

                              + + + + + + + + + + + + +
                              All Methods Static Methods Concrete Methods 
                              Modifier and TypeMethodDescription
                              static voidmain​(java.lang.String[] args) 
                              +
                                +
                              • + + +

                                Methods inherited from class java.lang.Object

                                +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                              • +
                              +
                            • +
                            +
                            + + +
                            +
                            +
                              +
                            • + +
                              +
                                +
                              • + + +

                                Constructor Detail

                                + + + +
                                  +
                                • +

                                  Clustering

                                  +
                                  public Clustering()
                                  +
                                • +
                                +
                              • +
                              +
                              + +
                              +
                                +
                              • + + +

                                Method Detail

                                + + + +
                                  +
                                • +

                                  main

                                  +
                                  public static void main​(java.lang.String[] args)
                                  +
                                • +
                                +
                              • +
                              +
                              +
                            • +
                            +
                            + +
                            + + + + diff --git a/documentation/apidoc/miml/tutorial/CrossValidationExperiment.html b/documentation/apidoc/miml/tutorial/CrossValidationExperiment.html old mode 100755 new mode 100644 index 5cd64a0..e48dd3f --- a/documentation/apidoc/miml/tutorial/CrossValidationExperiment.html +++ b/documentation/apidoc/miml/tutorial/CrossValidationExperiment.html @@ -1,12 +1,22 @@ - + - + CrossValidationExperiment - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class CrossValidationExperiment

                            @@ -108,7 +133,6 @@

                            Class CrossValidationE

                            • -
                              public class CrossValidationExperiment
                               extends java.lang.Object
                              Class implementing an example of using cross-validation with different kinds @@ -126,47 +150,55 @@

                              Class CrossValidationE
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -174,6 +206,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                              @@ -181,12 +214,13 @@

                              Methods inherited from class java.lang.Object

                              • +
                                  -
                                • +
                                • Constructor Detail

                                  - +
                                    @@ -197,29 +231,31 @@

                                    CrossValidationExperiment

                                +
                                +
                                  -
                                • +
                                • Method Detail

                                  - +
                                  • showUse

                                    -
                                    public static void showUse()
                                    +
                                    public static void showUse()
                                    Shows the help on command line.
                                  - +
                                  • main

                                    -
                                    public static void main(java.lang.String[] args)
                                    +
                                    public static void main​(java.lang.String[] args)
                                                      throws java.lang.Exception
                                    Throws:
                                    @@ -229,21 +265,25 @@

                                    main

                                +

                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/CrossValidationExperiment.svg b/documentation/apidoc/miml/tutorial/CrossValidationExperiment.svg new file mode 100644 index 0000000..3eb524c --- /dev/null +++ b/documentation/apidoc/miml/tutorial/CrossValidationExperiment.svg @@ -0,0 +1,23 @@ +CrossValidationExperimentmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/GeneratePartitions.html b/documentation/apidoc/miml/tutorial/GeneratePartitions.html old mode 100755 new mode 100644 index b5f1cbb..455be6e --- a/documentation/apidoc/miml/tutorial/GeneratePartitions.html +++ b/documentation/apidoc/miml/tutorial/GeneratePartitions.html @@ -1,12 +1,22 @@ - + - + GeneratePartitions - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class GeneratePartitions

                            @@ -108,7 +133,6 @@

                            Class GeneratePartitions


                            • -
                              public class GeneratePartitions
                               extends java.lang.Object
                              Class to split a multi-output dataset into partitions for cross-validation or @@ -127,49 +151,57 @@

                              Class GeneratePartitions

                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) +main​(java.lang.String[] args)
                                  Main method.
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -177,6 +209,7 @@

                                    Methods inherited from class java.lang.Object

                                +
                              @@ -184,12 +217,13 @@

                              Methods inherited from class java.lang.Object

                              • +
                                  -
                                • +
                                • Constructor Detail

                                  - +
                                    @@ -200,29 +234,31 @@

                                    GeneratePartitions

                                +
                                +
                                  -
                                • +
                                • Method Detail

                                  - +
                                  • showUse

                                    -
                                    public static void showUse()
                                    +
                                    public static void showUse()
                                    Shows the help on command line.
                                  - +
                                  • main

                                    -
                                    public static void main(java.lang.String[] args)
                                    +
                                    public static void main​(java.lang.String[] args)
                                                      throws java.lang.Exception
                                    Main method.
                                    @@ -262,21 +298,25 @@

                                    main

                                +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/GeneratePartitions.svg b/documentation/apidoc/miml/tutorial/GeneratePartitions.svg new file mode 100644 index 0000000..e1011fc --- /dev/null +++ b/documentation/apidoc/miml/tutorial/GeneratePartitions.svg @@ -0,0 +1,23 @@ +GeneratePartitionsmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/HoldoutExperiment.html b/documentation/apidoc/miml/tutorial/HoldoutExperiment.html old mode 100755 new mode 100644 index 041e688..9d83d5d --- a/documentation/apidoc/miml/tutorial/HoldoutExperiment.html +++ b/documentation/apidoc/miml/tutorial/HoldoutExperiment.html @@ -1,12 +1,22 @@ - + - + HoldoutExperiment - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class HoldoutExperiment

                            @@ -108,7 +133,6 @@

                            Class HoldoutExperiment


                            • -
                              public class HoldoutExperiment
                               extends java.lang.Object
                              Class implementing an example of using holdout with train/test dataset and a @@ -126,47 +150,55 @@

                              Class HoldoutExperiment

                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -174,6 +206,7 @@

                                    Methods inherited from class java.lang.Object

                                +
                              @@ -181,12 +214,13 @@

                              Methods inherited from class java.lang.Object

                              • +
                                  -
                                • +
                                • Constructor Detail

                                  - +
                                    @@ -197,29 +231,31 @@

                                    HoldoutExperiment

                                +
                                +
                                  -
                                • +
                                • Method Detail

                                  - +
                                  • showUse

                                    -
                                    public static void showUse()
                                    +
                                    public static void showUse()
                                    Shows the help on command line.
                                  - +
                                  • main

                                    -
                                    public static void main(java.lang.String[] args)
                                    +
                                    public static void main​(java.lang.String[] args)
                                                      throws java.lang.Exception
                                    Throws:
                                    @@ -229,21 +265,25 @@

                                    main

                                +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/HoldoutExperiment.svg b/documentation/apidoc/miml/tutorial/HoldoutExperiment.svg new file mode 100644 index 0000000..1736811 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/HoldoutExperiment.svg @@ -0,0 +1,23 @@ +HoldoutExperimentmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/HoldoutToML_RFPCT.html b/documentation/apidoc/miml/tutorial/HoldoutToML_RFPCT.html new file mode 100644 index 0000000..9aefa79 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/HoldoutToML_RFPCT.html @@ -0,0 +1,320 @@ + + + + + +HoldoutToML_RFPCT + + + + + + + + + + + + + + + +
                            + +
                            + +
                            +
                            +
                            Package miml.tutorial
                            +

                            Class HoldoutToML_RFPCT

                            +
                            +
                            +
                              +
                            • java.lang.Object
                            • +
                            • +
                                +
                              • miml.tutorial.HoldoutToML_RFPCT
                              • +
                              +
                            • +
                            +
                            +
                              +
                            • +
                              +
                              public class HoldoutToML_RFPCT
                              +extends java.lang.Object
                              +
                              Class implementing an example of using holdout with train/test dataset and a + toML classifier with RFPCT as base classifier.
                              +
                              +
                              Version:
                              +
                              20230306
                              +
                              Author:
                              +
                              Eva Gibaja
                              +
                              +
                            • +
                            +
                            +
                            +
                              +
                            • + +
                              +
                                +
                              • + + +

                                Constructor Summary

                                + + + + + + + + + + +
                                Constructors 
                                ConstructorDescription
                                HoldoutToML_RFPCT() 
                                +
                              • +
                              +
                              + +
                              +
                                +
                              • + + +

                                Method Summary

                                + + + + + + + + + + + + +
                                All Methods Static Methods Concrete Methods 
                                Modifier and TypeMethodDescription
                                static voidmain​(java.lang.String[] args) 
                                +
                                  +
                                • + + +

                                  Methods inherited from class java.lang.Object

                                  +clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
                                • +
                                +
                              • +
                              +
                              +
                            • +
                            +
                            +
                            +
                              +
                            • + +
                              +
                                +
                              • + + +

                                Constructor Detail

                                + + + +
                                  +
                                • +

                                  HoldoutToML_RFPCT

                                  +
                                  public HoldoutToML_RFPCT()
                                  +
                                • +
                                +
                              • +
                              +
                              + +
                              +
                                +
                              • + + +

                                Method Detail

                                + + + +
                                  +
                                • +

                                  main

                                  +
                                  public static void main​(java.lang.String[] args)
                                  +                 throws java.lang.Exception
                                  +
                                  +
                                  Throws:
                                  +
                                  java.lang.Exception
                                  +
                                  +
                                • +
                                +
                              • +
                              +
                              +
                            • +
                            +
                            +
                            +
                            + + + + diff --git a/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.html b/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.html old mode 100755 new mode 100644 index 87925ff..5a0cab2 --- a/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.html +++ b/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.html @@ -1,12 +1,22 @@ - + - + InsertingAttributeToBag - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class InsertingAttributeToBag

                            @@ -108,7 +133,6 @@

                            Class InsertingAttribute

                            • -
                              public class InsertingAttributeToBag
                               extends java.lang.Object
                              Class implementing an example of inserting a new attribute to the relational @@ -126,47 +150,55 @@

                              Class InsertingAttribute
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -174,6 +206,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                              @@ -181,12 +214,13 @@

                              Methods inherited from class java.lang.Object

                              • +
                                  -
                                • +
                                • Constructor Detail

                                  - +
                                    @@ -197,29 +231,31 @@

                                    InsertingAttributeToBag

                                +
                                +
                                  -
                                • +
                                • Method Detail

                                  - +
                                  • showUse

                                    -
                                    public static void showUse()
                                    +
                                    public static void showUse()
                                    Shows the help on command line.
                                  - +
                                  • main

                                    -
                                    public static void main(java.lang.String[] args)
                                    +
                                    public static void main​(java.lang.String[] args)
                                                      throws java.lang.Exception
                                    Throws:
                                    @@ -229,21 +265,25 @@

                                    main

                                +

                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.svg b/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.svg new file mode 100644 index 0000000..895d64e --- /dev/null +++ b/documentation/apidoc/miml/tutorial/InsertingAttributeToBag.svg @@ -0,0 +1,23 @@ +InsertingAttributeToBagmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.html b/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.html old mode 100755 new mode 100644 index 1e8708b..3c8423b --- a/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.html +++ b/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.html @@ -1,12 +1,22 @@ - + - + InsertingAttributesToBags - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class InsertingAttributesToBags

                            @@ -108,7 +133,6 @@

                            Class InsertingAttribu

                            • -
                              public class InsertingAttributesToBags
                               extends java.lang.Object
                              Class implementing an example of inserting a new group of attributes to the @@ -126,47 +150,55 @@

                              Class InsertingAttribu
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -174,6 +206,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                              @@ -181,12 +214,13 @@

                              Methods inherited from class java.lang.Object

                              • +
                                  -
                                • +
                                • Constructor Detail

                                  - +
                                    @@ -197,29 +231,31 @@

                                    InsertingAttributesToBags

                                +
                                +
                                  -
                                • +
                                • Method Detail

                                  - +
                                  • showUse

                                    -
                                    public static void showUse()
                                    +
                                    public static void showUse()
                                    Shows the help on command line.
                                  - +
                                  • main

                                    -
                                    public static void main(java.lang.String[] args)
                                    +
                                    public static void main​(java.lang.String[] args)
                                                      throws java.lang.Exception
                                    Throws:
                                    @@ -229,21 +265,25 @@

                                    main

                                +

                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.svg b/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.svg new file mode 100644 index 0000000..caca590 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/InsertingAttributesToBags.svg @@ -0,0 +1,23 @@ +InsertingAttributesToBagsmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.html b/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.html old mode 100755 new mode 100644 index 406a960..bb684e4 --- a/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.html +++ b/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.html @@ -1,12 +1,22 @@ - + - + MIMLtoMITransformation - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class MIMLtoMITransformation

                            @@ -108,7 +133,6 @@

                            Class MIMLtoMITransformat

                            • -
                              public class MIMLtoMITransformation
                               extends java.lang.Object
                              Class for basic handling of MIML to MIL LP and BR transformation.
                              @@ -125,47 +149,55 @@

                              Class MIMLtoMITransformat
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -173,6 +205,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                            @@ -180,12 +213,13 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                  @@ -196,29 +230,31 @@

                                  MIMLtoMITransformation

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • showUse

                                  -
                                  public static void showUse()
                                  +
                                  public static void showUse()
                                  Shows the help on command line.
                                - +
                                • main

                                  -
                                  public static void main(java.lang.String[] args)
                                  +
                                  public static void main​(java.lang.String[] args)
                                                    throws java.lang.Exception
                                  Throws:
                                  @@ -228,21 +264,25 @@

                                  main

                              +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.svg b/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.svg new file mode 100644 index 0000000..a413e78 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/MIMLtoMITransformation.svg @@ -0,0 +1,23 @@ +MIMLtoMITransformationmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.html b/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.html old mode 100755 new mode 100644 index dc20c64..3f97aa1 --- a/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.html +++ b/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.html @@ -1,12 +1,22 @@ - + - + MIMLtoMLTransformation - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class MIMLtoMLTransformation

                            @@ -108,7 +133,6 @@

                            Class MIMLtoMLTransformat

                            • -
                              public class MIMLtoMLTransformation
                               extends java.lang.Object
                              Class for basic handling of the transformation MIML to ML transformations.
                              @@ -125,47 +149,55 @@

                              Class MIMLtoMLTransformat
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -173,6 +205,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                            @@ -180,12 +213,13 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                  @@ -196,29 +230,31 @@

                                  MIMLtoMLTransformation

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • showUse

                                  -
                                  public static void showUse()
                                  +
                                  public static void showUse()
                                  Shows the help on command line.
                                - +
                                • main

                                  -
                                  public static void main(java.lang.String[] args)
                                  +
                                  public static void main​(java.lang.String[] args)
                                                    throws java.lang.Exception
                                  Throws:
                                  @@ -228,21 +264,25 @@

                                  main

                              +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.svg b/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.svg new file mode 100644 index 0000000..9115d91 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/MIMLtoMLTransformation.svg @@ -0,0 +1,23 @@ +MIMLtoMLTransformationmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.html b/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.html old mode 100755 new mode 100644 index d9b3989..b59af92 --- a/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.html +++ b/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.html @@ -1,12 +1,22 @@ - + - + ManagingMIMLInstances - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class ManagingMIMLInstances

                            @@ -108,7 +133,6 @@

                            Class ManagingMIMLInstance

                            • -
                              public class ManagingMIMLInstances
                               extends java.lang.Object
                              Class implementing basic handling of MIML datasets.
                              @@ -125,47 +149,55 @@

                              Class ManagingMIMLInstance
                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + + - +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                  static voidshowUse() +showUse()
                                  Shows the help on command line.
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -173,6 +205,7 @@

                                    Methods inherited from class java.lang.Object

                                +

                            @@ -180,12 +213,13 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                  @@ -196,48 +230,54 @@

                                  ManagingMIMLInstances

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • showUse

                                  -
                                  public static void showUse()
                                  +
                                  public static void showUse()
                                  Shows the help on command line.
                                - +
                                • main

                                  -
                                  public static void main(java.lang.String[] args)
                                  +
                                  public static void main​(java.lang.String[] args)
                              +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.svg b/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.svg new file mode 100644 index 0000000..e850ee6 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/ManagingMIMLInstances.svg @@ -0,0 +1,23 @@ +ManagingMIMLInstancesmiml.tutorialshowUse(): voidmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/NormalizingDataset.html b/documentation/apidoc/miml/tutorial/NormalizingDataset.html old mode 100755 new mode 100644 index 14aa1a0..c0e79aa --- a/documentation/apidoc/miml/tutorial/NormalizingDataset.html +++ b/documentation/apidoc/miml/tutorial/NormalizingDataset.html @@ -1,12 +1,22 @@ - + - + NormalizingDataset - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class NormalizingDataset

                            @@ -108,7 +133,6 @@

                            Class NormalizingDataset


                            • -
                              public class NormalizingDataset
                               extends java.lang.Object
                              Class to show an example of normalization of a MIML Dataset.
                              @@ -125,41 +149,48 @@

                              Class NormalizingDataset

                              • +
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -167,6 +198,7 @@

                                    Methods inherited from class java.lang.Object

                                +
                            @@ -174,12 +206,13 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                  @@ -190,38 +223,44 @@

                                  NormalizingDataset

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • main

                                  -
                                  public static void main(java.lang.String[] args)
                                  +
                                  public static void main​(java.lang.String[] args)
                              +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/NormalizingDataset.svg b/documentation/apidoc/miml/tutorial/NormalizingDataset.svg new file mode 100644 index 0000000..a07804c --- /dev/null +++ b/documentation/apidoc/miml/tutorial/NormalizingDataset.svg @@ -0,0 +1,22 @@ +NormalizingDatasetmiml.tutorialmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/Resampling.html b/documentation/apidoc/miml/tutorial/Resampling.html old mode 100755 new mode 100644 index edb66a4..167d06e --- a/documentation/apidoc/miml/tutorial/Resampling.html +++ b/documentation/apidoc/miml/tutorial/Resampling.html @@ -1,12 +1,22 @@ - + - + Resampling - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +
                            -
                            miml.tutorial
                            +
                            Package miml.tutorial

                            Class Resampling

                            @@ -108,7 +133,6 @@

                            Class Resampling


                            • -
                              public class Resampling
                               extends java.lang.Object
                              Class to show an example of sampling with replacement.
                              @@ -125,41 +149,48 @@

                              Class Resampling

                              • +
                                  -
                                • +
                                • Constructor Summary

                                  - +
                                  - + + - + +
                                  Constructors 
                                  Constructor and DescriptionConstructorDescription
                                  Resampling() Resampling() 
                                +
                                +
                                  -
                                • +
                                • Method Summary

                                  - +
                                  - + + - + +
                                  All Methods Static Methods Concrete Methods 
                                  Modifier and TypeMethod and DescriptionMethodDescription
                                  static voidmain(java.lang.String[] args) main​(java.lang.String[] args) 
                                    -
                                  • +
                                  • Methods inherited from class java.lang.Object

                                    @@ -167,6 +198,7 @@

                                    Methods inherited from class java.lang.Object

                                +
                            @@ -174,12 +206,13 @@

                            Methods inherited from class java.lang.Object

                            • +
                                -
                              • +
                              • Constructor Detail

                                - +
                                  @@ -190,19 +223,21 @@

                                  Resampling

                              +
                              +
                                -
                              • +
                              • Method Detail

                                - +
                                • main

                                  -
                                  public static void main(java.lang.String[] args)
                                  +
                                  public static void main​(java.lang.String[] args)
                                                    throws java.lang.Exception
                                  Throws:
                                  @@ -212,21 +247,25 @@

                                  main

                              +
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/Resampling.svg b/documentation/apidoc/miml/tutorial/Resampling.svg new file mode 100644 index 0000000..87ace82 --- /dev/null +++ b/documentation/apidoc/miml/tutorial/Resampling.svg @@ -0,0 +1,22 @@ +Resamplingmiml.tutorialmain(String[]): voidUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/miml/tutorial/Sampling.html b/documentation/apidoc/miml/tutorial/Sampling.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/tutorial/class-use/Clustering.html b/documentation/apidoc/miml/tutorial/class-use/Clustering.html new file mode 100644 index 0000000..72223ab --- /dev/null +++ b/documentation/apidoc/miml/tutorial/class-use/Clustering.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.tutorial.Clustering + + + + + + + + + + + + + + + +
                            + +
                            +
                            +
                            +

                            Uses of Class
                            miml.tutorial.Clustering

                            +
                            +
                            No usage of miml.tutorial.Clustering
                            +
                            + + + diff --git a/documentation/apidoc/miml/tutorial/class-use/CrossValidationExperiment.html b/documentation/apidoc/miml/tutorial/class-use/CrossValidationExperiment.html old mode 100755 new mode 100644 index d74e10f..be33589 --- a/documentation/apidoc/miml/tutorial/class-use/CrossValidationExperiment.html +++ b/documentation/apidoc/miml/tutorial/class-use/CrossValidationExperiment.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.CrossValidationExperiment - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.CrossValidationExperiment

                            No usage of miml.tutorial.CrossValidationExperiment
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/GeneratePartitions.html b/documentation/apidoc/miml/tutorial/class-use/GeneratePartitions.html old mode 100755 new mode 100644 index 1e14198..5e25bf9 --- a/documentation/apidoc/miml/tutorial/class-use/GeneratePartitions.html +++ b/documentation/apidoc/miml/tutorial/class-use/GeneratePartitions.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.GeneratePartitions - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.GeneratePartitions

                            No usage of miml.tutorial.GeneratePartitions
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/HoldoutExperiment.html b/documentation/apidoc/miml/tutorial/class-use/HoldoutExperiment.html old mode 100755 new mode 100644 index 509913c..8b94115 --- a/documentation/apidoc/miml/tutorial/class-use/HoldoutExperiment.html +++ b/documentation/apidoc/miml/tutorial/class-use/HoldoutExperiment.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.HoldoutExperiment - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.HoldoutExperiment

                            No usage of miml.tutorial.HoldoutExperiment
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/HoldoutToML_RFPCT.html b/documentation/apidoc/miml/tutorial/class-use/HoldoutToML_RFPCT.html new file mode 100644 index 0000000..cc8ac8d --- /dev/null +++ b/documentation/apidoc/miml/tutorial/class-use/HoldoutToML_RFPCT.html @@ -0,0 +1,149 @@ + + + + + +Uses of Class miml.tutorial.HoldoutToML_RFPCT + + + + + + + + + + + + + + + +
                            + +
                            +
                            +
                            +

                            Uses of Class
                            miml.tutorial.HoldoutToML_RFPCT

                            +
                            +
                            No usage of miml.tutorial.HoldoutToML_RFPCT
                            +
                            + + + diff --git a/documentation/apidoc/miml/tutorial/class-use/InsertingAttributeToBag.html b/documentation/apidoc/miml/tutorial/class-use/InsertingAttributeToBag.html old mode 100755 new mode 100644 index f168181..c7d073e --- a/documentation/apidoc/miml/tutorial/class-use/InsertingAttributeToBag.html +++ b/documentation/apidoc/miml/tutorial/class-use/InsertingAttributeToBag.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.InsertingAttributeToBag - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.InsertingAttributeToBag

                            No usage of miml.tutorial.InsertingAttributeToBag
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/InsertingAttributesToBags.html b/documentation/apidoc/miml/tutorial/class-use/InsertingAttributesToBags.html old mode 100755 new mode 100644 index 44fee16..9bac3b1 --- a/documentation/apidoc/miml/tutorial/class-use/InsertingAttributesToBags.html +++ b/documentation/apidoc/miml/tutorial/class-use/InsertingAttributesToBags.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.InsertingAttributesToBags - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.InsertingAttributesToBags

                            No usage of miml.tutorial.InsertingAttributesToBags
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/MIMLtoMITransformation.html b/documentation/apidoc/miml/tutorial/class-use/MIMLtoMITransformation.html old mode 100755 new mode 100644 index d788208..834a8c5 --- a/documentation/apidoc/miml/tutorial/class-use/MIMLtoMITransformation.html +++ b/documentation/apidoc/miml/tutorial/class-use/MIMLtoMITransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.MIMLtoMITransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.MIMLtoMITransformation

                            No usage of miml.tutorial.MIMLtoMITransformation
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/MIMLtoMLTransformation.html b/documentation/apidoc/miml/tutorial/class-use/MIMLtoMLTransformation.html old mode 100755 new mode 100644 index 0e9d569..4d49b52 --- a/documentation/apidoc/miml/tutorial/class-use/MIMLtoMLTransformation.html +++ b/documentation/apidoc/miml/tutorial/class-use/MIMLtoMLTransformation.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.MIMLtoMLTransformation - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.MIMLtoMLTransformation

                            No usage of miml.tutorial.MIMLtoMLTransformation
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/ManagingMIMLInstances.html b/documentation/apidoc/miml/tutorial/class-use/ManagingMIMLInstances.html old mode 100755 new mode 100644 index 5081834..19475b5 --- a/documentation/apidoc/miml/tutorial/class-use/ManagingMIMLInstances.html +++ b/documentation/apidoc/miml/tutorial/class-use/ManagingMIMLInstances.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.ManagingMIMLInstances - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.ManagingMIMLInstances

                            No usage of miml.tutorial.ManagingMIMLInstances
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/NormalizingDataset.html b/documentation/apidoc/miml/tutorial/class-use/NormalizingDataset.html old mode 100755 new mode 100644 index 45597af..ede4271 --- a/documentation/apidoc/miml/tutorial/class-use/NormalizingDataset.html +++ b/documentation/apidoc/miml/tutorial/class-use/NormalizingDataset.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.NormalizingDataset - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.NormalizingDataset

                            No usage of miml.tutorial.NormalizingDataset
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/Resampling.html b/documentation/apidoc/miml/tutorial/class-use/Resampling.html old mode 100755 new mode 100644 index 4c107ad..0711877 --- a/documentation/apidoc/miml/tutorial/class-use/Resampling.html +++ b/documentation/apidoc/miml/tutorial/class-use/Resampling.html @@ -1,12 +1,22 @@ - + - + Uses of Class miml.tutorial.Resampling - + + + + + + + + + +var pathtoroot = "../../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Uses of Class
                            miml.tutorial.Resampling

                            No usage of miml.tutorial.Resampling
                            +
                            + diff --git a/documentation/apidoc/miml/tutorial/class-use/Sampling.html b/documentation/apidoc/miml/tutorial/class-use/Sampling.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/tutorial/package-frame.html b/documentation/apidoc/miml/tutorial/package-frame.html old mode 100755 new mode 100644 diff --git a/documentation/apidoc/miml/tutorial/package-summary.html b/documentation/apidoc/miml/tutorial/package-summary.html old mode 100755 new mode 100644 index 57ca3a8..372f358 --- a/documentation/apidoc/miml/tutorial/package-summary.html +++ b/documentation/apidoc/miml/tutorial/package-summary.html @@ -1,12 +1,22 @@ - + - + miml.tutorial - + + + + + + + + + +var pathtoroot = "../../"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Package miml.tutorial

                            - -
                            - - - - - - - -
                            - - +

                            index.html

                            +
                            diff --git a/documentation/apidoc/overview-tree.html b/documentation/apidoc/overview-tree.html old mode 100755 new mode 100644 index 2c6cc64..a14c191 --- a/documentation/apidoc/overview-tree.html +++ b/documentation/apidoc/overview-tree.html @@ -1,12 +1,22 @@ - + - + Class Hierarchy - + + + + + + + + + +var pathtoroot = "./"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Hierarchy For All Packages

                            Package Hierarchies: @@ -82,6 +107,7 @@

                            Hierarchy For All Packages

                          • miml.classifiers.miml.neural,
                          • miml.classifiers.miml.optimization,
                          • miml.classifiers.ml,
                          • +
                          • miml.clusterers,
                          • miml.core,
                          • miml.core.distance,
                          • miml.data,
                          • @@ -100,199 +126,228 @@

                            Hierarchy For All Packages

                            +

                            Class Hierarchy

                            +

                            Interface Hierarchy

                            +
                            +
                            + diff --git a/documentation/apidoc/package-dependencies.svg b/documentation/apidoc/package-dependencies.svg new file mode 100644 index 0000000..da27624 --- /dev/null +++ b/documentation/apidoc/package-dependencies.svg @@ -0,0 +1,417 @@ +miml.coreorg.apache.commons.configuration2org.apache.commons.configuration2.exmiml.classifiers.mimlmiml.evaluationmiml.reportweka.coremiml.datamulan.datacom.mathworks.toolbox.javabuildermiml.data.partitioningmiml.data.partitioning.randommiml.core.distancemulan.classifiermiml.classifiers.miml.optimizationMWAlgorithmsmiml.classifiers.miml.metamulan.evaluationmiml.transformation.mimlTOmimulan.transformationsmiml.classifiers.mlmulan.classifier.lazyweka.core.neighboursearchmiml.data.statisticsmiml.classifiers.miml.mimlTOmimulan.classifier.transformationweka.classifiersmiml.data.partitioning.powersetmiml.classifiers.miml.lazymiml.classifiers.miweka.classifiers.mimiml.classifiers.miml.mimlTOmlmiml.transformation.mimlTOmlweka.filters.unsupervised.attributemiml.data.normalizationmiml.classifiers.miml.neuralmiml.data.partitioning.iterativeUMLDoclet 2.0.20, PlantUML 1.2022.12 \ No newline at end of file diff --git a/documentation/apidoc/package-list b/documentation/apidoc/package-list old mode 100755 new mode 100644 diff --git a/documentation/apidoc/package-search-index.js b/documentation/apidoc/package-search-index.js new file mode 100644 index 0000000..ce22e30 --- /dev/null +++ b/documentation/apidoc/package-search-index.js @@ -0,0 +1 @@ +packageSearchIndex = [{"l":"All Packages","url":"allpackages-index.html"},{"l":"miml.classifiers.mi"},{"l":"miml.classifiers.miml"},{"l":"miml.classifiers.miml.lazy"},{"l":"miml.classifiers.miml.meta"},{"l":"miml.classifiers.miml.mimlTOmi"},{"l":"miml.classifiers.miml.mimlTOml"},{"l":"miml.classifiers.miml.neural"},{"l":"miml.classifiers.miml.optimization"},{"l":"miml.classifiers.ml"},{"l":"miml.clusterers"},{"l":"miml.core"},{"l":"miml.core.distance"},{"l":"miml.data"},{"l":"miml.data.normalization"},{"l":"miml.data.partitioning"},{"l":"miml.data.partitioning.iterative"},{"l":"miml.data.partitioning.powerset"},{"l":"miml.data.partitioning.random"},{"l":"miml.data.statistics"},{"l":"miml.evaluation"},{"l":"miml.report"},{"l":"miml.run"},{"l":"miml.transformation.mimlTOmi"},{"l":"miml.transformation.mimlTOml"},{"l":"miml.tutorial"}] \ No newline at end of file diff --git a/documentation/apidoc/package-search-index.zip b/documentation/apidoc/package-search-index.zip new file mode 100644 index 0000000..a52a8bf Binary files /dev/null and b/documentation/apidoc/package-search-index.zip differ diff --git a/documentation/apidoc/resources/glass.png b/documentation/apidoc/resources/glass.png new file mode 100644 index 0000000..a7f591f Binary files /dev/null and b/documentation/apidoc/resources/glass.png differ diff --git a/documentation/apidoc/resources/x.png b/documentation/apidoc/resources/x.png new file mode 100644 index 0000000..30548a7 Binary files /dev/null and b/documentation/apidoc/resources/x.png differ diff --git a/documentation/apidoc/script.js b/documentation/apidoc/script.js old mode 100755 new mode 100644 index c3a1cae..53f3ea0 --- a/documentation/apidoc/script.js +++ b/documentation/apidoc/script.js @@ -1,9 +1,124 @@ -function show(type) -{ +/* + * Copyright (c) 2013, 2018, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +var moduleSearchIndex; +var packageSearchIndex; +var typeSearchIndex; +var memberSearchIndex; +var tagSearchIndex; +function loadScripts(doc, tag) { + createElem(doc, tag, 'jquery/jszip/dist/jszip.js'); + createElem(doc, tag, 'jquery/jszip-utils/dist/jszip-utils.js'); + if (window.navigator.userAgent.indexOf('MSIE ') > 0 || window.navigator.userAgent.indexOf('Trident/') > 0 || + window.navigator.userAgent.indexOf('Edge/') > 0) { + createElem(doc, tag, 'jquery/jszip-utils/dist/jszip-utils-ie.js'); + } + createElem(doc, tag, 'search.js'); + + $.get(pathtoroot + "module-search-index.zip") + .done(function() { + JSZipUtils.getBinaryContent(pathtoroot + "module-search-index.zip", function(e, data) { + JSZip.loadAsync(data).then(function(zip){ + zip.file("module-search-index.json").async("text").then(function(content){ + moduleSearchIndex = JSON.parse(content); + }); + }); + }); + }); + $.get(pathtoroot + "package-search-index.zip") + .done(function() { + JSZipUtils.getBinaryContent(pathtoroot + "package-search-index.zip", function(e, data) { + JSZip.loadAsync(data).then(function(zip){ + zip.file("package-search-index.json").async("text").then(function(content){ + packageSearchIndex = JSON.parse(content); + }); + }); + }); + }); + $.get(pathtoroot + "type-search-index.zip") + .done(function() { + JSZipUtils.getBinaryContent(pathtoroot + "type-search-index.zip", function(e, data) { + JSZip.loadAsync(data).then(function(zip){ + zip.file("type-search-index.json").async("text").then(function(content){ + typeSearchIndex = JSON.parse(content); + }); + }); + }); + }); + $.get(pathtoroot + "member-search-index.zip") + .done(function() { + JSZipUtils.getBinaryContent(pathtoroot + "member-search-index.zip", function(e, data) { + JSZip.loadAsync(data).then(function(zip){ + zip.file("member-search-index.json").async("text").then(function(content){ + memberSearchIndex = JSON.parse(content); + }); + }); + }); + }); + $.get(pathtoroot + "tag-search-index.zip") + .done(function() { + JSZipUtils.getBinaryContent(pathtoroot + "tag-search-index.zip", function(e, data) { + JSZip.loadAsync(data).then(function(zip){ + zip.file("tag-search-index.json").async("text").then(function(content){ + tagSearchIndex = JSON.parse(content); + }); + }); + }); + }); + if (!moduleSearchIndex) { + createElem(doc, tag, 'module-search-index.js'); + } + if (!packageSearchIndex) { + createElem(doc, tag, 'package-search-index.js'); + } + if (!typeSearchIndex) { + createElem(doc, tag, 'type-search-index.js'); + } + if (!memberSearchIndex) { + createElem(doc, tag, 'member-search-index.js'); + } + if (!tagSearchIndex) { + createElem(doc, tag, 'tag-search-index.js'); + } + $(window).resize(function() { + $('.navPadding').css('padding-top', $('.fixedNav').css("height")); + }); +} + +function createElem(doc, tag, path) { + var script = doc.createElement(tag); + var scriptElement = doc.getElementsByTagName(tag)[0]; + script.src = pathtoroot + path; + scriptElement.parentNode.insertBefore(script, scriptElement); +} + +function show(type) { count = 0; - for (var key in methods) { + for (var key in data) { var row = document.getElementById(key); - if ((methods[key] & type) != 0) { + if ((data[key] & type) !== 0) { row.style.display = ''; row.className = (count++ % 2) ? rowColor : altColor; } @@ -13,8 +128,7 @@ function show(type) updateTabs(type); } -function updateTabs(type) -{ +function updateTabs(type) { for (var value in tabs) { var sNode = document.getElementById(tabs[value][0]); var spanNode = sNode.firstChild; @@ -28,3 +142,8 @@ function updateTabs(type) } } } + +function updateModuleFrame(pFrame, cFrame) { + top.packageFrame.location = pFrame; + top.classFrame.location = cFrame; +} diff --git a/documentation/apidoc/search.js b/documentation/apidoc/search.js new file mode 100644 index 0000000..786f6a7 --- /dev/null +++ b/documentation/apidoc/search.js @@ -0,0 +1,326 @@ +/* + * Copyright (c) 2015, 2018, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +var noResult = {l: "No results found"}; +var catModules = "Modules"; +var catPackages = "Packages"; +var catTypes = "Types"; +var catMembers = "Members"; +var catSearchTags = "SearchTags"; +var highlight = "$&"; +var camelCaseRegexp = ""; +var secondaryMatcher = ""; +function getHighlightedText(item) { + var ccMatcher = new RegExp(camelCaseRegexp); + var label = item.replace(ccMatcher, highlight); + if (label === item) { + label = item.replace(secondaryMatcher, highlight); + } + return label; +} +function getURLPrefix(ui) { + var urlPrefix=""; + if (useModuleDirectories) { + var slash = "/"; + if (ui.item.category === catModules) { + return ui.item.l + slash; + } else if (ui.item.category === catPackages && ui.item.m) { + return ui.item.m + slash; + } else if ((ui.item.category === catTypes && ui.item.p) || ui.item.category === catMembers) { + $.each(packageSearchIndex, function(index, item) { + if (item.m && ui.item.p == item.l) { + urlPrefix = item.m + slash; + } + }); + return urlPrefix; + } else { + return urlPrefix; + } + } + return urlPrefix; +} +var watermark = 'Search'; +$(function() { + $("#search").val(''); + $("#search").prop("disabled", false); + $("#reset").prop("disabled", false); + $("#search").val(watermark).addClass('watermark'); + $("#search").blur(function() { + if ($(this).val().length == 0) { + $(this).val(watermark).addClass('watermark'); + } + }); + $("#search").on('click keydown', function() { + if ($(this).val() == watermark) { + $(this).val('').removeClass('watermark'); + } + }); + $("#reset").click(function() { + $("#search").val(''); + $("#search").focus(); + }); + $("#search").focus(); + $("#search")[0].setSelectionRange(0, 0); +}); +$.widget("custom.catcomplete", $.ui.autocomplete, { + _create: function() { + this._super(); + this.widget().menu("option", "items", "> :not(.ui-autocomplete-category)"); + }, + _renderMenu: function(ul, items) { + var rMenu = this, + currentCategory = ""; + rMenu.menu.bindings = $(); + $.each(items, function(index, item) { + var li; + if (item.l !== noResult.l && item.category !== currentCategory) { + ul.append("
                          • " + item.category + "
                          • "); + currentCategory = item.category; + } + li = rMenu._renderItemData(ul, item); + if (item.category) { + li.attr("aria-label", item.category + " : " + item.l); + li.attr("class", "resultItem"); + } else { + li.attr("aria-label", item.l); + li.attr("class", "resultItem"); + } + }); + }, + _renderItem: function(ul, item) { + var label = ""; + if (item.category === catModules) { + label = getHighlightedText(item.l); + } else if (item.category === catPackages) { + label = (item.m) + ? getHighlightedText(item.m + "/" + item.l) + : getHighlightedText(item.l); + } else if (item.category === catTypes) { + label = (item.p) + ? getHighlightedText(item.p + "." + item.l) + : getHighlightedText(item.l); + } else if (item.category === catMembers) { + label = getHighlightedText(item.p + "." + (item.c + "." + item.l)); + } else if (item.category === catSearchTags) { + label = getHighlightedText(item.l); + } else { + label = item.l; + } + var li = $("
                          • ").appendTo(ul); + var div = $("
                            ").appendTo(li); + if (item.category === catSearchTags) { + if (item.d) { + div.html(label + " (" + item.h + ")
                            " + + item.d + "
                            "); + } else { + div.html(label + " (" + item.h + ")"); + } + } else { + div.html(label); + } + return li; + } +}); +$(function() { + $("#search").catcomplete({ + minLength: 1, + delay: 100, + source: function(request, response) { + var result = new Array(); + var presult = new Array(); + var tresult = new Array(); + var mresult = new Array(); + var tgresult = new Array(); + var secondaryresult = new Array(); + var displayCount = 0; + var exactMatcher = new RegExp("^" + $.ui.autocomplete.escapeRegex(request.term) + "$", "i"); + camelCaseRegexp = ($.ui.autocomplete.escapeRegex(request.term)).split(/(?=[A-Z])/).join("([a-z0-9_$]*?)"); + var camelCaseMatcher = new RegExp("^" + camelCaseRegexp); + secondaryMatcher = new RegExp($.ui.autocomplete.escapeRegex(request.term), "i"); + + // Return the nested innermost name from the specified object + function nestedName(e) { + return e.l.substring(e.l.lastIndexOf(".") + 1); + } + + function concatResults(a1, a2) { + a1 = a1.concat(a2); + a2.length = 0; + return a1; + } + + if (moduleSearchIndex) { + var mdleCount = 0; + $.each(moduleSearchIndex, function(index, item) { + item.category = catModules; + if (exactMatcher.test(item.l)) { + result.push(item); + mdleCount++; + } else if (camelCaseMatcher.test(item.l)) { + result.push(item); + } else if (secondaryMatcher.test(item.l)) { + secondaryresult.push(item); + } + }); + displayCount = mdleCount; + result = concatResults(result, secondaryresult); + } + if (packageSearchIndex) { + var pCount = 0; + var pkg = ""; + $.each(packageSearchIndex, function(index, item) { + item.category = catPackages; + pkg = (item.m) + ? (item.m + "/" + item.l) + : item.l; + if (exactMatcher.test(item.l)) { + presult.push(item); + pCount++; + } else if (camelCaseMatcher.test(pkg)) { + presult.push(item); + } else if (secondaryMatcher.test(pkg)) { + secondaryresult.push(item); + } + }); + result = result.concat(concatResults(presult, secondaryresult)); + displayCount = (pCount > displayCount) ? pCount : displayCount; + } + if (typeSearchIndex) { + var tCount = 0; + $.each(typeSearchIndex, function(index, item) { + item.category = catTypes; + var s = nestedName(item); + if (exactMatcher.test(s)) { + tresult.push(item); + tCount++; + } else if (camelCaseMatcher.test(s)) { + tresult.push(item); + } else if (secondaryMatcher.test(item.p + "." + item.l)) { + secondaryresult.push(item); + } + }); + result = result.concat(concatResults(tresult, secondaryresult)); + displayCount = (tCount > displayCount) ? tCount : displayCount; + } + if (memberSearchIndex) { + var mCount = 0; + $.each(memberSearchIndex, function(index, item) { + item.category = catMembers; + var s = nestedName(item); + if (exactMatcher.test(s)) { + mresult.push(item); + mCount++; + } else if (camelCaseMatcher.test(s)) { + mresult.push(item); + } else if (secondaryMatcher.test(item.c + "." + item.l)) { + secondaryresult.push(item); + } + }); + result = result.concat(concatResults(mresult, secondaryresult)); + displayCount = (mCount > displayCount) ? mCount : displayCount; + } + if (tagSearchIndex) { + var tgCount = 0; + $.each(tagSearchIndex, function(index, item) { + item.category = catSearchTags; + if (exactMatcher.test(item.l)) { + tgresult.push(item); + tgCount++; + } else if (secondaryMatcher.test(item.l)) { + secondaryresult.push(item); + } + }); + result = result.concat(concatResults(tgresult, secondaryresult)); + displayCount = (tgCount > displayCount) ? tgCount : displayCount; + } + displayCount = (displayCount > 500) ? displayCount : 500; + var counter = function() { + var count = {Modules: 0, Packages: 0, Types: 0, Members: 0, SearchTags: 0}; + var f = function(item) { + count[item.category] += 1; + return (count[item.category] <= displayCount); + }; + return f; + }(); + response(result.filter(counter)); + }, + response: function(event, ui) { + if (!ui.content.length) { + ui.content.push(noResult); + } else { + $("#search").empty(); + } + }, + autoFocus: true, + position: { + collision: "flip" + }, + select: function(event, ui) { + if (ui.item.l !== noResult.l) { + var url = getURLPrefix(ui); + if (ui.item.category === catModules) { + if (useModuleDirectories) { + url += "module-summary.html"; + } else { + url = ui.item.l + "-summary.html"; + } + } else if (ui.item.category === catPackages) { + if (ui.item.url) { + url = ui.item.url; + } else { + url += ui.item.l.replace(/\./g, '/') + "/package-summary.html"; + } + } else if (ui.item.category === catTypes) { + if (ui.item.url) { + url = ui.item.url; + } else if (ui.item.p === "") { + url += ui.item.l + ".html"; + } else { + url += ui.item.p.replace(/\./g, '/') + "/" + ui.item.l + ".html"; + } + } else if (ui.item.category === catMembers) { + if (ui.item.p === "") { + url += ui.item.c + ".html" + "#"; + } else { + url += ui.item.p.replace(/\./g, '/') + "/" + ui.item.c + ".html" + "#"; + } + if (ui.item.url) { + url += ui.item.url; + } else { + url += ui.item.l; + } + } else if (ui.item.category === catSearchTags) { + url += ui.item.u; + } + if (top !== window) { + parent.classFrame.location = pathtoroot + url; + } else { + window.location.href = pathtoroot + url; + } + $("#search").focus(); + } + } + }); +}); diff --git a/documentation/apidoc/serialized-form.html b/documentation/apidoc/serialized-form.html old mode 100755 new mode 100644 index 8083236..4a01512 --- a/documentation/apidoc/serialized-form.html +++ b/documentation/apidoc/serialized-form.html @@ -1,12 +1,22 @@ - + - + Serialized Form - + + + + + + + + + +var pathtoroot = "./"; +var useModuleDirectories = true; +loadScripts(document, 'script'); +
                            + +
                            +

                            Serialized Form

                          • +
                          • +

                            Package miml.classifiers.miml.lazy

                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLBRkNN extends MultiInstanceMultiLabelKNN implements Serializable

                            @@ -226,7 +256,7 @@

                            extension

                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLDGC extends MultiInstanceMultiLabelKNN implements Serializable

                            @@ -235,7 +265,7 @@

                            Class +
                          • Class miml.classifiers.miml.lazy.MIMLDistanceFunction extends weka.core.NormalizableDistance implements Serializable

                            @@ -256,7 +286,7 @@

                            metric

                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLFuzzykNN extends MultiInstanceMultiLabelKNN implements Serializable

                            @@ -274,16 +304,26 @@

                            dataset

                            Instances.
                          • +

                            e

                            +
                            double e
                            +
                            Tolerance to compare float values.
                            +
                          • +
                          • +

                            elnn

                            +
                            MIMLFuzzykNN.LinearNNESearch elnn
                            +
                            To perform neighborhood search.
                            +
                          • +
                          • +

                            ini

                            +
                            int ini
                            +
                            Type of initialization: Crisp, fuzzy
                            +
                          • +
                          • k

                            int k
                            Neighborhood size.
                          • -

                            U

                            -
                            double[][] U
                            -
                            Partition matrix of num_labels x num_bags
                            -
                          • -
                          • kini

                            int kini
                            Neighborhood size for initialization of U matrix.
                            @@ -293,26 +333,16 @@

                            m

                            double m
                            Fuzzy exponent.
                          • -
                          • -

                            ini

                            -
                            int ini
                            -
                            Type of initialization: Crisp, fuzzy
                            -
                          • -
                          • -

                            elnn

                            -
                            MIMLFuzzykNN.LinearNNESearch elnn
                            -
                            To perform neighborhood search.
                            -
                          • -

                            e

                            -
                            double e
                            -
                            Tolerance to compare float values.
                            +

                            U

                            +
                            double[][] U
                            +
                            Partition matrix of num_labels x num_bags
                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLIBLR extends MultiInstanceMultiLabelKNN implements Serializable

                            @@ -334,7 +364,7 @@

                            addFeatures

                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLkNN extends MIMLClassifier implements Serializable

                            @@ -347,14 +377,19 @@

                            Class
                          • -

                            num_citers

                            -
                            int num_citers
                            -
                            Number of citers.
                            +

                            d_size

                            +
                            int d_size
                            +
                            Dataset size (number of bags).
                          • -

                            num_references

                            -
                            int num_references
                            -
                            Number of references.
                            +

                            dataset

                            +
                            MIMLInstances dataset
                            +
                            MIML data.
                            +
                          • +
                          • +

                            distance_matrix

                            +
                            double[][] distance_matrix
                            +
                            Distance matrix between dataset's instances.
                          • metric

                            @@ -362,19 +397,19 @@

                            metric

                            Metric for measure the distance between bags.
                          • -

                            dataset

                            -
                            MIMLInstances dataset
                            -
                            MIML data.
                            +

                            num_citers

                            +
                            int num_citers
                            +
                            Number of citers.
                          • -

                            d_size

                            -
                            int d_size
                            -
                            Dataset size (number of bags).
                            +

                            num_references

                            +
                            int num_references
                            +
                            Number of references.
                          • -

                            distance_matrix

                            -
                            double[][] distance_matrix
                            -
                            Distance matrix between dataset's instances.
                            +

                            phi_matrix

                            +
                            double[][] phi_matrix
                            +
                            The phi matrix.
                          • ref_matrix

                            @@ -382,25 +417,20 @@

                            ref_matrix

                            Instances' references matrix.
                          • -

                            weights_matrix

                            -
                            double[][] weights_matrix
                            -
                            Weights matrix.
                            -
                          • -
                          • t_matrix

                            double[][] t_matrix
                            The t matrix.
                          • -

                            phi_matrix

                            -
                            double[][] phi_matrix
                            -
                            The phi matrix.
                            +

                            weights_matrix

                            +
                            double[][] weights_matrix
                            +
                            Weights matrix.
                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MIMLMAPkNN extends MultiInstanceMultiLabelKNN implements Serializable

                            @@ -421,7 +451,7 @@

                            smooth

                          • -
                          • +
                          • Class miml.classifiers.miml.lazy.MultiInstanceMultiLabelKNN extends MIMLClassifier implements Serializable

                            @@ -434,9 +464,9 @@

                            Class Serialized Fields

                            • -

                              numOfNeighbours

                              -
                              int numOfNeighbours
                              -
                              Number of neighbours used in the k-nearest neighbor algorithm.
                              +

                              classifier

                              +
                              mulan.classifier.lazy.MultiLabelKNN classifier
                              +
                              Mulan MultiLabelKNN classifier.
                            • metric

                              @@ -444,20 +474,22 @@

                              metric

                              Metric for measure the distance between bags.
                            • -

                              classifier

                              -
                              mulan.classifier.lazy.MultiLabelKNN classifier
                              -
                              Mulan MultiLabelKNN classifier.
                              +

                              numOfNeighbours

                              +
                              int numOfNeighbours
                              +
                              Number of neighbours used in the k-nearest neighbor algorithm.
                          • +
                          • +

                            Package miml.classifiers.miml.meta

                              -
                            • +
                            • Class miml.classifiers.miml.meta.MIMLBagging extends MIMLClassifier implements Serializable

                              @@ -470,26 +502,19 @@

                              Class
                            • -

                              threshold

                              -
                              double threshold
                              -
                              Threshold for predictions.
                              -
                            • -
                            • -

                              seed

                              -
                              int seed
                              -
                              Seed for randomization.
                              +

                              baseLearner

                              +
                              IMIMLClassifier baseLearner
                              +
                              Base learner.
                            • -

                              sampleWithReplacement

                              -
                              boolean sampleWithReplacement
                              -
                              Determines whether the classifier will consider sampling with replacement. By - default it is false.
                              +

                              ensemble

                              +
                              IMIMLClassifier[] ensemble
                              +
                              The ensemble of MultiLabelLearners. To be initialized by the builder method.
                            • -

                              useConfidences

                              -
                              boolean useConfidences
                              -
                              Determines whether confidences [0,1] or relevance {0,1} is used to compute - bipartition.
                              +

                              numClassifiers

                              +
                              int numClassifiers
                              +
                              Number of classifiers in the ensemble.
                            • samplePercentage

                              @@ -497,30 +522,39 @@

                              samplePercentage

                              The size of the sample to build each base classifier.
                            • -

                              numClassifiers

                              -
                              int numClassifiers
                              -
                              Number of classifiers in the ensemble.
                              +

                              sampleWithReplacement

                              +
                              boolean sampleWithReplacement
                              +
                              Determines whether the classifier will consider sampling with replacement. By + default it is false.
                            • -

                              baseLearner

                              -
                              IMIMLClassifier baseLearner
                              -
                              Base learner.
                              +

                              seed

                              +
                              int seed
                              +
                              Seed for randomization.
                              +
                            • +
                            • +

                              threshold

                              +
                              double threshold
                              +
                              Threshold for predictions.
                            • -

                              ensemble

                              -
                              IMIMLClassifier[] ensemble
                              -
                              The ensemble of MultiLabelLearners. To be initialized by the builder method.
                              +

                              useConfidences

                              +
                              boolean useConfidences
                              +
                              Determines whether confidences [0,1] or relevance {0,1} is used to compute + bipartition.
                          • +
                          • +

                            Package miml.classifiers.miml.mimlTOmi

                          • -
                          • +
                          • Class miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset extends mulan.classifier.transformation.LabelPowerset implements Serializable

                            @@ -560,11 +594,13 @@

                            Class

                          • +
                          • +

                            Package miml.classifiers.miml.mimlTOml

                              -
                            • +
                            • Class miml.classifiers.miml.mimlTOml.MIMLClassifierToML extends MIMLClassifier implements Serializable

                              @@ -582,11 +618,6 @@

                              baseClassifier

                              A Generic MultiLabel classifier.
                            • -

                              transformationMethod

                              -
                              MIMLtoML transformationMethod
                              -
                              The transform method.
                              -
                            • -
                            • mimlDataset

                              MIMLInstances mimlDataset
                              The miml dataset.
                              @@ -594,21 +625,30 @@

                              mimlDataset

                            • removeFilter

                              weka.filters.unsupervised.attribute.Remove removeFilter
                              +
                              The filter that removes the bagId attribute
                              +
                            • +
                            • +

                              templateWithBagId

                              +
                              mulan.data.MultiLabelInstances templateWithBagId
                              +
                              An empty dataset used as template for prediction
                            • -

                              mlDataSetWithBagId

                              -
                              mulan.data.MultiLabelInstances mlDataSetWithBagId
                              +

                              transformationMethod

                              +
                              MIMLtoML transformationMethod
                              +
                              The transform method.
                          • +
                          • +

                            Package miml.classifiers.miml.neural

                          • -
                          • +
                          • Class miml.classifiers.miml.neural.MIMLNN extends MWClassifier implements Serializable

                            @@ -654,15 +694,15 @@

                            Class
                          • -

                            ratio

                            -
                            double ratio
                            -
                            The number of clusters is set to ratio*numberOfTrainingBags, default=0.4.
                            -
                          • -
                          • lambda

                            double lambda
                            The regularization parameter used to compute matrix inverse, default=1.
                          • +
                          • +

                            ratio

                            +
                            double ratio
                            +
                            The number of clusters is set to ratio*numberOfTrainingBags, default=0.4.
                            +
                          • seed

                            int seed
                            @@ -672,7 +712,7 @@

                            seed

                          • -
                          • +
                          • Class miml.classifiers.miml.neural.MIMLRBF extends MWClassifier implements Serializable

                            @@ -685,17 +725,17 @@

                            Class
                          • -

                            ratio

                            -
                            double ratio
                            -
                            The number of centroids of the i-th label is set to be ratio*Ti, where Ti is - the number of train bags with label i.
                            -
                          • -
                          • mu

                            double mu
                            The ratio used to determine the standard deviation of the Gaussian activation function.
                          • +
                          • +

                            ratio

                            +
                            double ratio
                            +
                            The number of centroids of the i-th label is set to be ratio*Ti, where Ti is + the number of train bags with label i.
                            +
                          • seed

                            int seed
                            @@ -706,11 +746,13 @@

                            seed

                          • +

                          • +

                            Package miml.classifiers.miml.optimization

                          • -
                          • +
                          • Class miml.classifiers.miml.optimization.MIMLFast extends MWClassifier implements Serializable

                            @@ -786,9 +828,9 @@

                            D

                            Dimension of the shared space.
                          • -

                            norm_up

                            -
                            int norm_up
                            -
                            Norm of each vector.
                            +

                            lambda

                            +
                            double lambda
                            +
                            Lambda.
                          • maxiter

                            @@ -796,14 +838,9 @@

                            maxiter

                            Number of iterations.
                          • -

                            step_size

                            -
                            double step_size
                            -
                            Step size of SGD (stochastic gradient descent).
                            -
                          • -
                          • -

                            lambda

                            -
                            double lambda
                            -
                            Lambda.
                            +

                            norm_up

                            +
                            int norm_up
                            +
                            Norm of each vector.
                          • num_sub

                            @@ -811,22 +848,27 @@

                            num_sub

                            Number of sub concepts.
                          • -

                            opts_norm

                            -
                            int opts_norm
                            +

                            opts_average_begin

                            +
                            int opts_average_begin
                          • opts_average_size

                            int opts_average_size
                          • +
                          • +

                            opts_norm

                            +
                            int opts_norm
                            +
                          • -

                            opts_average_begin

                            -
                            int opts_average_begin
                            +

                            step_size

                            +
                            double step_size
                            +
                            Step size of SGD (stochastic gradient descent).
                          • -
                          • +
                          • Class miml.classifiers.miml.optimization.MIMLSVM extends MWClassifier implements Serializable

                            @@ -839,17 +881,21 @@

                            Class
                          • +

                            cost

                            +
                            double cost
                            +
                            The cost parameter used for the base svm classifier.
                            +
                          • +
                          • +

                            h

                            +
                            double h
                            +
                            Whether to use the shrinking heuristics, 0 or 1 (default 1).
                            +
                          • +
                          • mimlsvm

                            MWAlgorithms.MWMIMLSVM mimlsvm
                            A matlab object wrapping the MIMLSVM algorithm.
                          • -

                            type

                            -
                            java.lang.String type
                            -
                            Gaussian kernel SVM. The type of svm used in training, which can take the - value of "RBF", "Poly" or "Linear".
                            -
                          • -
                          • para

                            java.lang.String para
                            A string that gives the corresponding parameters used for the svm: @@ -865,30 +911,26 @@

                            para

                          • -

                            cost

                            -
                            double cost
                            -
                            The cost parameter used for the base svm classifier.
                            -
                          • -
                          • -

                            h

                            -
                            double h
                            -
                            Whether to use the shrinking heuristics, 0 or 1 (default 1).
                            -
                          • -
                          • ratio

                            double ratio
                            Parameter k is set to be 20% of the number of training bags.
                          • -
                          • +
                          • seed

                            double seed
                            Seed for kmedoids clustering.
                          • +
                          • +

                            type

                            +
                            java.lang.String type
                            +
                            Gaussian kernel SVM. The type of svm used in training, which can take the + value of "RBF", "Poly" or "Linear".
                            +
                          • -
                          • +
                          • Class miml.classifiers.miml.optimization.MIMLWel extends MWClassifier implements Serializable

                            @@ -906,15 +948,10 @@

                            mimlwel

                            A matlab object wrapping the MIMLWel algorithm.
                          • -

                            opts_C

                            -
                            double opts_C
                            -
                            Controls the empirical loss on labeled data.
                            -
                          • -
                          • -

                            opts_m

                            -
                            double opts_m
                            -
                            Controls the difference between the learned training targets and the original - input training targets.
                            +

                            mu

                            +
                            double mu
                            +
                            The ratio used to determine the standard deviation of the Gaussian activation + function.
                          • opts_beta

                            @@ -922,9 +959,9 @@

                            opts_beta

                            Controls the similarity between training_bags and their prototypes.
                          • -

                            opts_iteration

                            -
                            double opts_iteration
                            -
                            Iteration number.
                            +

                            opts_C

                            +
                            double opts_C
                            +
                            Controls the empirical loss on labeled data.
                          • opts_epsilon

                            @@ -932,27 +969,34 @@

                            opts_epsilon

                            Value for epsilon.
                          • +

                            opts_iteration

                            +
                            double opts_iteration
                            +
                            Iteration number.
                            +
                          • +
                          • +

                            opts_m

                            +
                            double opts_m
                            +
                            Controls the difference between the learned training targets and the original + input training targets.
                            +
                          • +
                          • ratio

                            double ratio
                            The number of centroids of the i-th class is set to be ratio*Ti, where Ti is the number of train bags with label i.
                          • -
                          • -

                            mu

                            -
                            double mu
                            -
                            The ratio used to determine the standard deviation of the Gaussian activation - function.
                            -
                          • +
                          • +

                            Package miml.classifiers.ml

                            +
                          • + + +
                          • + + +

                            Class miml.classifiers.ml.RFPCT extends mulan.classifier.clus.ClusWrapperClassification implements Serializable

                            +
                            +
                            serialVersionUID:
                            +
                            1L
                            +
                            +
                              +
                            • +

                              Serialized Fields

                              +
                                +
                              • +

                                numTrees

                                +
                                int numTrees
                                +
                                The number of random trees in the ensemble.
                                +
                              • +
                              • +

                                seed

                                +
                                long seed
                                +
                                A seed for randomization.
                                +
                          • +
                          • +
                            +

                            Package miml.clusterers

                            +
                              +
                            • + + +

                              Class miml.clusterers.KMedoids extends weka.clusterers.RandomizableClusterer implements Serializable

                              +
                              +
                              serialVersionUID:
                              +
                              -6814942755920034118L
                              +
                              +
                                +
                              • +

                                Serialized Fields

                                +
                                  +
                                • +

                                  clusterAssignment

                                  +
                                  int[] clusterAssignment
                                  +
                                  The assignment of instances to medoids. Element i contains the number of + medoid assigned to instance i, a value in (0, nClusters-1).
                                  +
                                • +
                                • +

                                  configurationCost

                                  +
                                  double configurationCost
                                  +
                                  Final cost of the clustering configuration.
                                  +
                                • +
                                • +

                                  distancesMatrix

                                  +
                                  double[][] distancesMatrix
                                  +
                                  Distance between instances.
                                  +
                                • +
                                • +

                                  maxIterations

                                  +
                                  int maxIterations
                                  +
                                  The maximum number of iterations the algorithm is allowed to run. By default + 100 iterations
                                  +
                                • +
                                • +

                                  medoidIndices

                                  +
                                  int[] medoidIndices
                                  +
                                  The medoid indices. Element k contains the index of the instance being the k + medoid, a value in (0, numInstances).
                                  +
                                • +
                                • +

                                  medoidInstances

                                  +
                                  weka.core.Instance[] medoidInstances
                                  +
                                  The medoid instances. Element k contains the instance being the k medoid
                                  +
                                • +
                                • +

                                  metric

                                  +
                                  IDistance metric
                                  +
                                  Distance function. By default MaximalHausdorff distance is used
                                  +
                                • +
                                • +

                                  minimize

                                  +
                                  boolean minimize
                                  +
                                  Whether the metric is maximized o minimized. By default the metric is + minimized.
                                  +
                                • +
                                • +

                                  numClusters

                                  +
                                  int numClusters
                                  +
                                  Number of clusters to generate. By default 10 clusters.
                                  +
                                • +
                                • +

                                  numInstances

                                  +
                                  int numInstances
                                  +
                                  Number of instances in the dataset.
                                  +
                                • +
                                • +

                                  numIterations

                                  +
                                  double numIterations
                                  +
                                  Final number of iterations to perform clustering.
                                  +
                                • +
                                • +

                                  randomInitialization

                                  +
                                  boolean randomInitialization
                                  +
                                  Whether the initialization of medoids is random o applying the BUILD method + of PAM algorithm. By default random initialization is performed.
                                  +
                                • +
                                +
                              • +
                              +
                            • +
                            +
                            +
                          • +
                          • +

                            Package miml.core.distance

                          • -
                          • +
                          • Class miml.core.distance.MaximalHausdorff extends HausdorffDistance implements Serializable

                            @@ -1050,7 +1210,7 @@

                            Class +
                          • Class miml.core.distance.MinimalHausdorff extends HausdorffDistance implements Serializable

                            @@ -1060,11 +1220,13 @@

                            Class +

                            Package miml.data

                            +

                          • +

                            Package miml.transformation.mimlTOmi

                          • -
                          • +
                          • Class miml.transformation.mimlTOmi.LPTransformation extends java.lang.Object implements Serializable

                            @@ -1135,11 +1299,13 @@

                            LPT

                          • +

                          • +

                            Package miml.transformation.mimlTOml

                              -
                            • +
                            • Class miml.transformation.mimlTOml.ArithmeticTransformation extends MIMLtoML implements Serializable

                              @@ -1148,7 +1314,7 @@

                              Class 4303141503576091233L

                            • -
                            • +
                            • Class miml.transformation.mimlTOml.GeometricTransformation extends MIMLtoML implements Serializable

                              @@ -1157,7 +1323,128 @@

                              Class 2536049747712271218L

                            • -
                            • +
                            • + + +

                              Class miml.transformation.mimlTOml.KMeansTransformation extends MIMLtoML implements Serializable

                              +
                              +
                              serialVersionUID:
                              +
                              1L
                              +
                              +
                                +
                              • +

                                Serialized Fields

                                +
                                  +
                                • +

                                  clusterer

                                  +
                                  weka.clusterers.SimpleKMeans clusterer
                                  +
                                  Clusterer.
                                  +
                                • +
                                • +

                                  clusteringDone

                                  +
                                  boolean clusteringDone
                                  +
                                  Whether the clustering step has been executed or not.
                                  +
                                • +
                                • +

                                  delta

                                  +
                                  double[] delta
                                  +
                                  The delta value for each cluster obtained as the average distance between + instances in each cluster
                                  +
                                • +
                                • +

                                  dfunc

                                  +
                                  weka.core.EuclideanDistance dfunc
                                  +
                                • +
                                • +

                                  numClusters

                                  +
                                  int numClusters
                                  +
                                  The number of clusters.
                                  +
                                • +
                                • +

                                  percentage

                                  +
                                  double percentage
                                  +
                                  If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of training bags in the dataset. For + instance 0.2 represents that the number of clusters is the 20% of the number + of training bags, 0.45 a 45%, and so on. If this value is -1 the number of + clusters to consider is represented by numClusters property. If the number of + clusters is not set neither by percentage nor by the numClusters property, it + will be considered by default a 50% of the number of training bags in the + dataset. If both the percentage and the numClusters are set, the percentage + will be applied.
                                  +
                                • +
                                • +

                                  prototypes

                                  +
                                  weka.core.Instances prototypes
                                  +
                                  Clustering prototypes obtained each one as the nearest instance to each + centroid.
                                  +
                                • +
                                • +

                                  seed

                                  +
                                  int seed
                                  +
                                  The seed for kmeans clustering. By default 1.
                                  +
                                • +
                                +
                              • +
                              +
                            • +
                            • + + +

                              Class miml.transformation.mimlTOml.MedoidTransformation extends MIMLtoML implements Serializable

                              +
                              +
                              serialVersionUID:
                              +
                              94921720184805609L
                              +
                              +
                                +
                              • +

                                Serialized Fields

                                +
                                  +
                                • +

                                  clusterer

                                  +
                                  KMedoids clusterer
                                  +
                                  Clusterer.
                                  +
                                • +
                                • +

                                  clusteringDone

                                  +
                                  boolean clusteringDone
                                  +
                                  Whether the clustering step has been executed or not.
                                  +
                                • +
                                • +

                                  normalize

                                  +
                                  java.lang.Boolean normalize
                                  +
                                  True if the resulting transformed dataset will be normalized to (0,1) with + min-max normalization. By default False. If a learning algorithm that uses a + NormalizableDistance is going to be used after transformation, normalization + is not needed.
                                  +
                                • +
                                • +

                                  numClusters

                                  +
                                  int numClusters
                                  +
                                  The number of clusters for kmedoids.
                                  +
                                • +
                                • +

                                  percentage

                                  +
                                  double percentage
                                  +
                                  If it is different to -1 this value represent that the number of clusters + will be a percentage of the number of bags of the dataset. For instance 0.2 + represents that the number of clusters is the 20% of the training bags, 0.45 + a 45%, and so on. If this value is -1 the number of clusters to consider is + represented by numClusters property. If the number of clusters is not set + neither by percentage nor by the numClusters property, it will be considered + by default a 20% of the number of training bags in the dataset. If both the + percentage and the numClusters are set, the percentage will be applied.
                                  +
                                • +
                                • +

                                  seed

                                  +
                                  int seed
                                  +
                                  The seed for kmedoids clustering. By default 1.
                                  +
                                • +
                                +
                              • +
                              +
                            • +
                            • Class miml.transformation.mimlTOml.MIMLtoML extends java.lang.Object implements Serializable

                              @@ -1170,9 +1457,9 @@

                              Class
                            • -

                              updatedLabelIndices

                              -
                              int[] updatedLabelIndices
                              -
                              Array of updated label indices.
                              +

                              dataset

                              +
                              MIMLInstances dataset
                              +
                              Original data set of MIMLInstances.
                            • template

                              @@ -1180,15 +1467,15 @@

                              template

                              Template to store Instances.
                            • -

                              dataset

                              -
                              MIMLInstances dataset
                              -
                              Original data set of MIMLInstances.
                              +

                              updatedLabelIndices

                              +
                              int[] updatedLabelIndices
                              +
                              Array of updated label indices.
                          • -
                          • +
                          • Class miml.transformation.mimlTOml.MinMaxTransformation extends MIMLtoML implements Serializable

                            @@ -1197,20 +1484,65 @@

                            Class 4161911837824822046L

                          • +
                          • + + +

                            Class miml.transformation.mimlTOml.PropositionalTransformation extends java.lang.Object implements Serializable

                            +
                            +
                            serialVersionUID:
                            +
                            1L
                            +
                            +
                              +
                            • +

                              Serialized Fields

                              +
                                +
                              • +

                                dataset

                                +
                                MIMLInstances dataset
                                +
                                Original data set of MIMLInstances.
                                +
                              • +
                              • +

                                includeBagId

                                +
                                boolean includeBagId
                                +
                                Whether bag attribute will be included in the transformed data
                                +
                              • +
                              • +

                                removeFilter

                                +
                                weka.filters.unsupervised.attribute.Remove removeFilter
                                +
                                Filter
                                +
                              • +
                              • +

                                template

                                +
                                weka.core.Instances template
                                +
                                Template to store Instances.
                                +
                              • +
                              • +

                                updatedLabelIndices

                                +
                                int[] updatedLabelIndices
                                +
                                Array of updated label indices.
                                +
                            +
                          • + + + + + + diff --git a/documentation/apidoc/stylesheet.css b/documentation/apidoc/stylesheet.css old mode 100755 new mode 100644 index b8dad08..a377b10 --- a/documentation/apidoc/stylesheet.css +++ b/documentation/apidoc/stylesheet.css @@ -1,35 +1,51 @@ -/* Javadoc style sheet */ -/* -Overall document style -*/ +/* + * Javadoc style sheet + */ @import url('resources/fonts/dejavu.css'); +/* + * Styles for individual HTML elements. + * + * These are styles that are specific to individual HTML elements. Changing them affects the style of a particular + * HTML element throughout the page. + */ + body { background-color:#ffffff; color:#353833; font-family:'DejaVu Sans', Arial, Helvetica, sans-serif; font-size:14px; margin:0; + padding:0; + height:100%; + width:100%; +} +iframe { + margin:0; + padding:0; + height:100%; + width:100%; + overflow-y:scroll; + border:none; } a:link, a:visited { text-decoration:none; color:#4A6782; } -a:hover, a:focus { +a[href]:hover, a[href]:focus { text-decoration:none; color:#bb7a2a; } -a:active { - text-decoration:none; - color:#4A6782; -} a[name] { color:#353833; } -a[name]:hover { - text-decoration:none; - color:#353833; +a[name]:before, a[name]:target, a[id]:before, a[id]:target { + content:""; + display:inline-block; + position:relative; + padding-top:129px; + margin-top:-129px; } pre { font-family:'DejaVu Sans Mono', monospace; @@ -78,9 +94,16 @@ table tr td dt code { sup { font-size:8px; } + +/* + * Styles for HTML generated by javadoc. + * + * These are style classes that are used by the standard doclet to generate HTML documentation. + */ + /* -Document title and Copyright styles -*/ + * Styles for document title and copyright. + */ .clear { clear:both; height:0px; @@ -111,8 +134,8 @@ Document title and Copyright styles font-weight:bold; } /* -Navigation bar styles -*/ + * Styles for navigation bar. + */ .bar { background-color:#4D7A97; color:#FFFFFF; @@ -121,6 +144,15 @@ Navigation bar styles font-size:11px; margin:0; } +.navPadding { + padding-top: 107px; +} +.fixedNav { + position:fixed; + width:100%; + z-index:999; + background-color:#ffffff; +} .topNav { background-color:#4D7A97; color:#FFFFFF; @@ -170,7 +202,22 @@ ul.navList li{ padding: 5px 6px; text-transform:uppercase; } -ul.subNavList li{ +ul.navListSearch { + float:right; + margin:0 0 0 0; + padding:0; +} +ul.navListSearch li { + list-style:none; + float:right; + padding: 5px 6px; + text-transform:uppercase; +} +ul.navListSearch li label { + position:relative; + right:-16px; +} +ul.subNavList li { list-style:none; float:left; } @@ -196,21 +243,29 @@ ul.subNavList li{ overflow:hidden; } /* -Page header and footer styles -*/ + * Styles for page header and footer. + */ .header, .footer { clear:both; margin:0 20px; padding:5px 0 0 0; } -.indexHeader { - margin:10px; +.indexNav { position:relative; + font-size:12px; + background-color:#dee3e9; +} +.indexNav ul { + margin-top:0; + padding:5px; } -.indexHeader span{ - margin-right:15px; +.indexNav ul li { + display:inline; + list-style-type:none; + padding-right:10px; + text-transform:uppercase; } -.indexHeader h1 { +.indexNav h1 { font-size:13px; } .title { @@ -232,8 +287,8 @@ Page header and footer styles font-size:13px; } /* -Heading styles -*/ + * Styles for headings. + */ div.details ul.blockList ul.blockList ul.blockList li.blockList h4, div.details ul.blockList ul.blockList ul.blockListLast li.blockList h4 { background-color:#dee3e9; border:1px solid #d0d9e0; @@ -254,9 +309,10 @@ ul.blockList li.blockList h2 { padding:0px 0 20px 0; } /* -Page layout container styles -*/ -.contentContainer, .sourceContainer, .classUseContainer, .serializedFormContainer, .constantValuesContainer { + * Styles for page layout containers. + */ +.contentContainer, .sourceContainer, .classUseContainer, .serializedFormContainer, .constantValuesContainer, +.allClassesContainer, .allPackagesContainer { clear:both; padding:10px 20px; position:relative; @@ -287,7 +343,7 @@ Page layout container styles .contentContainer .description dl dd, .contentContainer .details dl dd, .serializedFormContainer dl dd { margin:5px 0 10px 0px; font-size:14px; - font-family:'DejaVu Sans Mono',monospace; + font-family:'DejaVu Serif', Georgia, "Times New Roman", Times, serif; } .serializedFormContainer dl.nameValue dt { margin-left:1px; @@ -301,8 +357,11 @@ Page layout container styles display:inline; } /* -List styles -*/ + * Styles for lists. + */ +li.circle { + list-style:circle; +} ul.horizontal li { display:inline; font-size:0.9em; @@ -355,19 +414,22 @@ table tr td dl, table tr td dl dt, table tr td dl dd { margin-bottom:1px; } /* -Table styles -*/ -.overviewSummary, .memberSummary, .typeSummary, .useSummary, .constantsSummary, .deprecatedSummary { + * Styles for tables. + */ +.overviewSummary, .memberSummary, .typeSummary, .useSummary, .constantsSummary, .deprecatedSummary, +.requiresSummary, .packagesSummary, .providesSummary, .usesSummary { width:100%; + border-spacing:0; border-left:1px solid #EEE; border-right:1px solid #EEE; border-bottom:1px solid #EEE; } -.overviewSummary, .memberSummary { +.overviewSummary, .memberSummary, .requiresSummary, .packagesSummary, .providesSummary, .usesSummary { padding:0px; } .overviewSummary caption, .memberSummary caption, .typeSummary caption, -.useSummary caption, .constantsSummary caption, .deprecatedSummary caption { +.useSummary caption, .constantsSummary caption, .deprecatedSummary caption, +.requiresSummary caption, .packagesSummary caption, .providesSummary caption, .usesSummary caption { position:relative; text-align:left; background-repeat:no-repeat; @@ -381,18 +443,32 @@ Table styles margin:0px; white-space:pre; } +.constantsSummary caption a:link, .constantsSummary caption a:visited, +.useSummary caption a:link, .useSummary caption a:visited { + color:#1f389c; +} .overviewSummary caption a:link, .memberSummary caption a:link, .typeSummary caption a:link, -.useSummary caption a:link, .constantsSummary caption a:link, .deprecatedSummary caption a:link, +.deprecatedSummary caption a:link, +.requiresSummary caption a:link, .packagesSummary caption a:link, .providesSummary caption a:link, +.usesSummary caption a:link, .overviewSummary caption a:hover, .memberSummary caption a:hover, .typeSummary caption a:hover, .useSummary caption a:hover, .constantsSummary caption a:hover, .deprecatedSummary caption a:hover, +.requiresSummary caption a:hover, .packagesSummary caption a:hover, .providesSummary caption a:hover, +.usesSummary caption a:hover, .overviewSummary caption a:active, .memberSummary caption a:active, .typeSummary caption a:active, .useSummary caption a:active, .constantsSummary caption a:active, .deprecatedSummary caption a:active, +.requiresSummary caption a:active, .packagesSummary caption a:active, .providesSummary caption a:active, +.usesSummary caption a:active, .overviewSummary caption a:visited, .memberSummary caption a:visited, .typeSummary caption a:visited, -.useSummary caption a:visited, .constantsSummary caption a:visited, .deprecatedSummary caption a:visited { +.deprecatedSummary caption a:visited, +.requiresSummary caption a:visited, .packagesSummary caption a:visited, .providesSummary caption a:visited, +.usesSummary caption a:visited { color:#FFFFFF; } .overviewSummary caption span, .memberSummary caption span, .typeSummary caption span, -.useSummary caption span, .constantsSummary caption span, .deprecatedSummary caption span { +.useSummary caption span, .constantsSummary caption span, .deprecatedSummary caption span, +.requiresSummary caption span, .packagesSummary caption span, .providesSummary caption span, +.usesSummary caption span { white-space:nowrap; padding-top:5px; padding-left:12px; @@ -404,7 +480,8 @@ Table styles border: none; height:16px; } -.memberSummary caption span.activeTableTab span { +.memberSummary caption span.activeTableTab span, .packagesSummary caption span.activeTableTab span, +.overviewSummary caption span.activeTableTab span, .typeSummary caption span.activeTableTab span { white-space:nowrap; padding-top:5px; padding-left:12px; @@ -415,7 +492,8 @@ Table styles background-color:#F8981D; height:16px; } -.memberSummary caption span.tableTab span { +.memberSummary caption span.tableTab span, .packagesSummary caption span.tableTab span, +.overviewSummary caption span.tableTab span, .typeSummary caption span.tableTab span { white-space:nowrap; padding-top:5px; padding-left:12px; @@ -426,7 +504,10 @@ Table styles background-color:#4D7A97; height:16px; } -.memberSummary caption span.tableTab, .memberSummary caption span.activeTableTab { +.memberSummary caption span.tableTab, .memberSummary caption span.activeTableTab, +.packagesSummary caption span.tableTab, .packagesSummary caption span.activeTableTab, +.overviewSummary caption span.tableTab, .overviewSummary caption span.activeTableTab, +.typeSummary caption span.tableTab, .typeSummary caption span.activeTableTab { padding-top:0px; padding-left:0px; padding-right:0px; @@ -435,14 +516,16 @@ Table styles display:inline; } .overviewSummary .tabEnd, .memberSummary .tabEnd, .typeSummary .tabEnd, -.useSummary .tabEnd, .constantsSummary .tabEnd, .deprecatedSummary .tabEnd { +.useSummary .tabEnd, .constantsSummary .tabEnd, .deprecatedSummary .tabEnd, +.requiresSummary .tabEnd, .packagesSummary .tabEnd, .providesSummary .tabEnd, .usesSummary .tabEnd { display:none; width:5px; position:relative; float:left; background-color:#F8981D; } -.memberSummary .activeTableTab .tabEnd { +.memberSummary .activeTableTab .tabEnd, .packagesSummary .activeTableTab .tabEnd, +.overviewSummary .activeTableTab .tabEnd, .typeSummary .activeTableTab .tabEnd { display:none; width:5px; margin-right:3px; @@ -450,66 +533,88 @@ Table styles float:left; background-color:#F8981D; } -.memberSummary .tableTab .tabEnd { +.memberSummary .tableTab .tabEnd, .packagesSummary .tableTab .tabEnd, +.overviewSummary .tableTab .tabEnd, .typeSummary .tableTab .tabEnd { display:none; width:5px; margin-right:3px; position:relative; background-color:#4D7A97; float:left; - +} +.rowColor th, .altColor th { + font-weight:normal; } .overviewSummary td, .memberSummary td, .typeSummary td, -.useSummary td, .constantsSummary td, .deprecatedSummary td { +.useSummary td, .constantsSummary td, .deprecatedSummary td, +.requiresSummary td, .packagesSummary td, .providesSummary td, .usesSummary td { text-align:left; padding:0px 0px 12px 10px; } -th.colOne, th.colFirst, th.colLast, .useSummary th, .constantsSummary th, -td.colOne, td.colFirst, td.colLast, .useSummary td, .constantsSummary td{ +th.colFirst, th.colSecond, th.colLast, th.colConstructorName, th.colDeprecatedItemName, .useSummary th, +.constantsSummary th, .packagesSummary th, td.colFirst, td.colSecond, td.colLast, .useSummary td, +.constantsSummary td { vertical-align:top; padding-right:0px; padding-top:8px; padding-bottom:3px; } -th.colFirst, th.colLast, th.colOne, .constantsSummary th { +th.colFirst, th.colSecond, th.colLast, th.colConstructorName, th.colDeprecatedItemName, .constantsSummary th, +.packagesSummary th { background:#dee3e9; text-align:left; padding:8px 3px 3px 7px; } td.colFirst, th.colFirst { - white-space:nowrap; font-size:13px; } -td.colLast, th.colLast { +td.colSecond, th.colSecond, td.colLast, th.colConstructorName, th.colDeprecatedItemName, th.colLast { font-size:13px; } -td.colOne, th.colOne { +.constantsSummary th, .packagesSummary th { + font-size:13px; +} +.providesSummary th.colFirst, .providesSummary th.colLast, .providesSummary td.colFirst, +.providesSummary td.colLast { + white-space:normal; font-size:13px; } .overviewSummary td.colFirst, .overviewSummary th.colFirst, -.useSummary td.colFirst, .useSummary th.colFirst, -.overviewSummary td.colOne, .overviewSummary th.colOne, +.requiresSummary td.colFirst, .requiresSummary th.colFirst, +.packagesSummary td.colFirst, .packagesSummary td.colSecond, .packagesSummary th.colFirst, .packagesSummary th, +.usesSummary td.colFirst, .usesSummary th.colFirst, +.providesSummary td.colFirst, .providesSummary th.colFirst, .memberSummary td.colFirst, .memberSummary th.colFirst, -.memberSummary td.colOne, .memberSummary th.colOne, -.typeSummary td.colFirst{ - width:25%; +.memberSummary td.colSecond, .memberSummary th.colSecond, .memberSummary th.colConstructorName, +.typeSummary td.colFirst, .typeSummary th.colFirst { vertical-align:top; } -td.colOne a:link, td.colOne a:active, td.colOne a:visited, td.colOne a:hover, td.colFirst a:link, td.colFirst a:active, td.colFirst a:visited, td.colFirst a:hover, td.colLast a:link, td.colLast a:active, td.colLast a:visited, td.colLast a:hover, .constantValuesContainer td a:link, .constantValuesContainer td a:active, .constantValuesContainer td a:visited, .constantValuesContainer td a:hover { +.packagesSummary th.colLast, .packagesSummary td.colLast { + white-space:normal; +} +td.colFirst a:link, td.colFirst a:visited, +td.colSecond a:link, td.colSecond a:visited, +th.colFirst a:link, th.colFirst a:visited, +th.colSecond a:link, th.colSecond a:visited, +th.colConstructorName a:link, th.colConstructorName a:visited, +th.colDeprecatedItemName a:link, th.colDeprecatedItemName a:visited, +.constantValuesContainer td a:link, .constantValuesContainer td a:visited, +.allClassesContainer td a:link, .allClassesContainer td a:visited, +.allPackagesContainer td a:link, .allPackagesContainer td a:visited { font-weight:bold; } .tableSubHeadingColor { background-color:#EEEEFF; } -.altColor { +.altColor, .altColor th { background-color:#FFFFFF; } -.rowColor { +.rowColor, .rowColor th { background-color:#EEEEEF; } /* -Content styles -*/ + * Styles for contents. + */ .description pre { margin-top:0; } @@ -520,27 +625,22 @@ Content styles .docSummary { padding:0; } - ul.blockList ul.blockList ul.blockList li.blockList h3 { font-style:normal; } - div.block { font-size:14px; font-family:'DejaVu Serif', Georgia, "Times New Roman", Times, serif; } - td.colLast div { padding-top:0px; } - - td.colLast a { padding-bottom:3px; } /* -Formatting effect styles -*/ + * Styles for formatting effect. + */ .sourceLineNo { color:green; padding:0 30px 0 0; @@ -555,20 +655,256 @@ h1.hidden { margin:3px 10px 2px 0px; color:#474747; } -.deprecatedLabel, .descfrmTypeLabel, .memberNameLabel, .memberNameLink, -.overrideSpecifyLabel, .packageHierarchyLabel, .paramLabel, .returnLabel, -.seeLabel, .simpleTagLabel, .throwsLabel, .typeNameLabel, .typeNameLink { +.deprecatedLabel, .descfrmTypeLabel, .implementationLabel, .memberNameLabel, .memberNameLink, +.moduleLabelInPackage, .moduleLabelInType, .overrideSpecifyLabel, .packageLabelInType, +.packageHierarchyLabel, .paramLabel, .returnLabel, .seeLabel, .simpleTagLabel, +.throwsLabel, .typeNameLabel, .typeNameLink, .searchTagLink { font-weight:bold; } .deprecationComment, .emphasizedPhrase, .interfaceName { font-style:italic; } - -div.block div.block span.deprecationComment, div.block div.block span.emphasizedPhrase, +.deprecationBlock { + font-size:14px; + font-family:'DejaVu Serif', Georgia, "Times New Roman", Times, serif; + border-style:solid; + border-width:thin; + border-radius:10px; + padding:10px; + margin-bottom:10px; + margin-right:10px; + display:inline-block; +} +div.block div.deprecationComment, div.block div.block span.emphasizedPhrase, div.block div.block span.interfaceName { font-style:normal; } - -div.contentContainer ul.blockList li.blockList h2{ +div.contentContainer ul.blockList li.blockList h2 { padding-bottom:0px; } +/* + * Styles for IFRAME. + */ +.mainContainer { + margin:0 auto; + padding:0; + height:100%; + width:100%; + position:fixed; + top:0; + left:0; +} +.leftContainer { + height:100%; + position:fixed; + width:320px; +} +.leftTop { + position:relative; + float:left; + width:315px; + top:0; + left:0; + height:30%; + border-right:6px solid #ccc; + border-bottom:6px solid #ccc; +} +.leftBottom { + position:relative; + float:left; + width:315px; + bottom:0; + left:0; + height:70%; + border-right:6px solid #ccc; + border-top:1px solid #000; +} +.rightContainer { + position:absolute; + left:320px; + top:0; + bottom:0; + height:100%; + right:0; + border-left:1px solid #000; +} +.rightIframe { + margin:0; + padding:0; + height:100%; + right:30px; + width:100%; + overflow:visible; + margin-bottom:30px; +} +/* + * Styles specific to HTML5 elements. + */ +main, nav, header, footer, section { + display:block; +} +/* + * Styles for javadoc search. + */ +.ui-autocomplete-category { + font-weight:bold; + font-size:15px; + padding:7px 0 7px 3px; + background-color:#4D7A97; + color:#FFFFFF; +} +.resultItem { + font-size:13px; +} +.ui-autocomplete { + max-height:85%; + max-width:65%; + overflow-y:scroll; + overflow-x:scroll; + white-space:nowrap; + box-shadow: 0 3px 6px rgba(0,0,0,0.16), 0 3px 6px rgba(0,0,0,0.23); +} +ul.ui-autocomplete { + position:fixed; + z-index:999999; + background-color: #FFFFFF; +} +ul.ui-autocomplete li { + float:left; + clear:both; + width:100%; +} +.resultHighlight { + font-weight:bold; +} +.ui-autocomplete .result-item { + font-size: inherit; +} +#search { + background-image:url('resources/glass.png'); + background-size:13px; + background-repeat:no-repeat; + background-position:2px 3px; + padding-left:20px; + position:relative; + right:-18px; +} +#reset { + background-color: rgb(255,255,255); + background-image:url('resources/x.png'); + background-position:center; + background-repeat:no-repeat; + background-size:12px; + border:0 none; + width:16px; + height:17px; + position:relative; + left:-4px; + top:-4px; + font-size:0px; +} +.watermark { + color:#545454; +} +.searchTagDescResult { + font-style:italic; + font-size:11px; +} +.searchTagHolderResult { + font-style:italic; + font-size:12px; +} +.searchTagResult:before, .searchTagResult:target { + color:red; +} +.moduleGraph span { + display:none; + position:absolute; +} +.moduleGraph:hover span { + display:block; + margin: -100px 0 0 100px; + z-index: 1; +} +.methodSignature { + white-space:normal; +} + +/* + * Styles for user-provided tables. + * + * borderless: + * No borders, vertical margins, styled caption. + * This style is provided for use with existing doc comments. + * In general, borderless tables should not be used for layout purposes. + * + * plain: + * Plain borders around table and cells, vertical margins, styled caption. + * Best for small tables or for complex tables for tables with cells that span + * rows and columns, when the "striped" style does not work well. + * + * striped: + * Borders around the table and vertical borders between cells, striped rows, + * vertical margins, styled caption. + * Best for tables that have a header row, and a body containing a series of simple rows. + */ + +table.borderless, +table.plain, +table.striped { + margin-top: 10px; + margin-bottom: 10px; +} +table.borderless > caption, +table.plain > caption, +table.striped > caption { + font-weight: bold; + font-size: smaller; +} +table.borderless th, table.borderless td, +table.plain th, table.plain td, +table.striped th, table.striped td { + padding: 2px 5px; +} +table.borderless, +table.borderless > thead > tr > th, table.borderless > tbody > tr > th, table.borderless > tr > th, +table.borderless > thead > tr > td, table.borderless > tbody > tr > td, table.borderless > tr > td { + border: none; +} +table.borderless > thead > tr, table.borderless > tbody > tr, table.borderless > tr { + background-color: transparent; +} +table.plain { + border-collapse: collapse; + border: 1px solid black; +} +table.plain > thead > tr, table.plain > tbody tr, table.plain > tr { + background-color: transparent; +} +table.plain > thead > tr > th, table.plain > tbody > tr > th, table.plain > tr > th, +table.plain > thead > tr > td, table.plain > tbody > tr > td, table.plain > tr > td { + border: 1px solid black; +} +table.striped { + border-collapse: collapse; + border: 1px solid black; +} +table.striped > thead { + background-color: #E3E3E3; +} +table.striped > thead > tr > th, table.striped > thead > tr > td { + border: 1px solid black; +} +table.striped > tbody > tr:nth-child(even) { + background-color: #EEE +} +table.striped > tbody > tr:nth-child(odd) { + background-color: #FFF +} +table.striped > tbody > tr > th, table.striped > tbody > tr > td { + border-left: 1px solid black; + border-right: 1px solid black; +} +table.striped > tbody > tr > th { + font-weight: normal; +} diff --git a/documentation/apidoc/type-search-index.js b/documentation/apidoc/type-search-index.js new file mode 100644 index 0000000..56d42b7 --- /dev/null +++ b/documentation/apidoc/type-search-index.js @@ -0,0 +1 @@ +typeSearchIndex = [{"l":"All Classes","url":"allclasses-index.html"},{"p":"miml.transformation.mimlTOml","l":"ArithmeticTransformation"},{"p":"miml.core.distance","l":"AverageHausdorff"},{"p":"miml.report","l":"BaseMIMLReport"},{"p":"miml.transformation.mimlTOmi","l":"BRTransformation"},{"p":"miml.tutorial","l":"Clustering"},{"p":"miml.core","l":"ConfigLoader"},{"p":"miml.core","l":"ConfigParameters"},{"p":"miml.data.partitioning","l":"CrossValidationBase"},{"p":"miml.tutorial","l":"CrossValidationExperiment"},{"p":"miml.classifiers.miml.lazy","l":"DMIMLkNN"},{"p":"miml.classifiers.miml.neural","l":"EnMIMLNNmetric"},{"p":"miml.evaluation","l":"EvaluatorCV"},{"p":"miml.evaluation","l":"EvaluatorHoldout"},{"p":"miml.evaluation","l":"EvaluatorHoldoutClus"},{"p":"miml.tutorial","l":"GeneratePartitions"},{"p":"miml.transformation.mimlTOml","l":"GeometricTransformation"},{"p":"miml.core.distance","l":"HausdorffDistance"},{"p":"miml.tutorial","l":"HoldoutExperiment"},{"p":"miml.tutorial","l":"HoldoutToML_RFPCT"},{"p":"miml.core","l":"IConfiguration"},{"p":"miml.core.distance","l":"IDistance"},{"p":"miml.evaluation","l":"IEvaluator"},{"p":"miml.classifiers.miml","l":"IMIMLClassifier"},{"p":"miml.tutorial","l":"InsertingAttributesToBags"},{"p":"miml.tutorial","l":"InsertingAttributeToBag"},{"p":"miml.report","l":"IReport"},{"p":"miml.data.partitioning.iterative","l":"IterativeCrossValidation"},{"p":"miml.data.partitioning.iterative","l":"IterativeTrainTest"},{"p":"miml.classifiers.miml.optimization","l":"KiSar"},{"p":"miml.transformation.mimlTOml","l":"KMeansTransformation"},{"p":"miml.clusterers","l":"KMedoids"},{"p":"miml.data.partitioning.powerset","l":"LabelPowersetCrossValidation"},{"p":"miml.data.partitioning.powerset","l":"LabelPowersetTrainTest"},{"p":"miml.classifiers.miml.lazy","l":"MIMLFuzzykNN.LinearNNESearch"},{"p":"miml.classifiers.ml","l":"MLDGC.LinearNNESearch"},{"p":"miml.transformation.mimlTOmi","l":"LPTransformation"},{"p":"miml.tutorial","l":"ManagingMIMLInstances"},{"p":"miml.core.distance","l":"MaximalHausdorff"},{"p":"miml.transformation.mimlTOml","l":"MedoidTransformation"},{"p":"miml.data","l":"MIMLBag"},{"p":"miml.classifiers.miml.meta","l":"MIMLBagging"},{"p":"miml.classifiers.miml.mimlTOmi","l":"MIMLBinaryRelevance"},{"p":"miml.classifiers.miml.lazy","l":"MIMLBRkNN"},{"p":"miml.classifiers.miml","l":"MIMLClassifier"},{"p":"miml.classifiers.miml.mimlTOmi","l":"MIMLClassifierToMI"},{"p":"miml.classifiers.miml.mimlTOml","l":"MIMLClassifierToML"},{"p":"miml.classifiers.miml.lazy","l":"MIMLDGC"},{"p":"miml.classifiers.miml.lazy","l":"MIMLDistanceFunction"},{"p":"miml.classifiers.miml.optimization","l":"MIMLFast"},{"p":"miml.classifiers.miml.lazy","l":"MIMLFuzzykNN"},{"p":"miml.classifiers.miml.lazy","l":"MIMLIBLR"},{"p":"miml.data","l":"MIMLInstances"},{"p":"miml.classifiers.miml.lazy","l":"MIMLkNN"},{"p":"miml.classifiers.miml.mimlTOmi","l":"MIMLLabelPowerset"},{"p":"miml.transformation.mimlTOmi","l":"MIMLLabelPowersetTransformation"},{"p":"miml.classifiers.miml.lazy","l":"MIMLMAPkNN"},{"p":"miml.classifiers.miml.neural","l":"MIMLNN"},{"p":"miml.classifiers.miml.neural","l":"MIMLRBF"},{"p":"miml.report","l":"MIMLReport"},{"p":"miml.data.statistics","l":"MIMLStatistics"},{"p":"miml.classifiers.miml.optimization","l":"MIMLSVM"},{"p":"miml.tutorial","l":"MIMLtoMITransformation"},{"p":"miml.transformation.mimlTOml","l":"MIMLtoML"},{"p":"miml.tutorial","l":"MIMLtoMLTransformation"},{"p":"miml.classifiers.miml.optimization","l":"MIMLWel"},{"p":"miml.core.distance","l":"MinimalHausdorff"},{"p":"miml.data.normalization","l":"MinMaxNormalization"},{"p":"miml.transformation.mimlTOml","l":"MinMaxTransformation"},{"p":"miml.classifiers.mi","l":"MISMOWrapper"},{"p":"miml.data.statistics","l":"MIStatistics"},{"p":"miml.classifiers.ml","l":"MLDGC"},{"p":"miml.data","l":"MLSave"},{"p":"miml.data.statistics","l":"MLStatistics"},{"p":"miml.classifiers.miml.lazy","l":"MultiInstanceMultiLabelKNN"},{"p":"miml.classifiers.miml","l":"MWClassifier"},{"p":"miml.data","l":"MWTranslator"},{"p":"miml.tutorial","l":"NormalizingDataset"},{"p":"miml.core","l":"Params"},{"p":"miml.data.partitioning","l":"PartitionerBase"},{"p":"miml.transformation.mimlTOml","l":"PropositionalTransformation"},{"p":"miml.data.partitioning.random","l":"RandomCrossValidation"},{"p":"miml.data.partitioning.random","l":"RandomTrainTest"},{"p":"miml.tutorial","l":"Resampling"},{"p":"miml.classifiers.ml","l":"RFPCT"},{"p":"miml.run","l":"RunAlgorithm"},{"p":"miml.data.partitioning","l":"TrainTestBase"},{"p":"miml.core","l":"Utils"}] \ No newline at end of file diff --git a/documentation/apidoc/type-search-index.zip b/documentation/apidoc/type-search-index.zip new file mode 100644 index 0000000..d6202db Binary files /dev/null and b/documentation/apidoc/type-search-index.zip differ diff --git a/mavenProject/configurations/MIMLClassifier/DMIMLkNN.config b/mavenProject/configurations/MIMLClassifier/DMIMLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/EnMIMLNNMetric.config b/mavenProject/configurations/MIMLClassifier/EnMIMLNNMetric.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/KiSar.config b/mavenProject/configurations/MIMLClassifier/KiSar.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLBRkNN.config b/mavenProject/configurations/MIMLClassifier/MIMLBRkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLBagging.config b/mavenProject/configurations/MIMLClassifier/MIMLBagging.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLDGC.config b/mavenProject/configurations/MIMLClassifier/MIMLDGC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLFast.config b/mavenProject/configurations/MIMLClassifier/MIMLFast.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLIBLR.config b/mavenProject/configurations/MIMLClassifier/MIMLIBLR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLMAPkNN.config b/mavenProject/configurations/MIMLClassifier/MIMLMAPkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLNN.config b/mavenProject/configurations/MIMLClassifier/MIMLNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLRBF.config b/mavenProject/configurations/MIMLClassifier/MIMLRBF.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLSVM.config b/mavenProject/configurations/MIMLClassifier/MIMLSVM.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLWel.config b/mavenProject/configurations/MIMLClassifier/MIMLWel.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/MIMLClassifier/MIMLkNN.config b/mavenProject/configurations/MIMLClassifier/MIMLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_CitationKNN.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_CitationKNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MDD.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MDD.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MIBoost.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MIBoost.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MIDD.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MIDD.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MILR.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MILR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MINND.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MINND.config new file mode 100644 index 0000000..d9a5958 --- /dev/null +++ b/mavenProject/configurations/toMI/MIMLtoMI_BR_MINND.config @@ -0,0 +1,35 @@ + + + + + + + + + -K 10 -S 1 -E 1 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/BR_MINND.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MIOptimalBall.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MIOptimalBall.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MIRI.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MIRI.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MISMO.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MISMO.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MISVM.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MISVM.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MITI.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MITI.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_MIWrapper.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_MIWrapper.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_SimpleMI.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_SimpleMI.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_BR_TLC.config b/mavenProject/configurations/toMI/MIMLtoMI_BR_TLC.config new file mode 100644 index 0000000..5c8bd21 --- /dev/null +++ b/mavenProject/configurations/toMI/MIMLtoMI_BR_TLC.config @@ -0,0 +1,35 @@ + + + + + + + + + -P weka.classifiers.trees.J48 -W weka.classifiers.meta.LogitBoost -- -S 1 -I 10 -W weka.classifiers.trees.DecisionStump + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/BR_TLC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_CitationKNN.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_CitationKNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_MINND.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_MINND.config new file mode 100644 index 0000000..7f3dceb --- /dev/null +++ b/mavenProject/configurations/toMI/MIMLtoMI_LP_MINND.config @@ -0,0 +1,35 @@ + + + + + + + + + -K 10 -S 1 -E 1 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_MINND.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_MISMO.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_MISMO.config new file mode 100644 index 0000000..09da6b0 --- /dev/null +++ b/mavenProject/configurations/toMI/MIMLtoMI_LP_MISMO.config @@ -0,0 +1,35 @@ + + + + + + + + + -L 1.0e-3 -P 1.0e-12 -N 0 -V 5 + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_MISMO.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_MIWrapper.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_MIWrapper.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_SimpleMI.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_SimpleMI.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toMI/MIMLtoMI_LP_TLC.config b/mavenProject/configurations/toMI/MIMLtoMI_LP_TLC.config new file mode 100644 index 0000000..51d26cd --- /dev/null +++ b/mavenProject/configurations/toMI/MIMLtoMI_LP_TLC.config @@ -0,0 +1,35 @@ + + + + + + + + + -P weka.classifiers.trees.J48 -W weka.classifiers.meta.LogitBoost -- -S 1 -I 10 -W weka.classifiers.trees.DecisionStump + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toMI/LP_TLC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_BR.config b/mavenProject/configurations/toML/MIMLtoML_AT_BR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_BRkNN.config b/mavenProject/configurations/toML/MIMLtoML_AT_BRkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_CC.config b/mavenProject/configurations/toML/MIMLtoML_AT_CC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_CLR.config b/mavenProject/configurations/toML/MIMLtoML_AT_CLR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_DMLkNN.config b/mavenProject/configurations/toML/MIMLtoML_AT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_ECC.config b/mavenProject/configurations/toML/MIMLtoML_AT_ECC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_EPS.config b/mavenProject/configurations/toML/MIMLtoML_AT_EPS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_HOMER.config b/mavenProject/configurations/toML/MIMLtoML_AT_HOMER.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_IBLR_ML.config b/mavenProject/configurations/toML/MIMLtoML_AT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_LP.config b/mavenProject/configurations/toML/MIMLtoML_AT_LP.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_MLDGC.config b/mavenProject/configurations/toML/MIMLtoML_AT_MLDGC.config new file mode 100644 index 0000000..673a5ce --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_AT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/AT_MLDGC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_MLStacking.config b/mavenProject/configurations/toML/MIMLtoML_AT_MLStacking.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_MLkNN.config b/mavenProject/configurations/toML/MIMLtoML_AT_MLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_PS.config b/mavenProject/configurations/toML/MIMLtoML_AT_PS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_RAkEL.config b/mavenProject/configurations/toML/MIMLtoML_AT_RAkEL.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_RFPCT.config b/mavenProject/configurations/toML/MIMLtoML_AT_RFPCT.config new file mode 100644 index 0000000..bebf184 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_AT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/AT_RFPCT.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_AT_RPC.config b/mavenProject/configurations/toML/MIMLtoML_AT_RPC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_BR.config b/mavenProject/configurations/toML/MIMLtoML_GT_BR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_BRkNN.config b/mavenProject/configurations/toML/MIMLtoML_GT_BRkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_CC.config b/mavenProject/configurations/toML/MIMLtoML_GT_CC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_CLR.config b/mavenProject/configurations/toML/MIMLtoML_GT_CLR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_DMLkNN.config b/mavenProject/configurations/toML/MIMLtoML_GT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_ECC.config b/mavenProject/configurations/toML/MIMLtoML_GT_ECC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_EPS.config b/mavenProject/configurations/toML/MIMLtoML_GT_EPS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_HOMER.config b/mavenProject/configurations/toML/MIMLtoML_GT_HOMER.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_IBLR_ML.config b/mavenProject/configurations/toML/MIMLtoML_GT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_LP.config b/mavenProject/configurations/toML/MIMLtoML_GT_LP.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_MLDGC.config b/mavenProject/configurations/toML/MIMLtoML_GT_MLDGC.config new file mode 100644 index 0000000..4eddbb9 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_GT_MLDGC.config @@ -0,0 +1,29 @@ + + + + + + + + + + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/GT_MLDGC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_MLStacking.config b/mavenProject/configurations/toML/MIMLtoML_GT_MLStacking.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_MLkNN.config b/mavenProject/configurations/toML/MIMLtoML_GT_MLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_PS.config b/mavenProject/configurations/toML/MIMLtoML_GT_PS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_RAkEL.config b/mavenProject/configurations/toML/MIMLtoML_GT_RAkEL.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_RFPCT.config b/mavenProject/configurations/toML/MIMLtoML_GT_RFPCT.config new file mode 100644 index 0000000..8d953c0 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_GT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/GT_RFPCT.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_GT_RPC.config b/mavenProject/configurations/toML/MIMLtoML_GT_RPC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_BR.config b/mavenProject/configurations/toML/MIMLtoML_KMT_BR.config new file mode 100644 index 0000000..43d820d --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_BR.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_BR.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_BRkNN.config b/mavenProject/configurations/toML/MIMLtoML_KMT_BRkNN.config new file mode 100644 index 0000000..2b0fd12 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_BRkNN.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 65 + random + 712637 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_BRkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_CC.config b/mavenProject/configurations/toML/MIMLtoML_KMT_CC.config new file mode 100644 index 0000000..4b3e0b1 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_CC.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_CC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_CLR.config b/mavenProject/configurations/toML/MIMLtoML_KMT_CLR.config new file mode 100644 index 0000000..ebaba60 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_CLR.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_CLR.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_DMLkNN.config b/mavenProject/configurations/toML/MIMLtoML_KMT_DMLkNN.config new file mode 100644 index 0000000..f058aa2 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_DMLkNN.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_DMLkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_ECC.config b/mavenProject/configurations/toML/MIMLtoML_KMT_ECC.config new file mode 100644 index 0000000..d119e6e --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_ECC.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + 70 + powerset + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_ECC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_EPS.config b/mavenProject/configurations/toML/MIMLtoML_KMT_EPS.config new file mode 100644 index 0000000..dec6f10 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_EPS.config @@ -0,0 +1,42 @@ + + + + + + + + + + + + + + + + + + + + 75 + iterative + 25 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_EPS.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_HOMER.config b/mavenProject/configurations/toML/MIMLtoML_KMT_HOMER.config new file mode 100644 index 0000000..0d00d8e --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_HOMER.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/KMT_HOMER.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_IBLR_ML.config b/mavenProject/configurations/toML/MIMLtoML_KMT_IBLR_ML.config new file mode 100644 index 0000000..1ed3b03 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_IBLR_ML.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/KMT_IBLR_ML.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_LP.config b/mavenProject/configurations/toML/MIMLtoML_KMT_LP.config new file mode 100644 index 0000000..e930f05 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_LP.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + 70 + random + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + + results/toML/KMT_LP.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_MLDGC.config b/mavenProject/configurations/toML/MIMLtoML_KMT_MLDGC.config new file mode 100644 index 0000000..26d3376 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/KMT_MLDGC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_MLStacking.config b/mavenProject/configurations/toML/MIMLtoML_KMT_MLStacking.config new file mode 100644 index 0000000..c988c5f --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_MLStacking.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + 129 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/KMT_MLStacking.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_MLkNN.config b/mavenProject/configurations/toML/MIMLtoML_KMT_MLkNN.config new file mode 100644 index 0000000..51964da --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_MLkNN.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_MLkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_PS.config b/mavenProject/configurations/toML/MIMLtoML_KMT_PS.config new file mode 100644 index 0000000..b41fd1e --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_PS.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_PS.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_RAkEL.config b/mavenProject/configurations/toML/MIMLtoML_KMT_RAkEL.config new file mode 100644 index 0000000..29df401 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_RAkEL.config @@ -0,0 +1,41 @@ + + + + + + + + + + + + + + + + + + + + 80 + iterative + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + results/toML/KMT_RAkEL.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_RFPCT.config b/mavenProject/configurations/toML/MIMLtoML_KMT_RFPCT.config new file mode 100644 index 0000000..ef53263 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_RFPCT.config @@ -0,0 +1,38 @@ + + + + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + powerset + clusFolder + clusBirds + + + + + results/toML/KMT_RFPCT.csv + false +
                            true
                            + + Hamming Loss + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_KMT_RPC.config b/mavenProject/configurations/toML/MIMLtoML_KMT_RPC.config new file mode 100644 index 0000000..20e1662 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_KMT_RPC.config @@ -0,0 +1,32 @@ + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/KMT_KMT.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_BR.config b/mavenProject/configurations/toML/MIMLtoML_MDT_BR.config new file mode 100644 index 0000000..067a5f8 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_BR.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_BR.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_BRkNN.config b/mavenProject/configurations/toML/MIMLtoML_MDT_BRkNN.config new file mode 100644 index 0000000..ca877b1 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_BRkNN.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 65 + random + 712637 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_BRkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_CC.config b/mavenProject/configurations/toML/MIMLtoML_MDT_CC.config new file mode 100644 index 0000000..ad06e46 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_CC.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_CC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_CLR.config b/mavenProject/configurations/toML/MIMLtoML_MDT_CLR.config new file mode 100644 index 0000000..f855114 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_CLR.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_CLR.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_DMLkNN.config b/mavenProject/configurations/toML/MIMLtoML_MDT_DMLkNN.config new file mode 100644 index 0000000..205510e --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_DMLkNN.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_DMLkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_ECC.config b/mavenProject/configurations/toML/MIMLtoML_MDT_ECC.config new file mode 100644 index 0000000..9f1c637 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_ECC.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + 70 + powerset + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_ECC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_EPS.config b/mavenProject/configurations/toML/MIMLtoML_MDT_EPS.config new file mode 100644 index 0000000..a4a8090 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_EPS.config @@ -0,0 +1,42 @@ + + + + + + + + + + + + + + + + + + + + 75 + iterative + 25 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_EPS.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_HOMER.config b/mavenProject/configurations/toML/MIMLtoML_MDT_HOMER.config new file mode 100644 index 0000000..b91e640 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_HOMER.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + + results/toML/MDT_HOMER.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_IBLR_ML.config b/mavenProject/configurations/toML/MIMLtoML_MDT_IBLR_ML.config new file mode 100644 index 0000000..6e42a8f --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_IBLR_ML.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + + 127 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + + results/toML/MDT_IBLR_ML.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_LP.config b/mavenProject/configurations/toML/MIMLtoML_MDT_LP.config new file mode 100644 index 0000000..16eb188 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_LP.config @@ -0,0 +1,36 @@ + + + + + + + + + + + + + + 70 + random + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + + results/toML/MDT_LP.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_MLDGC.config b/mavenProject/configurations/toML/MIMLtoML_MDT_MLDGC.config new file mode 100644 index 0000000..c621438 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_MLDGC.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/MDT_MLDGC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_MLStacking.config b/mavenProject/configurations/toML/MIMLtoML_MDT_MLStacking.config new file mode 100644 index 0000000..de8a325 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_MLStacking.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + 129 + 5 + + data/miml_birds.arff + data/miml_birds.xml + + + + + results/toML/MDT_MLStacking.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_MLkNN.config b/mavenProject/configurations/toML/MIMLtoML_MDT_MLkNN.config new file mode 100644 index 0000000..412109f --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_MLkNN.config @@ -0,0 +1,33 @@ + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_MLkNN.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_PS.config b/mavenProject/configurations/toML/MIMLtoML_MDT_PS.config new file mode 100644 index 0000000..6dfa9f1 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_PS.config @@ -0,0 +1,35 @@ + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_PS.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_RAkEL.config b/mavenProject/configurations/toML/MIMLtoML_MDT_RAkEL.config new file mode 100644 index 0000000..0fe166d --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_RAkEL.config @@ -0,0 +1,41 @@ + + + + + + + + + + + + + + + + + + + + 80 + iterative + 5 + + data/miml_birds_random_80train.arff + data/miml_birds.xml + + + + + results/toML/MDT_RAkEL.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_RFPCT.config b/mavenProject/configurations/toML/MIMLtoML_MDT_RFPCT.config new file mode 100644 index 0000000..b575805 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_RFPCT.config @@ -0,0 +1,40 @@ + + + + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + clusFolder + clusBirds + iterative + + + + + results/toML/MDT_RFPCT.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MDT_RPC.config b/mavenProject/configurations/toML/MIMLtoML_MDT_RPC.config new file mode 100644 index 0000000..1e10c83 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MDT_RPC.config @@ -0,0 +1,32 @@ + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + + + + results/toML/MDT_RPC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_BR.config b/mavenProject/configurations/toML/MIMLtoML_MMT_BR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_BRkNN.config b/mavenProject/configurations/toML/MIMLtoML_MMT_BRkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_CC.config b/mavenProject/configurations/toML/MIMLtoML_MMT_CC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_CLR.config b/mavenProject/configurations/toML/MIMLtoML_MMT_CLR.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_DMLkNN.config b/mavenProject/configurations/toML/MIMLtoML_MMT_DMLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_ECC.config b/mavenProject/configurations/toML/MIMLtoML_MMT_ECC.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_EPS.config b/mavenProject/configurations/toML/MIMLtoML_MMT_EPS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_HOMER.config b/mavenProject/configurations/toML/MIMLtoML_MMT_HOMER.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_IBLR_ML.config b/mavenProject/configurations/toML/MIMLtoML_MMT_IBLR_ML.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_LP.config b/mavenProject/configurations/toML/MIMLtoML_MMT_LP.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_MLDGC.config b/mavenProject/configurations/toML/MIMLtoML_MMT_MLDGC.config new file mode 100644 index 0000000..e408088 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MMT_MLDGC.config @@ -0,0 +1,34 @@ + + + + + + + + + + + + + + + data/miml_birds.arff + data/miml_birds.xml + 80 + + iterative + + + + results/toML/MMT_MLDGC.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_MLStacking.config b/mavenProject/configurations/toML/MIMLtoML_MMT_MLStacking.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_MLkNN.config b/mavenProject/configurations/toML/MIMLtoML_MMT_MLkNN.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_PS.config b/mavenProject/configurations/toML/MIMLtoML_MMT_PS.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_RAkEL.config b/mavenProject/configurations/toML/MIMLtoML_MMT_RAkEL.config old mode 100755 new mode 100644 diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_RFPCT.config b/mavenProject/configurations/toML/MIMLtoML_MMT_RFPCT.config new file mode 100644 index 0000000..f379759 --- /dev/null +++ b/mavenProject/configurations/toML/MIMLtoML_MMT_RFPCT.config @@ -0,0 +1,39 @@ + + + + + + + + + + + + + + + + + + data/miml_birds_random_80train.arff + data/miml_birds_random_20test.arff + data/miml_birds.xml + + clusFolder + clusBirds + + + + + results/toML/MMT_RFPCT.csv + false +
                            true
                            + + Hamming Loss + Subset Accuracy + Macro-averaged Precision + Macro-averaged F-Measure + +
                            + +
                            \ No newline at end of file diff --git a/mavenProject/configurations/toML/MIMLtoML_MMT_RPC.config b/mavenProject/configurations/toML/MIMLtoML_MMT_RPC.config old mode 100755 new mode 100644 diff --git a/mavenProject/data/miml_birds.arff b/mavenProject/data/miml_birds.arff old mode 100755 new mode 100644 diff --git a/mavenProject/data/miml_birds.xml b/mavenProject/data/miml_birds.xml old mode 100755 new mode 100644 diff --git a/mavenProject/data/miml_birds_random_20test.arff b/mavenProject/data/miml_birds_random_20test.arff old mode 100755 new mode 100644 diff --git a/mavenProject/data/miml_birds_random_80train.arff b/mavenProject/data/miml_birds_random_80train.arff old mode 100755 new mode 100644 diff --git a/mavenProject/data/toy.arff b/mavenProject/data/toy.arff old mode 100755 new mode 100644 index 773ac97..f3f1d90 --- a/mavenProject/data/toy.arff +++ b/mavenProject/data/toy.arff @@ -13,4 +13,4 @@ @data bag1,"42,-198,-109\n41.9,-191,-142\n35,14.2,6.33",1,0,0,1 - bag2,"11.25,-98,10\n31,40.5,7.85",0,1,1,0 \ No newline at end of file + bag2,"11.25,-98,10\n31,40.5,7.85",0,1,1,0 \ No newline at end of file diff --git a/mavenProject/data/toy.xml b/mavenProject/data/toy.xml old mode 100755 new mode 100644 diff --git a/mavenProject/pom.xml b/mavenProject/pom.xml old mode 100755 new mode 100644 index 36a9a80..a3fd246 --- a/mavenProject/pom.xml +++ b/mavenProject/pom.xml @@ -2,33 +2,25 @@ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> 4.0.0 - miml miml - 1.0 + 1.4 jar - miml http://maven.apache.org - UTF-8 - 3.8.0 - 1.8 1.8 - - local file://${basedir}/src/main/resources - @@ -36,91 +28,82 @@ junit 4.13.1 - org.apache.commons commons-collections4 4.2 - commons-beanutils commons-beanutils 1.9.4 - org.apache.commons commons-lang3 3.8.1 - commons-logging commons-logging 1.2 - org.apache.commons commons-configuration2 2.7 - nz.ac.waikato.cms.weka weka-dev 3.7.10 - nz.ac.waikato.cms.weka citationKNN 1.0.1 - nz.ac.waikato.cms.weka multiInstanceLearning 1.0.9 - nz.ac.waikato.cms.weka multiInstanceFilters 1.0.10 - mulan mulan 1.5.0 - MWalgorithms MWalgorithms 1.0 - javabuilder javabuilder 1.0 - + + clus + clus + 2.12 + - @@ -133,7 +116,6 @@ 1.8 - org.apache.maven.plugins @@ -147,7 +129,6 @@ - maven-assembly-plugin diff --git a/mavenProject/results/MIMLClassifier/DMIMLkNN.csv b/mavenProject/results/MIMLClassifier/DMIMLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/EnMIMLNNmetric.csv b/mavenProject/results/MIMLClassifier/EnMIMLNNmetric.csv old mode 100755 new mode 100644 index 78225b1..4a3d5df --- a/mavenProject/results/MIMLClassifier/EnMIMLNNmetric.csv +++ b/mavenProject/results/MIMLClassifier/EnMIMLNNmetric.csv @@ -1,6 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss EnMIMLNNmetric,miml_birds.arff,EnMIMLNNMetric.config,1931,1022,0.21981424148606815,0.0392156862745098,0.20410830999066293,0.23921568627450981,0.1861811391223156,0.1386865857454093,0.8387014609765476,0.16071428571428573,0.2727272727272727,0.20224719101123595,0.8379310344827586,0.13207377417903735,0.0,0.3,0.125,0.0,0.0,0.0,0.3,0.2222222222222222,0.15,0.13333333333333333,0.3888888888888889,0.0,0.125,0.1111111111111111,0.15384615384615385,0.0,0.0,0.0,0.5,0.20401309646665683,0.0,0.1875,0.25,0.0,0.0,0.0,0.6,0.2857142857142857,0.3,0.2222222222222222,0.4117647058823529,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.5,0.15145994356520676,0.0,0.23076923076923078,0.16666666666666666,0.0,0.0,0.0,0.4,0.25,0.2,0.16666666666666666,0.4,0.0,0.18181818181818182,0.18181818181818182,0.2,0.0,0.0,0.0,0.5,0.8313684750297009,0.8541666666666666,0.8,0.851063829787234,0.9019607843137255,0.8775510204081632,0.8235294117647058,0.8478260869565217,0.8409090909090909,0.5853658536585366,0.6904761904761905,0.6764705882352942,0.9583333333333334,0.8541666666666666,0.8367346938775511,0.75,0.7708333333333334,0.94,0.9791666666666666,0.9574468085106383,0.26377826461531606,11.470588235294118,0.8235294117647058,0.9215686274509803,15.568627450980392,0.5235728932095712,0.2132930366426059,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,NaN,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,0.23150532091591244,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,NaN,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,0.5553291536050157,NaN,0.4270833333333333,0.49375,0.550531914893617,NaN,0.4387755102040816,NaN,0.7239130434782609,0.5633116883116883,0.4426829268292683,0.45634920634920634,0.5441176470588235,0.4791666666666667,0.59375,0.6683673469387755,0.5178571428571429,0.3854166666666667,0.47,0.4895833333333333,0.7287234042553191,76.93343147673261 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -EnMIMLNNmetric,miml_birds.arff,EnMIMLNNMetric.config,1749,1344,0.21981424148606815,0.0392156862745098,0.20410830999066293,0.23921568627450981,0.1861811391223156,0.1386865857454093,0.8387014609765476,0.16071428571428573,0.2727272727272727,0.20224719101123595,0.8379310344827586,0.13207377417903735,0.0,0.3,0.125,0.0,0.0,0.0,0.3,0.2222222222222222,0.15,0.13333333333333333,0.3888888888888889,0.0,0.125,0.1111111111111111,0.15384615384615385,0.0,0.0,0.0,0.5,0.20401309646665683,0.0,0.1875,0.25,0.0,0.0,0.0,0.6,0.2857142857142857,0.3,0.2222222222222222,0.4117647058823529,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.5,0.15145994356520676,0.0,0.23076923076923078,0.16666666666666666,0.0,0.0,0.0,0.4,0.25,0.2,0.16666666666666666,0.4,0.0,0.18181818181818182,0.18181818181818182,0.2,0.0,0.0,0.0,0.5,0.8313684750297009,0.8541666666666666,0.8,0.851063829787234,0.9019607843137255,0.8775510204081632,0.8235294117647058,0.8478260869565217,0.8409090909090909,0.5853658536585366,0.6904761904761905,0.6764705882352942,0.9583333333333334,0.8541666666666666,0.8367346938775511,0.75,0.7708333333333334,0.94,0.9791666666666666,0.9574468085106383,0.26377826461531606,11.470588235294118,0.8235294117647058,0.9215686274509803,15.568627450980392,0.5235728932095712,0.2132930366426059,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,NaN,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,0.23150532091591244,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,NaN,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,0.5553291536050157,NaN,0.4270833333333333,0.49375,0.550531914893617,NaN,0.4387755102040816,NaN,0.7239130434782609,0.5633116883116883,0.4426829268292683,0.45634920634920634,0.5441176470588235,0.4791666666666667,0.59375,0.6683673469387755,0.5178571428571429,0.3854166666666667,0.47,0.4895833333333333,0.7287234042553191,76.93343147673261 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -EnMIMLNNmetric,miml_birds.arff,EnMIMLNNmetric.config,2204,1102,0.21981424148606815,0.0392156862745098,0.20410830999066293,0.23921568627450981,0.1861811391223156,0.1386865857454093,0.8387014609765476,0.16071428571428573,0.2727272727272727,0.20224719101123595,0.8379310344827586,0.13207377417903735,0.0,0.3,0.125,0.0,0.0,0.0,0.3,0.2222222222222222,0.15,0.13333333333333333,0.3888888888888889,0.0,0.125,0.1111111111111111,0.15384615384615385,0.0,0.0,0.0,0.5,0.20401309646665683,0.0,0.1875,0.25,0.0,0.0,0.0,0.6,0.2857142857142857,0.3,0.2222222222222222,0.4117647058823529,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.5,0.15145994356520676,0.0,0.23076923076923078,0.16666666666666666,0.0,0.0,0.0,0.4,0.25,0.2,0.16666666666666666,0.4,0.0,0.18181818181818182,0.18181818181818182,0.2,0.0,0.0,0.0,0.5,0.8313684750297009,0.8541666666666666,0.8,0.851063829787234,0.9019607843137255,0.8775510204081632,0.8235294117647058,0.8478260869565217,0.8409090909090909,0.5853658536585366,0.6904761904761905,0.6764705882352942,0.9583333333333334,0.8541666666666666,0.8367346938775511,0.75,0.7708333333333334,0.94,0.9791666666666666,0.9574468085106383,0.26377826461531606,11.470588235294118,0.8235294117647058,0.9215686274509803,15.568627450980392,0.5235728932095712,0.2132930366426059,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,NaN,0.045925925925925926,0.3373678360581702,0.1483974358974359,NaN,0.12698412698412698,NaN,0.27205882352941174,0.2575235222294046,0.310830723656205,0.26923544276485445,0.3542219913883059,0.11590608465608465,0.23968784838350055,0.175,0.15453843542078838,0.053246753246753244,0.037037037037037035,0.08128050531151305,0.6467391304347826,0.23150532091591244,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,NaN,0.06000000000000001,0.3808673469387755,0.16166666666666665,NaN,0.14285714285714282,NaN,0.2887254901960784,0.28372549019607846,0.32456479690522244,0.35474779592426653,0.3891016497884277,0.11860119047619049,0.2657190635451504,0.17500000000000004,0.17707070707070702,0.06666666666666667,0.037037037037037035,0.08315245478036176,0.6260869565217393,0.5553291536050157,NaN,0.4270833333333333,0.49375,0.550531914893617,NaN,0.4387755102040816,NaN,0.7239130434782609,0.5633116883116883,0.4426829268292683,0.45634920634920634,0.5441176470588235,0.4791666666666667,0.59375,0.6683673469387755,0.5178571428571429,0.3854166666666667,0.47,0.4895833333333333,0.7287234042553191,76.93343147673261 diff --git a/mavenProject/results/MIMLClassifier/KiSar.csv b/mavenProject/results/MIMLClassifier/KiSar.csv old mode 100755 new mode 100644 index 04a4873..45a6423 --- a/mavenProject/results/MIMLClassifier/KiSar.csv +++ b/mavenProject/results/MIMLClassifier/KiSar.csv @@ -1,4 +1,3 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss KiSar,miml_birds.arff,KiSar.config,5388,964,0.1382868937048504,0.0392156862745098,0.22549019607843138,0.1281045751633987,0.14444444444444446,0.11013071895424836,0.944699154171472,0.2222222222222222,0.1414141414141414,0.1728395061728395,0.9436781609195403,0.15852130325814537,0.0,0.42857142857142855,0.0,0.0,0.0,0.0,0.5,0.0,0.0,0.375,0.375,0.0,0.0,0.0,0.3333333333333333,0.0,0.0,0.0,1.0,0.0915874244434616,0.0,0.1875,0.0,0.0,0.0,0.0,0.4,0.0,0.0,0.3333333333333333,0.17647058823529413,0.0,0.0,0.0,0.14285714285714285,0.0,0.0,0.0,0.5,0.11394325541047845,0.0,0.2608695652173913,0.0,0.0,0.0,0.0,0.4444444444444444,0.0,0.0,0.35294117647058826,0.24,0.0,0.0,0.0,0.2,0.0,0.0,0.0,0.6666666666666666,0.9396465410834809,0.9166666666666666,0.8857142857142857,0.9574468085106383,0.9803921568627451,1.0,0.9607843137254902,0.9565217391304348,0.9090909090909091,0.8048780487804879,0.8809523809523809,0.8529411764705882,1.0,0.9166666666666666,0.9591836734693877,0.9545454545454546,0.9375,0.98,1.0,1.0,0.26652453688292627,11.745098039215685,0.7647058823529411,0.9411764705882353,15.980392156862745,0.5235744951575402,0.21133767686246027,0.04661782661782662,0.4170628925500409,0.08718203497615262,NaN,0.2361111111111111,NaN,0.3510796221322537,0.19943310657596372,0.19574389239259665,0.3215791012488639,0.3813547759194125,0.1270293063461944,0.0967391304347826,0.075,0.1667858596430025,0.062040672505788784,0.038461538461538464,0.08128050531151305,0.7092391304347826,NaN,0.04661782661782662,0.4170628925500409,0.08718203497615262,NaN,0.2361111111111111,NaN,0.3510796221322537,0.19943310657596372,0.19574389239259665,0.3215791012488639,0.3813547759194125,0.1270293063461944,0.0967391304347826,0.075,0.1667858596430025,0.062040672505788784,0.038461538461538464,0.08128050531151305,0.7092391304347826,0.23160652971680612,0.06000000000000001,0.47318336425479285,0.10049019607843139,NaN,0.23611111111111116,NaN,0.384412955465587,0.22888888888888897,0.23109239130434783,0.3945590357355063,0.44000000000000006,0.13099304237824158,0.10706521739130434,0.08333333333333334,0.2,0.06948051948051948,0.03846153846153846,0.08315245478036176,0.6760869565217392,NaN,0.06000000000000001,0.47318336425479285,0.10049019607843139,NaN,0.23611111111111116,NaN,0.384412955465587,0.22888888888888897,0.23109239130434783,0.3945590357355063,0.44000000000000006,0.13099304237824158,0.10706521739130434,0.08333333333333334,0.2,0.06948051948051948,0.03846153846153846,0.08315245478036176,0.6760869565217392,0.5425461511668408,NaN,0.4583333333333333,0.5366071428571428,0.4787234042553192,NaN,0.5,NaN,0.6782608695652174,0.45454545454545453,0.4024390243902439,0.6071428571428571,0.5147058823529411,0.5,0.4583333333333333,0.47959183673469385,0.5487012987012987,0.46875,0.49,0.5,0.75,48.399435839086365 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -KiSar,miml_birds.arff,KiSar.config,6109,885,0.1382868937048504,0.0392156862745098,0.22549019607843138,0.1281045751633987,0.14444444444444446,0.11013071895424836,0.944699154171472,0.2222222222222222,0.1414141414141414,0.1728395061728395,0.9436781609195403,0.15852130325814537,0.0,0.42857142857142855,0.0,0.0,0.0,0.0,0.5,0.0,0.0,0.375,0.375,0.0,0.0,0.0,0.3333333333333333,0.0,0.0,0.0,1.0,0.0915874244434616,0.0,0.1875,0.0,0.0,0.0,0.0,0.4,0.0,0.0,0.3333333333333333,0.17647058823529413,0.0,0.0,0.0,0.14285714285714285,0.0,0.0,0.0,0.5,0.11394325541047845,0.0,0.2608695652173913,0.0,0.0,0.0,0.0,0.4444444444444444,0.0,0.0,0.35294117647058826,0.24,0.0,0.0,0.0,0.2,0.0,0.0,0.0,0.6666666666666666,0.9396465410834809,0.9166666666666666,0.8857142857142857,0.9574468085106383,0.9803921568627451,1.0,0.9607843137254902,0.9565217391304348,0.9090909090909091,0.8048780487804879,0.8809523809523809,0.8529411764705882,1.0,0.9166666666666666,0.9591836734693877,0.9545454545454546,0.9375,0.98,1.0,1.0,0.26652453688292627,11.745098039215685,0.7647058823529411,0.9411764705882353,15.980392156862745,0.5235744951575402,0.21133767686246027,0.04661782661782662,0.4170628925500409,0.08718203497615262,NaN,0.2361111111111111,NaN,0.3510796221322537,0.19943310657596372,0.19574389239259665,0.3215791012488639,0.3813547759194125,0.1270293063461944,0.0967391304347826,0.075,0.1667858596430025,0.062040672505788784,0.038461538461538464,0.08128050531151305,0.7092391304347826,NaN,0.04661782661782662,0.4170628925500409,0.08718203497615262,NaN,0.2361111111111111,NaN,0.3510796221322537,0.19943310657596372,0.19574389239259665,0.3215791012488639,0.3813547759194125,0.1270293063461944,0.0967391304347826,0.075,0.1667858596430025,0.062040672505788784,0.038461538461538464,0.08128050531151305,0.7092391304347826,0.23160652971680612,0.06000000000000001,0.47318336425479285,0.10049019607843139,NaN,0.23611111111111116,NaN,0.384412955465587,0.22888888888888897,0.23109239130434783,0.3945590357355063,0.44000000000000006,0.13099304237824158,0.10706521739130434,0.08333333333333334,0.2,0.06948051948051948,0.03846153846153846,0.08315245478036176,0.6760869565217392,NaN,0.06000000000000001,0.47318336425479285,0.10049019607843139,NaN,0.23611111111111116,NaN,0.384412955465587,0.22888888888888897,0.23109239130434783,0.3945590357355063,0.44000000000000006,0.13099304237824158,0.10706521739130434,0.08333333333333334,0.2,0.06948051948051948,0.03846153846153846,0.08315245478036176,0.6760869565217392,0.5425461511668408,NaN,0.4583333333333333,0.5366071428571428,0.4787234042553192,NaN,0.5,NaN,0.6782608695652174,0.45454545454545453,0.4024390243902439,0.6071428571428571,0.5147058823529411,0.5,0.4583333333333333,0.47959183673469385,0.5487012987012987,0.46875,0.49,0.5,0.75,48.399435839086365 +A \ No newline at end of file diff --git a/mavenProject/results/MIMLClassifier/MIMLBRkNN.csv b/mavenProject/results/MIMLClassifier/MIMLBRkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/MIMLBagging.csv b/mavenProject/results/MIMLClassifier/MIMLBagging.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/MIMLDGC.csv b/mavenProject/results/MIMLClassifier/MIMLDGC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/MIMLFast.csv b/mavenProject/results/MIMLClassifier/MIMLFast.csv old mode 100755 new mode 100644 index 737b42a..2dd8592 --- a/mavenProject/results/MIMLClassifier/MIMLFast.csv +++ b/mavenProject/results/MIMLClassifier/MIMLFast.csv @@ -1,8 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss MIMLFast,miml_birds.arff,MIMLFast.config,892,717,0.5376676986584106,0.0,0.08153948448066095,0.32222222222222224,0.12224540165716638,0.0715126921009274,0.4743596785119276,0.07459677419354839,0.37373737373737376,0.12436974789915967,0.4724137931034483,0.04185452656812014,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.13725490196078433,0.19607843137254902,0.0,0.0,0.041666666666666664,0.04878048780487805,0.05714285714285714,0.14,0.058823529411764705,0.021739130434782608,0.09375,0.0,0.4385964912280701,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.6666666666666666,0.6666666666666666,1.0,1.0,1.0,1.0,1.0,0.0,0.07460019176246453,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2413793103448276,0.32786885245901637,0.0,0.0,0.0784313725490196,0.09090909090909091,0.10810810810810811,0.24561403508771928,0.1111111111111111,0.0425531914893617,0.17142857142857143,0.0,0.4889444294464197,1.0,1.0,1.0,0.0,1.0,0.21568627450980393,1.0,0.0,0.0,1.0,1.0,0.041666666666666664,0.1875,0.32653061224489793,0.022727272727272728,0.0,0.1,0.3958333333333333,1.0,0.20020209383485643,13.313725490196079,0.9019607843137255,0.9607843137254902,18.372549019607842,0.6077692187986303,0.19395764724041456,0.04734778121775026,0.35383344602258876,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.2663618780845671,0.41793469802198946,0.2684255196510098,0.3003288712931692,0.06603174603174604,0.0741330069359445,0.10049019607843138,0.12236624379481523,0.07037271671418013,0.043478260869565216,0.12774725274725274,0.5884057971014492,NaN,0.04734778121775026,0.35383344602258876,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.2663618780845671,0.41793469802198946,0.2684255196510098,0.3003288712931692,0.06603174603174604,0.0741330069359445,0.10049019607843138,0.12236624379481523,0.07037271671418013,0.043478260869565216,0.12774725274725274,0.5884057971014492,0.2128928543698853,0.06000000000000001,0.399373840445269,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.2871764705882353,0.4280000000000001,0.35249554367201436,0.35567375886524827,0.06799999999999999,0.08186046511627908,0.11764705882352941,0.15909090909090912,0.0792207792207792,0.04347826086956521,0.1346153846153846,0.5794202898550724,NaN,0.06000000000000001,0.399373840445269,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.2871764705882353,0.4280000000000001,0.35249554367201436,0.35567375886524827,0.06799999999999999,0.08186046511627908,0.11764705882352941,0.15909090909090912,0.0792207792207792,0.04347826086956521,0.1346153846153846,0.5794202898550724,0.423075583420411,NaN,0.5,0.5,0.5,NaN,0.5,NaN,0.5,0.5,0.5,0.5,0.5,0.3541666666666667,0.4270833333333333,0.6632653061224489,0.5113636363636364,0.5,0.55,0.6979166666666666,0.5,188.17989548574153 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLFast,miml_birds.arff,MIMLFast.config,1110,729,0.5779153766769864,0.0,0.11907727348903815,0.7385620915032682,0.1981092148912218,0.11523520052931814,0.3884819941048316,0.11900826446280992,0.7272727272727273,0.20454545454545456,0.3873563218390805,0.08138106373409881,0.0,0.2558139534883721,0.0,0.0,0.0392156862745098,0.0,0.09803921568627451,0.10869565217391304,0.19607843137254902,0.1956521739130435,0.3333333333333333,0.0,0.08333333333333333,0.04,0.13725490196078433,0.0,0.0,0.058823529411764705,0.0,0.512374686716792,0.0,0.6875,0.0,0.0,1.0,0.0,1.0,0.7142857142857143,1.0,1.0,1.0,0.0,0.3333333333333333,1.0,1.0,0.0,0.0,1.0,0.0,0.13334169154441847,0.0,0.3728813559322034,0.0,0.0,0.07547169811320754,0.0,0.17857142857142858,0.18867924528301888,0.32786885245901637,0.32727272727272727,0.5,0.0,0.13333333333333333,0.07692307692307693,0.2413793103448276,0.0,0.0,0.1111111111111111,0.0,0.37179922208117694,1.0,0.08571428571428572,1.0,0.0,0.0,0.0,0.0,0.06818181818181818,0.0,0.11904761904761904,0.0,1.0,0.7708333333333334,0.02040816326530612,0.0,1.0,1.0,0.0,1.0,0.25084980212746094,10.509803921568627,0.9411764705882353,0.9607843137254902,13.72549019607843,0.4397095439482981,0.187994445701753,0.04734778121775026,0.3042951691289016,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.15433015565994287,0.41793469802198946,0.2893989840357117,0.3003288712931692,0.1270293063461944,0.12445119891928402,0.08391608391608392,0.11833018227950416,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,NaN,0.04734778121775026,0.3042951691289016,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.15433015565994287,0.41793469802198946,0.2893989840357117,0.3003288712931692,0.1270293063461944,0.12445119891928402,0.08391608391608392,0.11833018227950416,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,0.20528841090873828,0.06000000000000001,0.3458823529411765,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.16950757575757575,0.4280000000000001,0.3713280379041249,0.35567375886524827,0.13099304237824158,0.12867274569402226,0.09090909090909093,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,NaN,0.06000000000000001,0.3458823529411765,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.16950757575757575,0.4280000000000001,0.3713280379041249,0.35567375886524827,0.13099304237824158,0.12867274569402226,0.09090909090909093,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,0.5573145245559039,NaN,0.5,0.38660714285714287,0.5,NaN,0.5,NaN,0.5,0.3912337662337662,0.5,0.5595238095238095,0.5,0.5,0.5520833333333334,0.5102040816326531,0.5,0.5,0.5,0.5,0.5,202.2662983926495 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLFast,miml_birds.arff,MIMLFast.config,1104,800,0.3921568627450978,0.0,0.07028478057889823,0.22287581699346404,0.10109356874062758,0.05855897914721443,0.6504863056333647,0.07033639143730887,0.23232323232323232,0.107981220657277,0.6505747126436782,0.1469599270837661,0.0,0.0,0.0784313725490196,1.0,0.05405405405405406,1.0,0.09803921568627451,0.0,0.16666666666666666,0.0,0.0,0.058823529411764705,0.0,0.045454545454545456,0.0,0.06,0.0,0.0,0.23076923076923078,0.46578947368421053,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.1,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.75,0.16925297016214302,0.0,0.0,0.14545454545454545,1.0,0.10256410256410256,1.0,0.17857142857142858,0.0,0.125,0.0,0.0,0.1111111111111111,0.0,0.08695652173913043,0.0,0.11320754716981132,0.0,0.0,0.35294117647058826,0.6644572413129346,1.0,1.0,0.0,1.0,0.2857142857142857,1.0,0.0,1.0,0.8780487804878049,1.0,1.0,0.0,1.0,0.14285714285714285,1.0,0.020833333333333332,0.76,0.75,0.7872340425531915,0.19888902024092933,12.745098039215685,0.8823529411764706,0.9607843137254902,18.49019607843137,0.5944481060398014,0.22548714317397298,0.04734778121775026,0.35383344602258876,0.09482600732600732,NaN,0.8333333333333333,NaN,0.11908547008547007,0.2663618780845671,0.27835754813679164,0.2684255196510098,0.3003288712931692,0.1270293063461944,0.13285024154589373,0.09429824561403508,0.11833018227950416,0.07439024390243903,0.034482758620689655,0.06455733808674985,0.6254432624113475,NaN,0.04734778121775026,0.35383344602258876,0.09482600732600732,NaN,0.8333333333333333,NaN,0.11908547008547007,0.2663618780845671,0.27835754813679164,0.2684255196510098,0.3003288712931692,0.1270293063461944,0.13285024154589373,0.09429824561403508,0.11833018227950416,0.07439024390243903,0.034482758620689655,0.06455733808674985,0.6254432624113475,0.2457525562238065,0.06000000000000001,0.399373840445269,0.1088095238095238,NaN,0.8333333333333334,NaN,0.1282051282051282,0.2871764705882353,0.3125832862789385,0.35249554367201436,0.35567375886524827,0.13099304237824158,0.13623188405797101,0.10526315789473684,0.15555555555555553,0.08390243902439024,0.03448275862068966,0.06818181818181816,0.6255319148936169,NaN,0.06000000000000001,0.399373840445269,0.1088095238095238,NaN,0.8333333333333334,NaN,0.1282051282051282,0.2871764705882353,0.3125832862789385,0.35249554367201436,0.35567375886524827,0.13099304237824158,0.13623188405797101,0.10526315789473684,0.15555555555555553,0.08390243902439024,0.03448275862068966,0.06818181818181816,0.6255319148936169,0.4414489724834552,NaN,0.5,0.5,0.5,NaN,0.6428571428571429,NaN,0.5,0.5,0.48902439024390243,0.5,0.5,0.5,0.5,0.5714285714285714,0.5,0.5104166666666666,0.38,0.375,0.7686170212765957,137.25213111890926 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLFast,miml_birds.arff,MIMLFast.config,1125,798,0.36326109391124867,0.0,0.07161531279178339,0.3071895424836601,0.1123857623857624,0.06630096483037659,0.6789213397777412,0.08794788273615635,0.2727272727272727,0.1330049261083744,0.6781609195402298,0.04313227739179185,0.0,0.24390243902439024,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.36,0.037037037037037035,0.0,0.0392156862745098,0.0,0.0,0.03125,0.0,0.10810810810810811,0.23619711042311659,0.0,0.625,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5294117647058824,0.3333333333333333,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.06196394727154377,0.0,0.3508771929824561,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.42857142857142855,0.06666666666666667,0.0,0.07547169811320754,0.0,0.0,0.06060606060606061,0.0,0.1951219512195122,0.6808824156762369,1.0,0.11428571428571428,1.0,0.0,1.0,0.1568627450980392,1.0,1.0,1.0,1.0,0.5294117647058824,0.4583333333333333,1.0,0.0,1.0,1.0,0.38,1.0,0.2978723404255319,0.19627527307989276,11.96078431372549,0.9215686274509803,0.9607843137254902,17.901960784313726,0.5535638765310048,0.19690902129540208,0.04734778121775026,0.29838109649746747,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.2663618780845671,0.41793469802198946,0.2684255196510098,0.35179462254156185,0.07275702426564495,0.13285024154589373,0.07919254658385093,0.11833018227950416,0.07037271671418013,0.058823529411764705,0.08128050531151305,0.633578431372549,NaN,0.04734778121775026,0.29838109649746747,0.09482600732600732,NaN,0.2361111111111111,NaN,0.11908547008547007,0.2663618780845671,0.41793469802198946,0.2684255196510098,0.35179462254156185,0.07275702426564495,0.13285024154589373,0.07919254658385093,0.11833018227950416,0.07037271671418013,0.058823529411764705,0.08128050531151305,0.633578431372549,0.21501009817855,0.06000000000000001,0.34477680433875674,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.2871764705882353,0.4280000000000001,0.35249554367201436,0.38061224489795925,0.09375,0.13623188405797101,0.08695652173913042,0.15555555555555553,0.0792207792207792,0.058823529411764705,0.08315245478036176,0.6352941176470587,NaN,0.06000000000000001,0.34477680433875674,0.1088095238095238,NaN,0.23611111111111116,NaN,0.1282051282051282,0.2871764705882353,0.4280000000000001,0.35249554367201436,0.38061224489795925,0.09375,0.13623188405797101,0.08695652173913042,0.15555555555555553,0.0792207792207792,0.058823529411764705,0.08315245478036176,0.6352941176470587,0.4754440961337513,NaN,0.5,0.36964285714285716,0.5,NaN,0.5,NaN,0.5,0.5,0.5,0.5,0.5294117647058824,0.3958333333333333,0.5,0.5,0.5,0.5,0.69,0.5,0.648936170212766,127.13881620851566 diff --git a/mavenProject/results/MIMLClassifier/MIMLIBLR.csv b/mavenProject/results/MIMLClassifier/MIMLIBLR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/MIMLMAPkNN.csv b/mavenProject/results/MIMLClassifier/MIMLMAPkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/MIMLClassifier/MIMLNN.csv b/mavenProject/results/MIMLClassifier/MIMLNN.csv old mode 100755 new mode 100644 index 827a97b..0b6a9d2 --- a/mavenProject/results/MIMLClassifier/MIMLNN.csv +++ b/mavenProject/results/MIMLClassifier/MIMLNN.csv @@ -1,4 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss MIMLNN,miml_birds.arff,MIMLNN.config,929,885,0.23942208462332298,0.0392156862745098,0.19946524064171123,0.25882352941176473,0.1833836098541981,0.13562254738725327,0.8142797641932592,0.1518324607329843,0.29292929292929293,0.2,0.8137931034482758,0.17489906984366818,0.0,0.3333333333333333,0.08333333333333333,0.0,0.0,0.0,0.2857142857142857,0.09090909090909091,0.14285714285714285,0.18181818181818182,0.35,0.25,0.125,0.1,0.15789473684210525,0.0,0.0,1.0,0.2222222222222222,0.23186397365963932,0.0,0.25,0.25,0.0,0.0,0.0,0.4,0.14285714285714285,0.3,0.2222222222222222,0.4117647058823529,0.3333333333333333,0.3333333333333333,0.5,0.42857142857142855,0.0,0.0,0.3333333333333333,0.5,0.17367085096287133,0.0,0.2857142857142857,0.125,0.0,0.0,0.0,0.3333333333333333,0.1111111111111111,0.1935483870967742,0.2,0.3783783783783784,0.2857142857142857,0.18181818181818182,0.16666666666666666,0.23076923076923078,0.0,0.0,0.5,0.3076923076923077,0.8065463967909021,0.875,0.7714285714285715,0.7659574468085106,0.9215686274509803,0.7755102040816326,0.9019607843137255,0.8913043478260869,0.7727272727272727,0.5609756097560976,0.7857142857142857,0.6176470588235294,0.9375,0.8541666666666666,0.8163265306122449,0.6363636363636364,0.7291666666666666,0.86,1.0,0.851063829787234,0.25957982860573453,12.0,0.803921568627451,0.9215686274509803,16.176470588235293,0.5417469929148129,0.23751054925121226,0.04661782661782662,0.38881289324771273,0.12430323299888517,NaN,0.09401709401709402,NaN,0.3013636363636364,0.1911092214663643,0.2916951999452544,0.28159593626569884,0.32478747122866347,0.26458333333333334,0.4026915113871636,0.13095238095238093,0.17630905621272497,0.05252525252525253,0.03571428571428571,0.4171952078928823,0.5134057971014493,NaN,0.04661782661782662,0.38881289324771273,0.12430323299888517,NaN,0.09401709401709402,NaN,0.3013636363636364,0.1911092214663643,0.2916951999452544,0.28159593626569884,0.32478747122866347,0.26458333333333334,0.4026915113871636,0.13095238095238093,0.17630905621272497,0.05252525252525253,0.03571428571428571,0.4171952078928823,0.5134057971014493,0.2633651004468268,0.06000000000000001,0.44654195011337877,0.1340579710144927,NaN,0.11111111111111113,NaN,0.3013636363636364,0.21333333333333332,0.31021276595744685,0.36241617859264924,0.36269841269841274,0.2881250000000001,0.4624223602484473,0.130952380952381,0.1966946778711484,0.06666666666666667,0.035714285714285705,0.47547568710359406,0.5194202898550725,NaN,0.06000000000000001,0.44654195011337877,0.1340579710144927,NaN,0.11111111111111113,NaN,0.3013636363636364,0.21333333333333332,0.31021276595744685,0.36241617859264924,0.36269841269841274,0.2881250000000001,0.4624223602484473,0.130952380952381,0.1966946778711484,0.06666666666666667,0.035714285714285705,0.47547568710359406,0.5194202898550725,0.5533611981887844,NaN,0.4375,0.5107142857142857,0.5079787234042553,NaN,0.3877551020408163,NaN,0.6456521739130435,0.4577922077922078,0.4304878048780488,0.503968253968254,0.5147058823529411,0.6354166666666666,0.59375,0.6581632653061225,0.5324675324675324,0.3645833333333333,0.43,0.6666666666666666,0.675531914893617,83.79603802260662 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLNN,miml_birds.arff,MIMLNN.config,914,1031,0.23942208462332298,0.0392156862745098,0.19946524064171123,0.25882352941176473,0.1833836098541981,0.13562254738725327,0.8142797641932592,0.1518324607329843,0.29292929292929293,0.2,0.8137931034482758,0.17489906984366818,0.0,0.3333333333333333,0.08333333333333333,0.0,0.0,0.0,0.2857142857142857,0.09090909090909091,0.14285714285714285,0.18181818181818182,0.35,0.25,0.125,0.1,0.15789473684210525,0.0,0.0,1.0,0.2222222222222222,0.23186397365963932,0.0,0.25,0.25,0.0,0.0,0.0,0.4,0.14285714285714285,0.3,0.2222222222222222,0.4117647058823529,0.3333333333333333,0.3333333333333333,0.5,0.42857142857142855,0.0,0.0,0.3333333333333333,0.5,0.17367085096287133,0.0,0.2857142857142857,0.125,0.0,0.0,0.0,0.3333333333333333,0.1111111111111111,0.1935483870967742,0.2,0.3783783783783784,0.2857142857142857,0.18181818181818182,0.16666666666666666,0.23076923076923078,0.0,0.0,0.5,0.3076923076923077,0.8065463967909021,0.875,0.7714285714285715,0.7659574468085106,0.9215686274509803,0.7755102040816326,0.9019607843137255,0.8913043478260869,0.7727272727272727,0.5609756097560976,0.7857142857142857,0.6176470588235294,0.9375,0.8541666666666666,0.8163265306122449,0.6363636363636364,0.7291666666666666,0.86,1.0,0.851063829787234,0.25957982860573453,12.0,0.803921568627451,0.9215686274509803,16.176470588235293,0.5417469929148129,0.23751054925121226,0.04661782661782662,0.38881289324771273,0.12430323299888517,NaN,0.09401709401709402,NaN,0.3013636363636364,0.1911092214663643,0.2916951999452544,0.28159593626569884,0.32478747122866347,0.26458333333333334,0.4026915113871636,0.13095238095238093,0.17630905621272497,0.05252525252525253,0.03571428571428571,0.4171952078928823,0.5134057971014493,NaN,0.04661782661782662,0.38881289324771273,0.12430323299888517,NaN,0.09401709401709402,NaN,0.3013636363636364,0.1911092214663643,0.2916951999452544,0.28159593626569884,0.32478747122866347,0.26458333333333334,0.4026915113871636,0.13095238095238093,0.17630905621272497,0.05252525252525253,0.03571428571428571,0.4171952078928823,0.5134057971014493,0.2633651004468268,0.06000000000000001,0.44654195011337877,0.1340579710144927,NaN,0.11111111111111113,NaN,0.3013636363636364,0.21333333333333332,0.31021276595744685,0.36241617859264924,0.36269841269841274,0.2881250000000001,0.4624223602484473,0.130952380952381,0.1966946778711484,0.06666666666666667,0.035714285714285705,0.47547568710359406,0.5194202898550725,NaN,0.06000000000000001,0.44654195011337877,0.1340579710144927,NaN,0.11111111111111113,NaN,0.3013636363636364,0.21333333333333332,0.31021276595744685,0.36241617859264924,0.36269841269841274,0.2881250000000001,0.4624223602484473,0.130952380952381,0.1966946778711484,0.06666666666666667,0.035714285714285705,0.47547568710359406,0.5194202898550725,0.5533611981887844,NaN,0.4375,0.5107142857142857,0.5079787234042553,NaN,0.3877551020408163,NaN,0.6456521739130435,0.4577922077922078,0.4304878048780488,0.503968253968254,0.5147058823529411,0.6354166666666666,0.59375,0.6581632653061225,0.5324675324675324,0.3645833333333333,0.43,0.6666666666666666,0.675531914893617,83.79603802260662 diff --git a/mavenProject/results/MIMLClassifier/MIMLRBF.csv b/mavenProject/results/MIMLClassifier/MIMLRBF.csv old mode 100755 new mode 100644 index 9173d10..686262a --- a/mavenProject/results/MIMLClassifier/MIMLRBF.csv +++ b/mavenProject/results/MIMLClassifier/MIMLRBF.csv @@ -1,4 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss MIMLRBF,miml_birds.arff,MIMLRBF.config,1586,870,0.12590299277605785,0.0,0.08169934640522876,0.06699346405228758,0.05816993464052288,0.039215686274509796,0.9674804562347815,0.17142857142857143,0.06060606060606061,0.08955223880597014,0.9666666666666667,0.19661654135338347,0.0,0.25,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.2,0.2857142857142857,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.15019779841761266,0.0,0.125,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.1111111111111111,0.11764705882352941,0.0,0.0,0.5,0.0,0.0,0.0,0.0,0.0,0.16541353383458646,0.0,0.16666666666666666,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.14285714285714285,0.16666666666666666,0.0,0.0,0.6666666666666666,0.0,0.0,0.0,0.0,0.0,0.9616210435351767,0.9791666666666666,0.8285714285714286,0.9361702127659575,1.0,1.0,1.0,0.9782608695652174,0.9772727272727273,0.8780487804878049,0.9047619047619048,0.8529411764705882,1.0,0.9583333333333334,1.0,0.9772727272727273,1.0,1.0,1.0,1.0,0.22337376869899775,11.745098039215685,0.8823529411764706,0.9803921568627451,16.764705882352942,0.5390811226451363,0.2110752714619034,0.04734778121775026,0.36513256827393786,0.08729866946778711,NaN,0.2361111111111111,NaN,0.11386898210427623,0.24324700215014233,0.2247942214790041,0.2138192094287576,0.34775459912786927,0.1270293063461944,0.12064022933588152,0.5666666666666667,0.11604871055429841,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,NaN,0.04734778121775026,0.36513256827393786,0.08729866946778711,NaN,0.2361111111111111,NaN,0.11386898210427623,0.24324700215014233,0.2247942214790041,0.2138192094287576,0.34775459912786927,0.1270293063461944,0.12064022933588152,0.5666666666666667,0.11604871055429841,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,0.23072894085869192,0.06000000000000001,0.43688548590167775,0.10096638655462187,NaN,0.23611111111111116,NaN,0.1282051282051282,0.27050980392156865,0.2514906832298137,0.24416221033868096,0.4333333333333333,0.13099304237824158,0.12725752508361207,0.5666666666666669,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,NaN,0.06000000000000001,0.43688548590167775,0.10096638655462187,NaN,0.23611111111111116,NaN,0.1282051282051282,0.27050980392156865,0.2514906832298137,0.24416221033868096,0.4333333333333333,0.13099304237824158,0.12725752508361207,0.5666666666666669,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,0.5136363636363637,NaN,0.4895833333333333,0.4767857142857143,0.46808510638297873,NaN,0.5,NaN,0.4891304347826087,0.48863636363636365,0.43902439024390244,0.5079365079365079,0.4852941176470588,0.5,0.4791666666666667,0.75,0.48863636363636365,0.5,0.5,0.5,0.5,44.06515802130334 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLRBF,miml_birds.arff,MIMLRBF.config,1439,904,0.12590299277605785,0.0,0.08169934640522876,0.06699346405228758,0.05816993464052288,0.039215686274509796,0.9674804562347815,0.17142857142857143,0.06060606060606061,0.08955223880597014,0.9666666666666667,0.19661654135338347,0.0,0.25,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.2,0.2857142857142857,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.15019779841761266,0.0,0.125,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.1111111111111111,0.11764705882352941,0.0,0.0,0.5,0.0,0.0,0.0,0.0,0.0,0.16541353383458646,0.0,0.16666666666666666,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.14285714285714285,0.16666666666666666,0.0,0.0,0.6666666666666666,0.0,0.0,0.0,0.0,0.0,0.9616210435351767,0.9791666666666666,0.8285714285714286,0.9361702127659575,1.0,1.0,1.0,0.9782608695652174,0.9772727272727273,0.8780487804878049,0.9047619047619048,0.8529411764705882,1.0,0.9583333333333334,1.0,0.9772727272727273,1.0,1.0,1.0,1.0,0.22337376869899775,11.745098039215685,0.8823529411764706,0.9803921568627451,16.764705882352942,0.5390811226451363,0.2110752714619034,0.04734778121775026,0.36513256827393786,0.08729866946778711,NaN,0.2361111111111111,NaN,0.11386898210427623,0.24324700215014233,0.2247942214790041,0.2138192094287576,0.34775459912786927,0.1270293063461944,0.12064022933588152,0.5666666666666667,0.11604871055429841,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,NaN,0.04734778121775026,0.36513256827393786,0.08729866946778711,NaN,0.2361111111111111,NaN,0.11386898210427623,0.24324700215014233,0.2247942214790041,0.2138192094287576,0.34775459912786927,0.1270293063461944,0.12064022933588152,0.5666666666666667,0.11604871055429841,0.07037271671418013,0.038461538461538464,0.08128050531151305,0.5884057971014492,0.23072894085869192,0.06000000000000001,0.43688548590167775,0.10096638655462187,NaN,0.23611111111111116,NaN,0.1282051282051282,0.27050980392156865,0.2514906832298137,0.24416221033868096,0.4333333333333333,0.13099304237824158,0.12725752508361207,0.5666666666666669,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,NaN,0.06000000000000001,0.43688548590167775,0.10096638655462187,NaN,0.23611111111111116,NaN,0.1282051282051282,0.27050980392156865,0.2514906832298137,0.24416221033868096,0.4333333333333333,0.13099304237824158,0.12725752508361207,0.5666666666666669,0.15555555555555553,0.0792207792207792,0.03846153846153846,0.08315245478036176,0.5794202898550724,0.5136363636363637,NaN,0.4895833333333333,0.4767857142857143,0.46808510638297873,NaN,0.5,NaN,0.4891304347826087,0.48863636363636365,0.43902439024390244,0.5079365079365079,0.4852941176470588,0.5,0.4791666666666667,0.75,0.48863636363636365,0.5,0.5,0.5,0.5,44.06515802130334 diff --git a/mavenProject/results/MIMLClassifier/MIMLSVM.csv b/mavenProject/results/MIMLClassifier/MIMLSVM.csv old mode 100755 new mode 100644 index ade7fc2..eabe34b --- a/mavenProject/results/MIMLClassifier/MIMLSVM.csv +++ b/mavenProject/results/MIMLClassifier/MIMLSVM.csv @@ -1,4 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss MIMLSVM,miml_birds.arff,MIMLSVM.config,1460,1062,0.16615067079463366,0.0392156862745098,0.23529411764705882,0.18039215686274512,0.17787114845938376,0.13562091503267976,0.907005318467256,0.19607843137254902,0.20202020202020202,0.19900497512437812,0.9057471264367816,0.1547694995063416,0.0,0.25,0.0,0.0,0.0,0.0,0.3333333333333333,0.0,0.07142857142857142,0.2,0.36363636363636365,0.0,0.16666666666666666,0.3333333333333333,0.2222222222222222,0.0,0.0,0.0,1.0,0.15128200402968203,0.0,0.0625,0.0,0.0,0.0,0.0,0.4,0.0,0.1,0.2222222222222222,0.47058823529411764,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.5,0.14245480588970894,0.0,0.1,0.0,0.0,0.0,0.0,0.36363636363636365,0.0,0.08333333333333333,0.21052631578947367,0.41025641025641024,0.0,0.2222222222222222,0.4,0.25,0.0,0.0,0.0,0.6666666666666666,0.8980546258341453,0.9166666666666666,0.9142857142857143,0.8936170212765957,0.9803921568627451,0.9183673469387755,0.9215686274509803,0.9130434782608695,0.9318181818181818,0.6829268292682927,0.8095238095238095,0.5882352941176471,1.0,0.8958333333333334,0.9591836734693877,0.8409090909090909,0.9166666666666666,0.98,1.0,1.0,0.2728732716630336,12.03921568627451,0.7647058823529411,0.9215686274509803,16.15686274509804,0.5375114424854909,0.23141653540656215,0.04661782661782662,0.33257252180967023,0.08077485380116958,NaN,0.15476190476190477,NaN,0.33928571428571425,0.21312136083783875,0.18186127864276752,0.28789328350283167,0.34925152163465967,0.1270293063461944,0.41062801932367154,0.3125,0.20920637654351365,0.05959595959595959,0.038461538461538464,0.08128050531151305,0.7092391304347826,NaN,0.04661782661782662,0.33257252180967023,0.08077485380116958,NaN,0.15476190476190477,NaN,0.33928571428571425,0.21312136083783875,0.18186127864276752,0.28789328350283167,0.34925152163465967,0.1270293063461944,0.41062801932367154,0.3125,0.20920637654351365,0.05959595959595959,0.038461538461538464,0.08128050531151305,0.7092391304347826,0.25310527386339426,0.06000000000000001,0.38530457637600496,0.0942982456140351,NaN,0.16666666666666669,NaN,0.3726190476190476,0.24257507198683675,0.2222393292400156,0.3663844325609032,0.37781609195402305,0.13099304237824158,0.4695652173913044,0.3125,0.23746031746031737,0.06666666666666667,0.03846153846153846,0.08315245478036176,0.6760869565217392,NaN,0.06000000000000001,0.38530457637600496,0.0942982456140351,NaN,0.16666666666666669,NaN,0.3726190476190476,0.24257507198683675,0.2222393292400156,0.3663844325609032,0.37781609195402305,0.13099304237824158,0.4695652173913044,0.3125,0.23746031746031737,0.06666666666666667,0.03846153846153846,0.08315245478036176,0.6760869565217392,0.5538836642284918,NaN,0.4583333333333333,0.48839285714285713,0.44680851063829785,NaN,0.45918367346938777,NaN,0.6565217391304348,0.4659090909090909,0.39146341463414636,0.5158730158730159,0.5294117647058824,0.5,0.6145833333333334,0.7295918367346939,0.5633116883116883,0.4583333333333333,0.49,0.5,0.75,58.15156093028039 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLSVM,miml_birds.arff,MIMLSVM.config,1353,1159,0.16615067079463366,0.0392156862745098,0.23529411764705882,0.18039215686274512,0.17787114845938376,0.13562091503267976,0.907005318467256,0.19607843137254902,0.20202020202020202,0.19900497512437812,0.9057471264367816,0.1547694995063416,0.0,0.25,0.0,0.0,0.0,0.0,0.3333333333333333,0.0,0.07142857142857142,0.2,0.36363636363636365,0.0,0.16666666666666666,0.3333333333333333,0.2222222222222222,0.0,0.0,0.0,1.0,0.15128200402968203,0.0,0.0625,0.0,0.0,0.0,0.0,0.4,0.0,0.1,0.2222222222222222,0.47058823529411764,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.5,0.14245480588970894,0.0,0.1,0.0,0.0,0.0,0.0,0.36363636363636365,0.0,0.08333333333333333,0.21052631578947367,0.41025641025641024,0.0,0.2222222222222222,0.4,0.25,0.0,0.0,0.0,0.6666666666666666,0.8980546258341453,0.9166666666666666,0.9142857142857143,0.8936170212765957,0.9803921568627451,0.9183673469387755,0.9215686274509803,0.9130434782608695,0.9318181818181818,0.6829268292682927,0.8095238095238095,0.5882352941176471,1.0,0.8958333333333334,0.9591836734693877,0.8409090909090909,0.9166666666666666,0.98,1.0,1.0,0.2728732716630336,12.03921568627451,0.7647058823529411,0.9215686274509803,16.15686274509804,0.5375114424854909,0.23141653540656215,0.04661782661782662,0.33257252180967023,0.08077485380116958,NaN,0.15476190476190477,NaN,0.33928571428571425,0.21312136083783875,0.18186127864276752,0.28789328350283167,0.34925152163465967,0.1270293063461944,0.41062801932367154,0.3125,0.20920637654351365,0.05959595959595959,0.038461538461538464,0.08128050531151305,0.7092391304347826,NaN,0.04661782661782662,0.33257252180967023,0.08077485380116958,NaN,0.15476190476190477,NaN,0.33928571428571425,0.21312136083783875,0.18186127864276752,0.28789328350283167,0.34925152163465967,0.1270293063461944,0.41062801932367154,0.3125,0.20920637654351365,0.05959595959595959,0.038461538461538464,0.08128050531151305,0.7092391304347826,0.25310527386339426,0.06000000000000001,0.38530457637600496,0.0942982456140351,NaN,0.16666666666666669,NaN,0.3726190476190476,0.24257507198683675,0.2222393292400156,0.3663844325609032,0.37781609195402305,0.13099304237824158,0.4695652173913044,0.3125,0.23746031746031737,0.06666666666666667,0.03846153846153846,0.08315245478036176,0.6760869565217392,NaN,0.06000000000000001,0.38530457637600496,0.0942982456140351,NaN,0.16666666666666669,NaN,0.3726190476190476,0.24257507198683675,0.2222393292400156,0.3663844325609032,0.37781609195402305,0.13099304237824158,0.4695652173913044,0.3125,0.23746031746031737,0.06666666666666667,0.03846153846153846,0.08315245478036176,0.6760869565217392,0.5538836642284918,NaN,0.4583333333333333,0.48839285714285713,0.44680851063829785,NaN,0.45918367346938777,NaN,0.6565217391304348,0.4659090909090909,0.39146341463414636,0.5158730158730159,0.5294117647058824,0.5,0.6145833333333334,0.7295918367346939,0.5633116883116883,0.4583333333333333,0.49,0.5,0.75,58.15156093028039 diff --git a/mavenProject/results/MIMLClassifier/MIMLWel.csv b/mavenProject/results/MIMLClassifier/MIMLWel.csv old mode 100755 new mode 100644 index b6129f8..015dd85 --- a/mavenProject/results/MIMLClassifier/MIMLWel.csv +++ b/mavenProject/results/MIMLClassifier/MIMLWel.csv @@ -1,4 +1,2 @@ Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss MIMLWel,miml_birds.arff,MIMLWeL.config,34771,875,0.22187822497420007,0.0392156862745098,0.3014113337642749,0.34934640522875826,0.2533477959948548,0.18627091862385978,0.8285435089068304,0.1881720430107527,0.35353535353535354,0.24561403508771928,0.8264367816091954,0.1722199996799539,0.0,0.30434782608695654,0.09090909090909091,1.0,0.0,0.0,0.2222222222222222,0.0,0.2,0.07692307692307693,0.3611111111111111,0.0,0.1,0.16666666666666666,0.25,0.0,0.0,0.0,0.5,0.2753876111848248,0.0,0.4375,0.25,1.0,0.0,0.0,0.4,0.0,0.4,0.1111111111111111,0.7647058823529411,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.75,0.20508824178138974,0.0,0.358974358974359,0.13333333333333333,1.0,0.0,0.0,0.2857142857142857,0.0,0.26666666666666666,0.09090909090909091,0.49056603773584906,0.0,0.15384615384615385,0.25,0.26666666666666666,0.0,0.0,0.0,0.6,0.8111680533355343,0.9583333333333334,0.5428571428571428,0.7872340425531915,1.0,0.8571428571428571,0.9215686274509803,0.8478260869565217,0.7727272727272727,0.6097560975609756,0.7142857142857143,0.3235294117647059,0.875,0.8125,0.8979591836734694,0.8636363636363636,0.875,0.9,0.9166666666666666,0.9361702127659575,0.3394027944542424,10.509803921568627,0.6862745098039216,0.9215686274509803,13.96078431372549,0.4568549642079053,0.20989687787612513,0.04734778121775026,0.34277023856019867,0.10473356009070293,NaN,0.13247863247863248,NaN,0.20381570974094831,0.17395513389302208,0.39444304063373975,0.25322272817379754,0.36056150843816215,0.10242778663831294,0.14349881796690309,0.18382352941176472,0.1854697190270748,0.061351052048726464,0.03571428571428571,0.0713568041154248,0.7712765957446809,NaN,0.04734778121775026,0.34277023856019867,0.10473356009070293,NaN,0.13247863247863248,NaN,0.20381570974094831,0.17395513389302208,0.39444304063373975,0.25322272817379754,0.36056150843816215,0.10242778663831294,0.14349881796690309,0.18382352941176472,0.1854697190270748,0.061351052048726464,0.03571428571428571,0.0713568041154248,0.7712765957446809,0.2255756698042149,0.06000000000000001,0.3730989010989011,0.1062358276643991,NaN,0.15384615384615383,NaN,0.2109585668838055,0.21142857142857138,0.4010593967722021,0.3459511523907808,0.4287568389057751,0.10329611908559277,0.14914893617021277,0.18382352941176472,0.20425531914893624,0.06976744186046512,0.035714285714285705,0.07191343139619003,0.7255319148936169,NaN,0.06000000000000001,0.3730989010989011,0.1062358276643991,NaN,0.15384615384615383,NaN,0.2109585668838055,0.21142857142857138,0.4010593967722021,0.3459511523907808,0.4287568389057751,0.10329611908559277,0.14914893617021277,0.18382352941176472,0.20425531914893624,0.06976744186046512,0.035714285714285705,0.07191343139619003,0.7255319148936169,0.5899860675722745,NaN,0.4791666666666667,0.4901785714285714,0.5186170212765957,NaN,0.42857142857142855,NaN,0.6239130434782608,0.38636363636363635,0.5048780487804878,0.4126984126984127,0.5441176470588235,0.4375,0.5729166666666666,0.6989795918367347,0.5746753246753247,0.4375,0.45,0.4583333333333333,0.8430851063829787,77.65581111237293 -Algorithm,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Example-Based Precision,Example-Based Recall,Example-Based F Measure,Example-Based Accuracy,Example-Based Specificity,Micro-averaged Precision,Micro-averaged Recall,Micro-averaged F-Measure,Micro-averaged Specificity,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged Recall,Macro-averaged Recall-BRCR,Macro-averaged Recall-PAWR,Macro-averaged Recall-PSFL,Macro-averaged Recall-RBNU,Macro-averaged Recall-DEJU,Macro-averaged Recall-OSFL,Macro-averaged Recall-HETH,Macro-averaged Recall-CBCH,Macro-averaged Recall-VATH,Macro-averaged Recall-HEWA,Macro-averaged Recall-SWTH,Macro-averaged Recall-HAFL,Macro-averaged Recall-WETA,Macro-averaged Recall-BHGB,Macro-averaged Recall-GCKI,Macro-averaged Recall-WAVI,Macro-averaged Recall-MGWA,Macro-averaged Recall-STJA,Macro-averaged Recall-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI,Macro-averaged Specificity,Macro-averaged Specificity-BRCR,Macro-averaged Specificity-PAWR,Macro-averaged Specificity-PSFL,Macro-averaged Specificity-RBNU,Macro-averaged Specificity-DEJU,Macro-averaged Specificity-OSFL,Macro-averaged Specificity-HETH,Macro-averaged Specificity-CBCH,Macro-averaged Specificity-VATH,Macro-averaged Specificity-HEWA,Macro-averaged Specificity-SWTH,Macro-averaged Specificity-HAFL,Macro-averaged Specificity-WETA,Macro-averaged Specificity-BHGB,Macro-averaged Specificity-GCKI,Macro-averaged Specificity-WAVI,Macro-averaged Specificity-MGWA,Macro-averaged Specificity-STJA,Macro-averaged Specificity-CONI,Average Precision,Coverage,OneError,IsError,ErrorSetSize,Ranking Loss,Mean Average Precision,Mean Average Precision-BRCR,Mean Average Precision-PAWR,Mean Average Precision-PSFL,Mean Average Precision-RBNU,Mean Average Precision-DEJU,Mean Average Precision-OSFL,Mean Average Precision-HETH,Mean Average Precision-CBCH,Mean Average Precision-VATH,Mean Average Precision-HEWA,Mean Average Precision-SWTH,Mean Average Precision-HAFL,Mean Average Precision-WETA,Mean Average Precision-BHGB,Mean Average Precision-GCKI,Mean Average Precision-WAVI,Mean Average Precision-MGWA,Mean Average Precision-STJA,Mean Average Precision-CONI,Geometric Mean Average Precision,Geometric Mean Average Precision-BRCR,Geometric Mean Average Precision-PAWR,Geometric Mean Average Precision-PSFL,Geometric Mean Average Precision-RBNU,Geometric Mean Average Precision-DEJU,Geometric Mean Average Precision-OSFL,Geometric Mean Average Precision-HETH,Geometric Mean Average Precision-CBCH,Geometric Mean Average Precision-VATH,Geometric Mean Average Precision-HEWA,Geometric Mean Average Precision-SWTH,Geometric Mean Average Precision-HAFL,Geometric Mean Average Precision-WETA,Geometric Mean Average Precision-BHGB,Geometric Mean Average Precision-GCKI,Geometric Mean Average Precision-WAVI,Geometric Mean Average Precision-MGWA,Geometric Mean Average Precision-STJA,Geometric Mean Average Precision-CONI,Mean Average Interpolated Precision,Mean Average Interpolated Precision-BRCR,Mean Average Interpolated Precision-PAWR,Mean Average Interpolated Precision-PSFL,Mean Average Interpolated Precision-RBNU,Mean Average Interpolated Precision-DEJU,Mean Average Interpolated Precision-OSFL,Mean Average Interpolated Precision-HETH,Mean Average Interpolated Precision-CBCH,Mean Average Interpolated Precision-VATH,Mean Average Interpolated Precision-HEWA,Mean Average Interpolated Precision-SWTH,Mean Average Interpolated Precision-HAFL,Mean Average Interpolated Precision-WETA,Mean Average Interpolated Precision-BHGB,Mean Average Interpolated Precision-GCKI,Mean Average Interpolated Precision-WAVI,Mean Average Interpolated Precision-MGWA,Mean Average Interpolated Precision-STJA,Mean Average Interpolated Precision-CONI,Geometric Mean Average Interpolated Precision,Geometric Mean Average Interpolated Precision-BRCR,Geometric Mean Average Interpolated Precision-PAWR,Geometric Mean Average Interpolated Precision-PSFL,Geometric Mean Average Interpolated Precision-RBNU,Geometric Mean Average Interpolated Precision-DEJU,Geometric Mean Average Interpolated Precision-OSFL,Geometric Mean Average Interpolated Precision-HETH,Geometric Mean Average Interpolated Precision-CBCH,Geometric Mean Average Interpolated Precision-VATH,Geometric Mean Average Interpolated Precision-HEWA,Geometric Mean Average Interpolated Precision-SWTH,Geometric Mean Average Interpolated Precision-HAFL,Geometric Mean Average Interpolated Precision-WETA,Geometric Mean Average Interpolated Precision-BHGB,Geometric Mean Average Interpolated Precision-GCKI,Geometric Mean Average Interpolated Precision-WAVI,Geometric Mean Average Interpolated Precision-MGWA,Geometric Mean Average Interpolated Precision-STJA,Geometric Mean Average Interpolated Precision-CONI,Micro-averaged AUC,Macro-averaged AUC,Macro-averaged AUC-BRCR,Macro-averaged AUC-PAWR,Macro-averaged AUC-PSFL,Macro-averaged AUC-RBNU,Macro-averaged AUC-DEJU,Macro-averaged AUC-OSFL,Macro-averaged AUC-HETH,Macro-averaged AUC-CBCH,Macro-averaged AUC-VATH,Macro-averaged AUC-HEWA,Macro-averaged AUC-SWTH,Macro-averaged AUC-HAFL,Macro-averaged AUC-WETA,Macro-averaged AUC-BHGB,Macro-averaged AUC-GCKI,Macro-averaged AUC-WAVI,Macro-averaged AUC-MGWA,Macro-averaged AUC-STJA,Macro-averaged AUC-CONI,Logarithmic Loss -MIMLWel,miml_birds.arff,MIMLWel.config,43281,1121,0.22187822497420015,0.0392156862745098,0.28959129106187925,0.33300653594771246,0.24217242452536572,0.17679591650179888,0.8295783672946301,0.18478260869565216,0.3434343434343434,0.24028268551236748,0.8275862068965517,0.15649816614528164,0.0,0.2608695652173913,0.08333333333333333,1.0,0.0,0.0,0.2,0.0,0.15789473684210525,0.07692307692307693,0.3888888888888889,0.0,0.08333333333333333,0.16666666666666666,0.2222222222222222,0.0,0.0,0.0,0.3333333333333333,0.26993095483807555,0.0,0.375,0.25,1.0,0.0,0.0,0.4,0.0,0.3,0.1111111111111111,0.8235294117647058,0.0,0.3333333333333333,0.5,0.2857142857142857,0.0,0.0,0.0,0.75,0.19054412098191847,0.0,0.3076923076923077,0.125,1.0,0.0,0.0,0.26666666666666666,0.0,0.20689655172413793,0.09090909090909091,0.5283018867924528,0.0,0.13333333333333333,0.25,0.25,0.0,0.0,0.0,0.46153846153846156,0.8117421273321687,0.9583333333333334,0.5142857142857142,0.7659574468085106,1.0,0.8979591836734694,0.9803921568627451,0.8260869565217391,0.7727272727272727,0.6097560975609756,0.7142857142857143,0.35294117647058826,0.875,0.7708333333333334,0.8979591836734694,0.8409090909090909,0.9166666666666666,0.94,0.9166666666666666,0.8723404255319149,0.3254254138101949,10.92156862745098,0.7254901960784313,0.9215686274509803,14.254901960784315,0.47345595100785404,0.19343732972397873,0.04734778121775026,0.3288739866756624,0.10327157178660937,NaN,0.13942307692307693,NaN,0.20016055202568833,0.17395513389302208,0.3007350574404624,0.25322272817379754,0.3481815465957758,0.09872408293460926,0.13556231003039512,0.18382352941176472,0.17654628916768436,0.06476985546752989,0.037037037037037035,0.0713568041154248,0.6254432624113475,NaN,0.04734778121775026,0.3288739866756624,0.10327157178660937,NaN,0.13942307692307693,NaN,0.20016055202568833,0.17395513389302208,0.3007350574404624,0.25322272817379754,0.3481815465957758,0.09872408293460926,0.13556231003039512,0.18382352941176472,0.17654628916768436,0.06476985546752989,0.037037037037037035,0.0713568041154248,0.6254432624113475,0.21193811515891173,0.06000000000000001,0.372,0.10506623702112423,NaN,0.15384615384615383,NaN,0.2073034091685455,0.21142857142857138,0.3162687563781134,0.3459511523907808,0.40721544715447155,0.10095693779904306,0.1420060790273556,0.18382352941176472,0.18996960486322192,0.07262969588550985,0.037037037037037035,0.07191343139619003,0.6255319148936169,NaN,0.06000000000000001,0.372,0.10506623702112423,NaN,0.15384615384615383,NaN,0.2073034091685455,0.21142857142857138,0.3162687563781134,0.3459511523907808,0.40721544715447155,0.10095693779904306,0.1420060790273556,0.18382352941176472,0.18996960486322192,0.07262969588550985,0.037037037037037035,0.07191343139619003,0.6255319148936169,0.5855102751654476,NaN,0.4791666666666667,0.4446428571428571,0.5079787234042553,NaN,0.4489795918367347,NaN,0.6130434782608696,0.38636363636363635,0.4548780487804878,0.4126984126984127,0.5882352941176471,0.4375,0.5520833333333334,0.6989795918367347,0.5633116883116883,0.4583333333333333,0.47,0.4583333333333333,0.8111702127659575,77.65581111247147 diff --git a/mavenProject/results/MIMLClassifier/MIMLkNN.csv b/mavenProject/results/MIMLClassifier/MIMLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_CitationKNN.csv b/mavenProject/results/toMI/BR_CitationKNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MDD.csv b/mavenProject/results/toMI/BR_MDD.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MIBoost.csv b/mavenProject/results/toMI/BR_MIBoost.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MIDD.csv b/mavenProject/results/toMI/BR_MIDD.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MILR.csv b/mavenProject/results/toMI/BR_MILR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MINND.csv b/mavenProject/results/toMI/BR_MINND.csv new file mode 100644 index 0000000..23e9aa3 --- /dev/null +++ b/mavenProject/results/toMI/BR_MINND.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToMI,weka.classifiers.mi.MINND,miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance,miml_birds_random_80train.arff,MIMLtoMI_BR_MINND.config,4466400,464,0.31376518218623484,0.0,0.15844470719429857,0.17823509926340408 diff --git a/mavenProject/results/toMI/BR_MIOptimalBall.csv b/mavenProject/results/toMI/BR_MIOptimalBall.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MIRI.csv b/mavenProject/results/toMI/BR_MIRI.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MISMO.csv b/mavenProject/results/toMI/BR_MISMO.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MISVM.csv b/mavenProject/results/toMI/BR_MISVM.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MITI.csv b/mavenProject/results/toMI/BR_MITI.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_MIWrapper.csv b/mavenProject/results/toMI/BR_MIWrapper.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_SimpleMI.csv b/mavenProject/results/toMI/BR_SimpleMI.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/BR_TLC.csv b/mavenProject/results/toMI/BR_TLC.csv new file mode 100644 index 0000000..eac3f04 --- /dev/null +++ b/mavenProject/results/toMI/BR_TLC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToMI,weka.classifiers.mi.TLC,miml.classifiers.miml.mimlTOmi.MIMLBinaryRelevance,miml_birds_random_80train.arff,MIMLtoMI_BR_TLC.config,3065,348,0.104251012145749,0.057692307692307696,0.40337060600218494,0.3547395547108987 diff --git a/mavenProject/results/toMI/LP_CitationKNN.csv b/mavenProject/results/toMI/LP_CitationKNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/LP_MINND.csv b/mavenProject/results/toMI/LP_MINND.csv new file mode 100644 index 0000000..f9c2add --- /dev/null +++ b/mavenProject/results/toMI/LP_MINND.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToMI,weka.classifiers.mi.MINND,miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset,miml_birds_random_80train.arff,MIMLtoMI_LP_MINND.config,12766422,193,0.11842105263157898,0.21153846153846154,0.168922305764411,0.1742591773551526 diff --git a/mavenProject/results/toMI/LP_MISMO.csv b/mavenProject/results/toMI/LP_MISMO.csv new file mode 100644 index 0000000..15ccdb2 --- /dev/null +++ b/mavenProject/results/toMI/LP_MISMO.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToMI,miml.classifiers.mi.MISMOWrapper,miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset,miml_birds_random_80train.arff,MIMLtoMI_LP_MISMO.config,5572,3092,0.12449392712550608,0.09615384615384616,0.3878136483399642,0.35751368010896145 diff --git a/mavenProject/results/toMI/LP_MIWrapper.csv b/mavenProject/results/toMI/LP_MIWrapper.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/LP_SimpleMI.csv b/mavenProject/results/toMI/LP_SimpleMI.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toMI/LP_TLC.csv b/mavenProject/results/toMI/LP_TLC.csv new file mode 100644 index 0000000..f0d66e8 --- /dev/null +++ b/mavenProject/results/toMI/LP_TLC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToMI,weka.classifiers.mi.TLC,miml.classifiers.miml.mimlTOmi.MIMLLabelPowerset,miml_birds_random_80train.arff,MIMLtoMI_LP_TLC.config,9302,212,0.1123481781376518,0.17307692307692307,0.46792067581541263,0.39139404488450724 diff --git a/mavenProject/results/toML/AT_BR.csv b/mavenProject/results/toML/AT_BR.csv old mode 100755 new mode 100644 index fde2283..2e0a69e --- a/mavenProject/results/toML/AT_BR.csv +++ b/mavenProject/results/toML/AT_BR.csv @@ -1,2 +1,2 @@ Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure -MIMLClassifierToML,mulan.classifier.transformation.BinaryRelevance,miml.transformation.mimlTOml.ArithmeticTransformation,miml_birds_random_80train.arff,MIMLtoML_AT_BR.config,135,328,0.09716599190283402,0.19230769230769232,0.49536340852130323,0.3976698318312116 +MIMLClassifierToML,mulan.classifier.transformation.BinaryRelevance,miml.transformation.mimlTOml.ArithmeticTransformation,miml_birds_random_80train.arff,MIMLtoML_AT_BR.config,113,172,0.09716599190283402,0.19230769230769232,0.49536340852130323,0.3976698318312116 diff --git a/mavenProject/results/toML/AT_BRkNN.csv b/mavenProject/results/toML/AT_BRkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_CC.csv b/mavenProject/results/toML/AT_CC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_CLR.csv b/mavenProject/results/toML/AT_CLR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_DMLkNN.csv b/mavenProject/results/toML/AT_DMLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_ECC.csv b/mavenProject/results/toML/AT_ECC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_EPS.csv b/mavenProject/results/toML/AT_EPS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_HOMER.csv b/mavenProject/results/toML/AT_HOMER.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_IBLR_ML.csv b/mavenProject/results/toML/AT_IBLR_ML.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_LP.csv b/mavenProject/results/toML/AT_LP.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_MLDGC.csv b/mavenProject/results/toML/AT_MLDGC.csv new file mode 100644 index 0000000..2f99809 --- /dev/null +++ b/mavenProject/results/toML/AT_MLDGC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.MLDGC,miml.transformation.mimlTOml.ArithmeticTransformation,miml_birds.arff,MIMLtoML_AT_MLDGC.config,27.6,36.6,0.09172818925140905,0.19441930618401204,0.47138539479096764,0.3316617425467456 diff --git a/mavenProject/results/toML/AT_MLStacking.csv b/mavenProject/results/toML/AT_MLStacking.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_MLkNN.csv b/mavenProject/results/toML/AT_MLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_PS.csv b/mavenProject/results/toML/AT_PS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_RAkEL.csv b/mavenProject/results/toML/AT_RAkEL.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/AT_RFPCT.csv b/mavenProject/results/toML/AT_RFPCT.csv new file mode 100644 index 0000000..00fbff1 --- /dev/null +++ b/mavenProject/results/toML/AT_RFPCT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.RFPCT,miml.transformation.mimlTOml.ArithmeticTransformation,miml_birds_random_80train.arff,MIMLtoML_AT_RFPCT.config,61,437,0.4483805668016193,0.0,0.1436242581539153,0.2320120502481132 diff --git a/mavenProject/results/toML/AT_RPC.csv b/mavenProject/results/toML/AT_RPC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_BR.csv b/mavenProject/results/toML/GT_BR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_BRkNN.csv b/mavenProject/results/toML/GT_BRkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_CC.csv b/mavenProject/results/toML/GT_CC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_CLR.csv b/mavenProject/results/toML/GT_CLR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_DMLkNN.csv b/mavenProject/results/toML/GT_DMLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_ECC.csv b/mavenProject/results/toML/GT_ECC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_EPS.csv b/mavenProject/results/toML/GT_EPS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_HOMER.csv b/mavenProject/results/toML/GT_HOMER.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_IBLR_ML.csv b/mavenProject/results/toML/GT_IBLR_ML.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_LP.csv b/mavenProject/results/toML/GT_LP.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_MLDGC.csv b/mavenProject/results/toML/GT_MLDGC.csv new file mode 100644 index 0000000..0c7a7bc --- /dev/null +++ b/mavenProject/results/toML/GT_MLDGC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.MLDGC,miml.transformation.mimlTOml.GeometricTransformation,miml_birds.arff,MIMLtoML_GT_MLDGC.config,24.6,35.2,0.09584821782964198,0.15158371040723984,0.38259519412566506,0.26852629972818987 diff --git a/mavenProject/results/toML/GT_MLStacking.csv b/mavenProject/results/toML/GT_MLStacking.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_MLkNN.csv b/mavenProject/results/toML/GT_MLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_PS.csv b/mavenProject/results/toML/GT_PS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_RAkEL.csv b/mavenProject/results/toML/GT_RAkEL.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/GT_RFPCT.csv b/mavenProject/results/toML/GT_RFPCT.csv new file mode 100644 index 0000000..abe18f2 --- /dev/null +++ b/mavenProject/results/toML/GT_RFPCT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.RFPCT,miml.transformation.mimlTOml.GeometricTransformation,miml_birds_random_80train.arff,MIMLtoML_GT_RFPCT.config,44,426,0.46457489878542496,0.0,0.13199564195394875,0.21290510622154138 diff --git a/mavenProject/results/toML/GT_RPC.csv b/mavenProject/results/toML/GT_RPC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/KMT_BR.csv b/mavenProject/results/toML/KMT_BR.csv new file mode 100644 index 0000000..0850d40 --- /dev/null +++ b/mavenProject/results/toML/KMT_BR.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.BinaryRelevance,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_BR.config,723,371,0.13562753036437242,0.057692307692307696,0.1539074960127592,0.12719298245614036 diff --git a/mavenProject/results/toML/KMT_BRkNN.csv b/mavenProject/results/toML/KMT_BRkNN.csv new file mode 100644 index 0000000..ba8e2ad --- /dev/null +++ b/mavenProject/results/toML/KMT_BRkNN.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI +MIMLClassifierToML,mulan.classifier.lazy.BRkNN,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_BRkNN.config,427,186,0.14736842105263145,0.03333333333333333,0.21593176345498324,0.5,0.29411764705882354,0.2,1.0,0.0,0.0,0.5,0.0,0.5555555555555556,0.25,0.45454545454545453,0.0,0.18181818181818182,0.0,0.16666666666666666,0.0,0.0,0.0,0.0,0.21532767737181654,0.4444444444444444,0.3389830508474576,0.23076923076923078,1.0,0.0,0.0,0.34782608695652173,0.0,0.5555555555555556,0.3225806451612903,0.5405405405405406,0.0,0.21052631578947367,0.0,0.1,0.0,0.0,0.0,0.0 diff --git a/mavenProject/results/toML/KMT_CC.csv b/mavenProject/results/toML/KMT_CC.csv new file mode 100644 index 0000000..fbe617d --- /dev/null +++ b/mavenProject/results/toML/KMT_CC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.ClassifierChain,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_CC.config,453.2,39.8,0.10962927681193937,0.0,0.08421052631578947,0.08421052631578947 diff --git a/mavenProject/results/toML/KMT_CLR.csv b/mavenProject/results/toML/KMT_CLR.csv new file mode 100644 index 0000000..4c35469 --- /dev/null +++ b/mavenProject/results/toML/KMT_CLR.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.CalibratedLabelRanking,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_CLR.config,677.6,466.2,0.1663491307454156,0.03868778280542986,0.19737396848077962,0.1940277338401903 diff --git a/mavenProject/results/toML/KMT_DMLkNN.csv b/mavenProject/results/toML/KMT_DMLkNN.csv new file mode 100644 index 0000000..8db51b9 --- /dev/null +++ b/mavenProject/results/toML/KMT_DMLkNN.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.DMLkNN,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_DMLkNN.config,821,189,0.1103238866396761,0.0,0.11578947368421054,0.11228070175438597 diff --git a/mavenProject/results/toML/KMT_ECC.csv b/mavenProject/results/toML/KMT_ECC.csv new file mode 100644 index 0000000..8325949 --- /dev/null +++ b/mavenProject/results/toML/KMT_ECC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.EnsembleOfClassifierChains,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_ECC.config,613,787,0.15519568151147098,0.07692307692307693,0.2630106965979542,0.25757634861356987 diff --git a/mavenProject/results/toML/KMT_EPS.csv b/mavenProject/results/toML/KMT_EPS.csv new file mode 100644 index 0000000..1b86722 --- /dev/null +++ b/mavenProject/results/toML/KMT_EPS.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.EnsembleOfPrunedSets,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_EPS.config,510,128,0.12393887945670633,0.04838709677419355,0.10683760683760683,0.10864881502000616 diff --git a/mavenProject/results/toML/KMT_HOMER.csv b/mavenProject/results/toML/KMT_HOMER.csv new file mode 100644 index 0000000..7fcc193 --- /dev/null +++ b/mavenProject/results/toML/KMT_HOMER.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.meta.HOMER,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_HOMER.config,879,126,0.12753036437246965,0.1346153846153846,0.15704174228675138,0.16576025042844264 diff --git a/mavenProject/results/toML/KMT_IBLR_ML.csv b/mavenProject/results/toML/KMT_IBLR_ML.csv new file mode 100644 index 0000000..f6cb09a --- /dev/null +++ b/mavenProject/results/toML/KMT_IBLR_ML.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.IBLR_ML,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_IBLR_ML.config,1824.6,68.0,0.215475906961975,0.0193815987933635,0.1395613044461016,0.1437424605978947 diff --git a/mavenProject/results/toML/KMT_KMT.csv b/mavenProject/results/toML/KMT_KMT.csv new file mode 100644 index 0000000..e0c5c40 --- /dev/null +++ b/mavenProject/results/toML/KMT_KMT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms +MIMLClassifierToML,mulan.classifier.transformation.Pairwise,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_RPC.config,778,4488 diff --git a/mavenProject/results/toML/KMT_LP.csv b/mavenProject/results/toML/KMT_LP.csv new file mode 100644 index 0000000..650d9ef --- /dev/null +++ b/mavenProject/results/toML/KMT_LP.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.LabelPowerset,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_LP.config,473,158,0.12478777589134125,0.0967741935483871,0.1731748726655348,0.18157894736842106 diff --git a/mavenProject/results/toML/KMT_MLDGC.csv b/mavenProject/results/toML/KMT_MLDGC.csv new file mode 100644 index 0000000..7a706a4 --- /dev/null +++ b/mavenProject/results/toML/KMT_MLDGC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.MLDGC,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_MLDGC.config,488,106,0.13645224171539963,0.0,0.13026315789473686,0.12666500166500166 diff --git a/mavenProject/results/toML/KMT_MLStacking.csv b/mavenProject/results/toML/KMT_MLStacking.csv new file mode 100644 index 0000000..fce571b --- /dev/null +++ b/mavenProject/results/toML/KMT_MLStacking.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.MultiLabelStacking,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_MLStacking.config,19875.0,45.0,0.7028221005001191,0.0,0.13077280304834485,0.16994907763468248 diff --git a/mavenProject/results/toML/KMT_MLkNN.csv b/mavenProject/results/toML/KMT_MLkNN.csv new file mode 100644 index 0000000..5cd35a8 --- /dev/null +++ b/mavenProject/results/toML/KMT_MLkNN.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.MLkNN,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_MLkNN.config,615,156,0.10020242914979757,0.019230769230769232,0.18947368421052632,0.1325077399380805 diff --git a/mavenProject/results/toML/KMT_PS.csv b/mavenProject/results/toML/KMT_PS.csv new file mode 100644 index 0000000..fdacabe --- /dev/null +++ b/mavenProject/results/toML/KMT_PS.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.PrunedSets,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_PS.config,779,171,0.1153846153846154,0.1346153846153846,0.20620782726045883,0.19842617295927992 diff --git a/mavenProject/results/toML/KMT_RAkEL.csv b/mavenProject/results/toML/KMT_RAkEL.csv new file mode 100644 index 0000000..4a3b247 --- /dev/null +++ b/mavenProject/results/toML/KMT_RAkEL.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.meta.RAkEL,miml.transformation.mimlTOml.KMeansTransformation,miml_birds_random_80train.arff,MIMLtoML_KMT_RAkEL.config,628,121,0.11447368421052632,0.0,0.05263157894736842,0.05263157894736842 diff --git a/mavenProject/results/toML/KMT_RFPCT.csv b/mavenProject/results/toML/KMT_RFPCT.csv new file mode 100644 index 0000000..9b0d6d1 --- /dev/null +++ b/mavenProject/results/toML/KMT_RFPCT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.RFPCT,miml.transformation.mimlTOml.KMeansTransformation,miml_birds.arff,MIMLtoML_KMT_RFPCT.config,463,311,0.10931174089068824,0.15789473684210525 diff --git a/mavenProject/results/toML/MDT_BR.csv b/mavenProject/results/toML/MDT_BR.csv new file mode 100644 index 0000000..fdfc4f5 --- /dev/null +++ b/mavenProject/results/toML/MDT_BR.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.BinaryRelevance,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_BR.config,4984,234,0.1174089068825911,0.11538461538461539,0.23906882591093118,0.2276984454343801 diff --git a/mavenProject/results/toML/MDT_BRkNN.csv b/mavenProject/results/toML/MDT_BRkNN.csv new file mode 100644 index 0000000..3bf4866 --- /dev/null +++ b/mavenProject/results/toML/MDT_BRkNN.csv @@ -0,0 +1,4 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI +MIMLClassifierToML,mulan.classifier.lazy.BRkNN,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_BRkNN.config,4041,254,0.1456140350877191,0.022222222222222223,0.2855387130928927,0.0,0.6818181818181818,0.16666666666666666,1.0,0.0,0.5,0.375,0.25,0.35294117647058826,0.2,0.375,0.0,0.14285714285714285,0.0,0.16666666666666666,0.21428571428571427,0.0,0.0,1.0,0.22278074707698278,0.0,0.6382978723404256,0.11764705882352941,1.0,0.0,0.25,0.2608695652173913,0.13333333333333333,0.34285714285714286,0.19047619047619047,0.5106382978723404,0.0,0.20689655172413793,0.0,0.1,0.3,0.0,0.0,0.18181818181818182 +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged Precision-BRCR,Macro-averaged Precision-PAWR,Macro-averaged Precision-PSFL,Macro-averaged Precision-RBNU,Macro-averaged Precision-DEJU,Macro-averaged Precision-OSFL,Macro-averaged Precision-HETH,Macro-averaged Precision-CBCH,Macro-averaged Precision-VATH,Macro-averaged Precision-HEWA,Macro-averaged Precision-SWTH,Macro-averaged Precision-HAFL,Macro-averaged Precision-WETA,Macro-averaged Precision-BHGB,Macro-averaged Precision-GCKI,Macro-averaged Precision-WAVI,Macro-averaged Precision-MGWA,Macro-averaged Precision-STJA,Macro-averaged Precision-CONI,Macro-averaged F-Measure,Macro-averaged F-Measure-BRCR,Macro-averaged F-Measure-PAWR,Macro-averaged F-Measure-PSFL,Macro-averaged F-Measure-RBNU,Macro-averaged F-Measure-DEJU,Macro-averaged F-Measure-OSFL,Macro-averaged F-Measure-HETH,Macro-averaged F-Measure-CBCH,Macro-averaged F-Measure-VATH,Macro-averaged F-Measure-HEWA,Macro-averaged F-Measure-SWTH,Macro-averaged F-Measure-HAFL,Macro-averaged F-Measure-WETA,Macro-averaged F-Measure-BHGB,Macro-averaged F-Measure-GCKI,Macro-averaged F-Measure-WAVI,Macro-averaged F-Measure-MGWA,Macro-averaged F-Measure-STJA,Macro-averaged F-Measure-CONI +MIMLClassifierToML,mulan.classifier.lazy.BRkNN,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_BRkNN.config,3978,226,0.1456140350877191,0.022222222222222223,0.2855387130928927,0.0,0.6818181818181818,0.16666666666666666,1.0,0.0,0.5,0.375,0.25,0.35294117647058826,0.2,0.375,0.0,0.14285714285714285,0.0,0.16666666666666666,0.21428571428571427,0.0,0.0,1.0,0.22278074707698278,0.0,0.6382978723404256,0.11764705882352941,1.0,0.0,0.25,0.2608695652173913,0.13333333333333333,0.34285714285714286,0.19047619047619047,0.5106382978723404,0.0,0.20689655172413793,0.0,0.1,0.3,0.0,0.0,0.18181818181818182 diff --git a/mavenProject/results/toML/MDT_CC.csv b/mavenProject/results/toML/MDT_CC.csv new file mode 100644 index 0000000..991c83a --- /dev/null +++ b/mavenProject/results/toML/MDT_CC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.ClassifierChain,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_CC.config,4641.4,56.2,0.13055886322140195,0.054449472096530914,0.2996220265802309,0.2545577626551102 diff --git a/mavenProject/results/toML/MDT_CLR.csv b/mavenProject/results/toML/MDT_CLR.csv new file mode 100644 index 0000000..0d29057 --- /dev/null +++ b/mavenProject/results/toML/MDT_CLR.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.CalibratedLabelRanking,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_CLR.config,4990.4,179.6,0.14342700643010242,0.08936651583710406,0.2696643947727539,0.2529371409141868 diff --git a/mavenProject/results/toML/MDT_DMLkNN.csv b/mavenProject/results/toML/MDT_DMLkNN.csv new file mode 100644 index 0000000..1726cd8 --- /dev/null +++ b/mavenProject/results/toML/MDT_DMLkNN.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.DMLkNN,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_DMLkNN.config,5073,206,0.10425101214574903,0.019230769230769232,0.1780701754385965,0.164375585428217 diff --git a/mavenProject/results/toML/MDT_ECC.csv b/mavenProject/results/toML/MDT_ECC.csv new file mode 100644 index 0000000..a54628b --- /dev/null +++ b/mavenProject/results/toML/MDT_ECC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.EnsembleOfClassifierChains,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_ECC.config,4208,765,0.1572199730094466,0.0641025641025641,0.2811408255487202,0.21333436855612378 diff --git a/mavenProject/results/toML/MDT_EPS.csv b/mavenProject/results/toML/MDT_EPS.csv new file mode 100644 index 0000000..7d7a789 --- /dev/null +++ b/mavenProject/results/toML/MDT_EPS.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.EnsembleOfPrunedSets,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_EPS.config,4492,245,0.12563667232597622,0.14516129032258066,0.08771929824561404,0.09691567628749294 diff --git a/mavenProject/results/toML/MDT_HOMER.csv b/mavenProject/results/toML/MDT_HOMER.csv new file mode 100644 index 0000000..1591b5c --- /dev/null +++ b/mavenProject/results/toML/MDT_HOMER.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.meta.HOMER,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_HOMER.config,5204,154,0.1487854251012146,0.07692307692307693,0.16090510366826152,0.13620434460841932 diff --git a/mavenProject/results/toML/MDT_IBLR_ML.csv b/mavenProject/results/toML/MDT_IBLR_ML.csv new file mode 100644 index 0000000..105794b --- /dev/null +++ b/mavenProject/results/toML/MDT_IBLR_ML.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.IBLR_ML,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_IBLR_ML.config,5129.2,73.0,0.16841708343256329,0.0193815987933635,0.23330802324610372,0.21329317161196495 diff --git a/mavenProject/results/toML/MDT_LP.csv b/mavenProject/results/toML/MDT_LP.csv new file mode 100644 index 0000000..c4c95db --- /dev/null +++ b/mavenProject/results/toML/MDT_LP.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.LabelPowerset,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_LP.config,6548,206,0.1589068825910931,0.07692307692307693,0.16520959260897342,0.16292283567825364 diff --git a/mavenProject/results/toML/MDT_MLDGC.csv b/mavenProject/results/toML/MDT_MLDGC.csv new file mode 100644 index 0000000..cefd2ba --- /dev/null +++ b/mavenProject/results/toML/MDT_MLDGC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.MLDGC,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_MLDGC.config,8992,184,0.1120857699805068,0.1111111111111111,0.15283208020050124,0.1403531684114295 diff --git a/mavenProject/results/toML/MDT_MLStacking.csv b/mavenProject/results/toML/MDT_MLStacking.csv new file mode 100644 index 0000000..341f7d2 --- /dev/null +++ b/mavenProject/results/toML/MDT_MLStacking.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms(avg),Test_time_ms(avg),Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.MultiLabelStacking,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_MLStacking.config,57237.4,60.8,0.5352504564578868,0.0,0.1528362435637977,0.15284310864422282 diff --git a/mavenProject/results/toML/MDT_MLkNN.csv b/mavenProject/results/toML/MDT_MLkNN.csv new file mode 100644 index 0000000..499dbd7 --- /dev/null +++ b/mavenProject/results/toML/MDT_MLkNN.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.lazy.MLkNN,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_MLkNN.config,10676,221,0.09716599190283404,0.07692307692307693,0.25083542188805347,0.19730940623870888 diff --git a/mavenProject/results/toML/MDT_PS.csv b/mavenProject/results/toML/MDT_PS.csv new file mode 100644 index 0000000..c845955 --- /dev/null +++ b/mavenProject/results/toML/MDT_PS.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.transformation.PrunedSets,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_PS.config,4995,216,0.11133603238866399,0.15384615384615385,0.23668874984664456,0.22293487341542265 diff --git a/mavenProject/results/toML/MDT_RAkEL.csv b/mavenProject/results/toML/MDT_RAkEL.csv new file mode 100644 index 0000000..a68fe95 --- /dev/null +++ b/mavenProject/results/toML/MDT_RAkEL.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,mulan.classifier.meta.RAkEL,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_RAkEL.config,2571,144,0.1355263157894737,0.025,0.25087719298245614,0.2055881479070988 diff --git a/mavenProject/results/toML/MDT_RFPCT.csv b/mavenProject/results/toML/MDT_RFPCT.csv new file mode 100644 index 0000000..309c14a --- /dev/null +++ b/mavenProject/results/toML/MDT_RFPCT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.RFPCT,miml.transformation.mimlTOml.MedoidTransformation,miml_birds.arff,MIMLtoML_MDT_RFPCT.config,4299,449,0.39961013645224175,0.0,0.1574339040807632,0.22044559249856022 diff --git a/mavenProject/results/toML/MDT_RPC.csv b/mavenProject/results/toML/MDT_RPC.csv new file mode 100644 index 0000000..9aac0ad --- /dev/null +++ b/mavenProject/results/toML/MDT_RPC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms +MIMLClassifierToML,mulan.classifier.transformation.Pairwise,miml.transformation.mimlTOml.MedoidTransformation,miml_birds_random_80train.arff,MIMLtoML_MDT_RPC.config,5180,2289 diff --git a/mavenProject/results/toML/MMT_BR.csv b/mavenProject/results/toML/MMT_BR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_BRkNN.csv b/mavenProject/results/toML/MMT_BRkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_CC.csv b/mavenProject/results/toML/MMT_CC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_CLR.csv b/mavenProject/results/toML/MMT_CLR.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_DMLkNN.csv b/mavenProject/results/toML/MMT_DMLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_ECC.csv b/mavenProject/results/toML/MMT_ECC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_EPS.csv b/mavenProject/results/toML/MMT_EPS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_HOMER.csv b/mavenProject/results/toML/MMT_HOMER.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_IBLR_ML.csv b/mavenProject/results/toML/MMT_IBLR_ML.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_LP.csv b/mavenProject/results/toML/MMT_LP.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_MLDGC.csv b/mavenProject/results/toML/MMT_MLDGC.csv new file mode 100644 index 0000000..03f1b29 --- /dev/null +++ b/mavenProject/results/toML/MMT_MLDGC.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.MLDGC,miml.transformation.mimlTOml.MinMaxTransformation,miml_birds.arff,MIMLtoML_MMT_MLDGC.config,81,105,0.09064327485380116,0.2222222222222222,0.35981620718462826,0.27053531264057584 diff --git a/mavenProject/results/toML/MMT_MLStacking.csv b/mavenProject/results/toML/MMT_MLStacking.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_MLkNN.csv b/mavenProject/results/toML/MMT_MLkNN.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_PS.csv b/mavenProject/results/toML/MMT_PS.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_RAkEL.csv b/mavenProject/results/toML/MMT_RAkEL.csv old mode 100755 new mode 100644 diff --git a/mavenProject/results/toML/MMT_RFPCT.csv b/mavenProject/results/toML/MMT_RFPCT.csv new file mode 100644 index 0000000..56ba352 --- /dev/null +++ b/mavenProject/results/toML/MMT_RFPCT.csv @@ -0,0 +1,2 @@ +Algorithm,Classifier,Transform method,Dataset,ConfigurationFile,Train_time_ms,Test_time_ms,Hamming Loss,Subset Accuracy,Macro-averaged Precision,Macro-averaged F-Measure +MIMLClassifierToML,miml.classifiers.ml.RFPCT,miml.transformation.mimlTOml.MinMaxTransformation,miml_birds_random_80train.arff,MIMLtoML_MMT_RFPCT.config,49,451,0.458502024291498,0.0,0.14670769048567636,0.23483095763496387 diff --git a/mavenProject/results/toML/MMT_RPC.csv b/mavenProject/results/toML/MMT_RPC.csv old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/mi/MISMOWrapper.java b/mavenProject/src/main/java/miml/classifiers/mi/MISMOWrapper.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/IMIMLClassifier.java b/mavenProject/src/main/java/miml/classifiers/miml/IMIMLClassifier.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/MIMLClassifier.java b/mavenProject/src/main/java/miml/classifiers/miml/MIMLClassifier.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/MWClassifier.java b/mavenProject/src/main/java/miml/classifiers/miml/MWClassifier.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/DMIMLkNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/DMIMLkNN.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLBRkNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLBRkNN.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDGC.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDGC.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDistanceFunction.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDistanceFunction.java old mode 100755 new mode 100644 index 9a8a6a6..1b524f7 --- a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDistanceFunction.java +++ b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLDistanceFunction.java @@ -143,7 +143,13 @@ public double distance(Instance arg0, Instance arg1, double arg2) { */ @Override public void setInstances(Instances insts) { - super.setInstances(insts); + // metric.setInstances(insts); + try { + metric.setInstances(insts); + } catch (Exception e) { + // TODO Auto-generated catch block + e.printStackTrace(); + } } /* @@ -155,6 +161,7 @@ public void setInstances(Instances insts) { public Instances getInstances() { return super.getInstances(); + } /* @@ -217,7 +224,13 @@ public void postProcessDistances(double[] distances) { */ @Override public void update(Instance ins) { - super.update(ins); + // super.update(ins); + try { + metric.update(ins); + } catch (Exception e) { + // TODO Auto-generated catch block + e.printStackTrace(); + } } /* diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLFuzzykNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLFuzzykNN.java old mode 100755 new mode 100644 index 1056b96..5c79a59 --- a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLFuzzykNN.java +++ b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLFuzzykNN.java @@ -23,31 +23,31 @@ public class MIMLFuzzykNN extends MultiInstanceMultiLabelKNN { /** For serialization. */ private static final long serialVersionUID = 1L; - - /** Instances.*/ + + /** Instances. */ protected MIMLInstances dataset; - - /** Neighborhood size.*/ + + /** Neighborhood size. */ protected int k; - + /** Partition matrix of num_labels x num_bags */ protected double U[][]; - - /** Neighborhood size for initialization of U matrix.*/ + + /** Neighborhood size for initialization of U matrix. */ protected int kini; - - /** Fuzzy exponent.*/ + + /** Fuzzy exponent. */ protected double m; - - /** Type of initialization: Crisp, fuzzy*/ + + /** Type of initialization: Crisp, fuzzy */ protected int ini; - - /** To perform neighborhood search.*/ + + /** To perform neighborhood search. */ protected LinearNNESearch elnn; - - /** Tolerance to compare float values.*/ + + /** Tolerance to compare float values. */ protected double e = 0.0000001; - + class LinearNNESearch extends LinearNNSearch { /** For serialization */ diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLIBLR.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLIBLR.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLMAPkNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLMAPkNN.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLkNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MIMLkNN.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.java b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.java old mode 100755 new mode 100644 index fbca45e..ba4b6a5 --- a/mavenProject/src/main/java/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.java +++ b/mavenProject/src/main/java/miml/classifiers/miml/lazy/MultiInstanceMultiLabelKNN.java @@ -81,7 +81,7 @@ public void configure(Configuration configuration) { this.numOfNeighbours = configuration.getInt("numOfNeighbours", 10); try { // Get the name of the metric class - String metricName = configuration.getString("metric[@name]"); + String metricName = configuration.getString("metric[@name]", "miml.core.distance.AverageHausdorff"); // Instance class Class metricClass = (Class) Class.forName(metricName); diff --git a/mavenProject/src/main/java/miml/classifiers/miml/meta/MIMLBagging.java b/mavenProject/src/main/java/miml/classifiers/miml/meta/MIMLBagging.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.java b/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLBinaryRelevance.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.java b/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLClassifierToMI.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.java b/mavenProject/src/main/java/miml/classifiers/miml/mimlTOmi/MIMLLabelPowerset.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.java b/mavenProject/src/main/java/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.java old mode 100755 new mode 100644 index 54c2c73..9040ff1 --- a/mavenProject/src/main/java/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.java +++ b/mavenProject/src/main/java/miml/classifiers/miml/mimlTOml/MIMLClassifierToML.java @@ -25,7 +25,9 @@ import miml.core.Utils; import miml.data.MIMLBag; import miml.data.MIMLInstances; +import miml.transformation.mimlTOml.KMeansTransformation; import miml.transformation.mimlTOml.MIMLtoML; +import miml.transformation.mimlTOml.MedoidTransformation; import mulan.classifier.MultiLabelLearner; import mulan.classifier.MultiLabelOutput; import mulan.data.MultiLabelInstances; @@ -50,6 +52,14 @@ */ public class MIMLClassifierToML extends MIMLClassifier { + public MultiLabelLearner getBaseClassifier() { + return baseClassifier; + } + + public MIMLtoML getTransformationMethod() { + return transformationMethod; + } + /** * Generated Serial version UID. */ @@ -70,8 +80,12 @@ public class MIMLClassifierToML extends MIMLClassifier { */ protected MIMLInstances mimlDataset; - Remove removeFilter; - MultiLabelInstances mlDataSetWithBagId; + /** The filter that removes the bagId attribute */ + protected Remove removeFilter; + + /** An empty dataset used as template for prediction */ + + protected MultiLabelInstances templateWithBagId; /** * Basic constructor to initialize the classifier. @@ -104,7 +118,11 @@ public void buildInternal(MIMLInstances mimlDataSet) throws Exception { this.mimlDataset = mimlDataSet; // Transforms a dataset - mlDataSetWithBagId = transformationMethod.transformDataset(mimlDataSet); + MultiLabelInstances mlDataSetWithBagId = transformationMethod.transformDataset(mimlDataSet); + + // Generates a template (empty dataset) for prediction step + templateWithBagId = new MultiLabelInstances(new Instances(mlDataSetWithBagId.getDataSet(), 0), + mlDataSetWithBagId.getLabelsMetaData()); // Deletes bagIdAttribute removeFilter = new Remove(); @@ -113,11 +131,17 @@ public void buildInternal(MIMLInstances mimlDataSet) throws Exception { removeFilter.setInputFormat(mlDataSetWithBagId.getDataSet()); Instances newData = Filter.useFilter(mlDataSetWithBagId.getDataSet(), removeFilter); + // Builds the classifier by using the transformed dataset without bagID + // attribute MultiLabelInstances withoutBagId = new MultiLabelInstances(newData, mimlDataSet.getLabelsMetaData()); baseClassifier.build(withoutBagId); } + public Remove getRemoveFilter() { + return removeFilter; + } + /* * (non-Javadoc) * @@ -129,7 +153,9 @@ protected MultiLabelOutput makePredictionInternal(MIMLBag bag) throws Exception Instance instance = transformationMethod.transformInstance(bag); // Delete bagIdAttribute - Instances newData = new Instances(this.mlDataSetWithBagId.getDataSet(), 0); + // Instances newData = new Instances(this.mlDataSetWithBagId.getDataSet(), 0); + + Instances newData = new Instances(templateWithBagId.getDataSet(), 0); newData.add(instance); newData = Filter.useFilter(newData, removeFilter); @@ -143,6 +169,7 @@ protected MultiLabelOutput makePredictionInternal(MIMLBag bag) throws Exception * core.IConfiguration#configure(org.apache.commons.configuration.Configuration) */ @Override + // @SuppressWarnings("unchecked") public void configure(Configuration configuration) { // Get the string with the base classifier class String classifierName = configuration.getString("multiLabelClassifier[@name]"); @@ -167,6 +194,7 @@ public void configure(Configuration configuration) { // Get the string with the base classifier class String transformerName = configuration.getString("transformationMethod[@name]"); + // Instance class Class transformerClass = null; try { @@ -177,6 +205,41 @@ public void configure(Configuration configuration) { } try { this.transformationMethod = Objects.requireNonNull(transformerClass).getConstructor().newInstance(); + + // Medoid transformation allows to normalize the resulting transformed dataset + if (transformerName.contains("MedoidTransformation")) { + boolean normalize = configuration.getBoolean("transformationMethod[@normalize]", false); + ((MedoidTransformation) this.transformationMethod).setNormalize(normalize); + + double percentage = configuration.getFloat("transformationMethod[@percentage]", (float) -1); + ((MedoidTransformation) this.transformationMethod).setPercentage(percentage); + + // If a percentage has been set the number of clusters is ignored + if (percentage == -1) { + int numberOfClusters = configuration.getInt("transformationMethod[@numberOfClusters]", -1); + ((MedoidTransformation) this.transformationMethod).setNumClusters(numberOfClusters); + } + + int seed = configuration.getInt("transformationMethod[@seed]", 1); + ((MedoidTransformation) this.transformationMethod).setSeed(seed); + + } + + if (transformerName.contains("KMeansTransformation")) { + double percentage = configuration.getFloat("transformationMethod[@percentage]", (float) -1); + ((KMeansTransformation) this.transformationMethod).setPercentage(percentage); + + // If a percentage has been set the number of clusters is ignored + if (percentage == -1) { + int numberOfClusters = configuration.getInt("transformationMethod[@numberOfClusters]", -1); + ((KMeansTransformation) this.transformationMethod).setNumClusters(numberOfClusters); + } + + int seed = configuration.getInt("transformationMethod[@seed]", 1); + ((KMeansTransformation) this.transformationMethod).setSeed(seed); + + } + } catch (Exception e) { e.printStackTrace(); System.exit(1); diff --git a/mavenProject/src/main/java/miml/classifiers/miml/neural/EnMIMLNNmetric.java b/mavenProject/src/main/java/miml/classifiers/miml/neural/EnMIMLNNmetric.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/neural/MIMLNN.java b/mavenProject/src/main/java/miml/classifiers/miml/neural/MIMLNN.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/neural/MIMLRBF.java b/mavenProject/src/main/java/miml/classifiers/miml/neural/MIMLRBF.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/optimization/KiSar.java b/mavenProject/src/main/java/miml/classifiers/miml/optimization/KiSar.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLFast.java b/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLFast.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLSVM.java b/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLSVM.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLWel.java b/mavenProject/src/main/java/miml/classifiers/miml/optimization/MIMLWel.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/classifiers/ml/MLDGC.java b/mavenProject/src/main/java/miml/classifiers/ml/MLDGC.java old mode 100755 new mode 100644 index 9919a06..9f97e82 --- a/mavenProject/src/main/java/miml/classifiers/ml/MLDGC.java +++ b/mavenProject/src/main/java/miml/classifiers/ml/MLDGC.java @@ -136,7 +136,8 @@ protected void buildInternal(MultiLabelInstances trainSet) throws Exception { } /** - * Computes the label distance between two instances. + * Computes the label distance between two instances. The distance considered is + * the Hamming loss. * * @param instance1 the first instance. * @param instance2 the second instance. @@ -144,19 +145,33 @@ protected void buildInternal(MultiLabelInstances trainSet) throws Exception { */ protected double labelDistance(Instance instance1, Instance instance2) { double symmetricDifference = 0; - int activeLabels = 0; for (int i = 0; i < this.labelIndices.length; i++) { if (instance1.value(labelIndices[i]) != instance2.value(labelIndices[i])) symmetricDifference++; - if ((Utils.eq(instance1.value(labelIndices[i]), 1.0)) || (Utils.eq(instance2.value(labelIndices[i]), 1.0))) - activeLabels++; } - return symmetricDifference / labelIndices.length; // HammingLoss - // return symmetricDifference / activeLabels; //Adjusted HammingLoss, considers - // averaging by active labels instead all labels } + /* + * Computes the label distance between two instances. Adjusted HammingLoss, + * considers averaging by active labels instead all labels + * + * @param instance1 the first instance. + * + * @param instance2 the second instance. + * + * @return the label distance between two instances. + */ + /* + * protected double labelDistance(Instance instance1, Instance instance2) { + * double symmetricDifference = 0; int activeLabels = 0; for (int i = 0; i < + * this.labelIndices.length; i++) { if (instance1.value(labelIndices[i]) != + * instance2.value(labelIndices[i])) symmetricDifference++; if + * ((Utils.eq(instance1.value(labelIndices[i]), 1.0)) || + * (Utils.eq(instance2.value(labelIndices[i]), 1.0))) activeLabels++; } return + * symmetricDifference / activeLabels; } + */ + /** * Given a neighborhood and an instance, computes neighborhood-weight and * neighborhood-density. @@ -200,7 +215,7 @@ protected void computeWeightDensity(Instances knn, Instance instance, int index) PdisF = PdisF / k; PdisY_disF = PdisY_disF / k; if ((PdisY == 0 || PdisY == 1)) - weight = 0; //PROBAR CON 1 + weight = 0; // PROBAR CON 1 else weight = ((PdisY_disF * PdisF) / PdisY) - (((1 - PdisY_disF) * PdisF) / (1 - PdisY)); diff --git a/mavenProject/src/main/java/miml/classifiers/ml/RFPCT.java b/mavenProject/src/main/java/miml/classifiers/ml/RFPCT.java new file mode 100644 index 0000000..a39d748 --- /dev/null +++ b/mavenProject/src/main/java/miml/classifiers/ml/RFPCT.java @@ -0,0 +1,162 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +package miml.classifiers.ml; + +import java.io.BufferedWriter; +import java.io.File; +import java.io.FileWriter; +import mulan.classifier.clus.ClusWrapperClassification; +import mulan.data.MultiLabelInstances; + +/** + * This class is a wrapper for RFPCT implemented in the clus library + * CLUS library. + * + * @author Eleftherios Spyromitros-Xioufis + * @version 2013.04.01 + * + */ + +public class RFPCT extends ClusWrapperClassification { + + /** For serialization. */ + private static final long serialVersionUID = 1L; + + /** + * The number of random trees in the ensemble. + */ + private int numTrees = 10; + + /** A seed for randomization. */ + private long seed = 1; + + /** + * No-argument constructor for xml configuration. + */ + public RFPCT() { + // ClusWrapperClassification expects the clusWorkingDir ends with a final + // File.separator. For this reason constructor adds a File.separator to the + // clusWorkingDir + super("clusFolder" + File.separator, "dataset"); + } + + /** + * Constructor. + * + * @param clusWorkingDir The directory where all temporary files needed or + * generated by CLUS library are written. + */ + + public RFPCT(String clusWorkingDir) { + // ClusWrapperClassification expects the clusWorkingDir ends with a final + // File.separator. For this reason constructor adds a File.separator to the + // clusWorkingDir + super(clusWorkingDir + File.separator, "dataset"); + this.isEnsemble = true; + this.numTrees = 10; + this.seed = 1; + } + + /** + * Constructor. + * + * @param clusWorkingDir The directory where all temporary files needed or + * generated by CLUS library are written. + * @param clusDatasetName The dataset name that will be used for training, test + * and settings files. + * @param numTrees the number of trees. + * @param seed The seed of random generator. + */ + public RFPCT(String clusWorkingDir, String clusDatasetName, int numTrees, long seed) { + this(clusWorkingDir); + this.datasetName = clusDatasetName; + this.numTrees = numTrees; + this.seed = seed; + } + + /** + * Returns the number of trees in the forest. + * + * @return int + */ + public int getNumTrees() { + return numTrees; + } + + /** + * Sets the number of trees in the forest. + * + * @param numTrees The number of trees. + */ + public void setNumTrees(int numTrees) { + this.numTrees = numTrees; + } + + /** Gets the seed used by the random generator. + * @return int*/ + public long getSeed() { + return seed; + } + + /** + * Sets the seed used by the random generator. + * + * @param seed The seed. + */ + public void setSeed(long seed) { + this.seed = seed; + } + + /** Gets the clus datasetName + * @return String*/ + public String getClusDatasetName() { + return this.datasetName; + + } + + @Override + protected void buildInternal(MultiLabelInstances trainingSet) throws Exception { + super.buildInternal(trainingSet); + createSettingsFile(); + } + + /** + * This method creates a CLUS settings file that corresponds to the MORF + * algorithm and writes it in clusWorkingDir. + * + * @throws Exception Potential exception thrown. To be handled in an upper + * level. + */ + private void createSettingsFile() throws Exception { + BufferedWriter out = new BufferedWriter( + new FileWriter(new File(clusWorkingDir + getClusDatasetName() + "-train.s"))); + out.write("[General]\nVerbose = 0\n"); + out.write("RandomSeed = " + seed + "\n\n[Data]\n"); + out.write("File = " + clusWorkingDir + getClusDatasetName() + "-train.arff" + "\n"); + out.write("TestSet = " + clusWorkingDir + getClusDatasetName() + "-test.arff" + "\n"); + out.write("\n[Attributes]\n"); + out.write("Target = "); + for (int i = 0; i < numLabels - 1; i++) {// all targets except last + out.write((labelIndices[i] + 1) + ","); + } + out.write((labelIndices[numLabels - 1] + 1) + "\n"); // last target + out.write("\n"); + out.write("[Ensemble]\nIterations = " + numTrees + "\n"); + out.write("EnsembleMethod = RForest\n\n[Output]\nWritePredictions = Test\n"); + out.close(); + } + +} diff --git a/mavenProject/src/main/java/miml/clusterers/KMedoids.java b/mavenProject/src/main/java/miml/clusterers/KMedoids.java new file mode 100644 index 0000000..7aff18d --- /dev/null +++ b/mavenProject/src/main/java/miml/clusterers/KMedoids.java @@ -0,0 +1,678 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +package miml.clusterers; + +import java.util.Arrays; +import java.util.Random; + +import miml.core.distance.IDistance; +import miml.core.distance.MaximalHausdorff; +import weka.clusterers.RandomizableClusterer; +import weka.core.Capabilities; +import weka.core.Instance; +import weka.core.Instances; +import weka.core.Utils; + +/** + * Class implementing the PAM (Partitioning Around Medoids) approximation [1] to + * kMedoids for multi-instance data. + * + * [1] Kaufman, L. and Rousseeuw, P.J. (1990). Partitioning Around Medoids + * (Program PAM). In Finding Groups in Data (eds L. Kaufman and P.J. Rousseeuw). + * https://doi.org/10.1002/9780470316801.ch2 + * + * + * @author Eva Gibaja + * @version 20230412 + */ +public class KMedoids extends RandomizableClusterer implements weka.clusterers.Clusterer { + + /** For serialization. */ + private static final long serialVersionUID = -6814942755920034118L; + + /** Distance function. By default MaximalHausdorff distance is used */ + protected IDistance metric; + + /** Number of clusters to generate. By default 10 clusters. */ + protected int numClusters = 10; + + /** Number of instances in the dataset. */ + protected int numInstances; + + /** + * The maximum number of iterations the algorithm is allowed to run. By default + * 100 iterations + */ + protected int maxIterations = 100; + + /** + * The medoid indices. Element k contains the index of the instance being the k + * medoid, a value in (0, numInstances). + */ + protected int[] medoidIndices; + + /** The medoid instances. Element k contains the instance being the k medoid */ + protected Instance[] medoidInstances; + + /** + * The assignment of instances to medoids. Element i contains the number of + * medoid assigned to instance i, a value in (0, nClusters-1). + */ + protected int[] clusterAssignment; + + /** Distance between instances. */ + protected double distancesMatrix[][]; + + /** + * Whether the metric is maximized o minimized. By default the metric is + * minimized. + */ + protected boolean minimize = true; + + /** + * Whether the initialization of medoids is random o applying the BUILD method + * of PAM algorithm. By default random initialization is performed. + */ + protected boolean randomInitialization = true; + + /** Final cost of the clustering configuration. */ + protected double configurationCost; + + /** Final number of iterations to perform clustering. */ + protected double numIterations; + + /** + * Creates a new instance of the k-medoids algorithm with default parameters. + * + * @throws Exception To be handled in an upper level. + */ + public KMedoids() throws Exception { + this(10, 100, new MaximalHausdorff()); + } + + /** + * Creates a new instance of the k-medoids algorithm with with the specified + * parameters. + * + * @param numClusters The number of clusters. + * @throws Exception To be handled in an upper level. + */ + public KMedoids(int numClusters) throws Exception { + this(numClusters, 100, new MaximalHausdorff()); + } + + /** + * Creates a new instance of the k-medoids algorithm with the specified dist + * measure. + * + * @param metric The distance metric to use for measuring the distance between + * instances. + * @throws Exception To be handled in an upper level. + */ + public KMedoids(IDistance metric) throws Exception { + this(10, 100, metric); + } + + /** + * Creates a new instance of the k-medoids algorithm with the specified + * parameters. + * + * @param numClusters The number of clusters to generate. + * @param metric The distance metric to use for measuring the distance + * between instances. + * @throws Exception To be handled in an upper level. + */ + + public KMedoids(int numClusters, IDistance metric) throws Exception { + this(numClusters, 100, metric); + } + + /** + * Creates a new instance of the k-medoids algorithm with the specified + * parameters. + * + * @param numClusters The number of clusters to generate. + * @param maxIterations The maximum number of iteration the algorithm is allowed + * to run. + * @param metric The distance metric to use for measuring the distance + * between instances. + * @throws Exception To be handled in an upper level. + */ + public KMedoids(int numClusters, int maxIterations, IDistance metric) throws Exception { + super(); + this.metric = metric; + this.maxIterations = maxIterations; + this.numClusters = numClusters; + } + + /** + * Allows to maximize or minimize the metric according to the value of minimize + * property. + * + * @param metricValue1 A metric value. + * @param metricValue2 Another metric value. + * @return If minimize==true it returns metricValue1<=metricValue2 other case + * it returns metricValue1>=metricValue2. + */ + protected boolean compare(double metricValue1, double metricValue2) { + if (minimize) + return metricValue1 <= metricValue2; + else + return metricValue1 >= metricValue2; + } + + /** Performs a random initialization of medoids. */ + protected void randomInitialization() { + Random rg; + + rg = new Random(this.getSeed()); + + // Random initialization of medoids + for (int k = 0; k < numClusters; k++) { + int random = rg.nextInt(numInstances); + while (isMedoid(random)) // to avoid duplicated medoid + random = rg.nextInt(numInstances); + medoidIndices[k] = random; + } + } + + /** + * Performs an initialization of medoids based on the BUILD step of PAM + * algorithm. + */ + protected void buildInitialization() { + + // Computes the sum of distances of each instance to the rest + double sumDistances[] = new double[numInstances]; + + int bestIndex = 0; + for (int i = 0; i < numInstances; i++) { + sumDistances[i] = 0; + for (int j = 0; j < numInstances; j++) { + if (j != i) + sumDistances[i] += distancesMatrix[i][j]; + } + if (compare(sumDistances[i], sumDistances[bestIndex])) + bestIndex = i; + } + + // The best medoid is the one with minimal sum of the distances to all other + // objects + int k = 0; + medoidIndices[k] = bestIndex; + + for (k = 1; k < numClusters; k++) { + + double gain[] = new double[numInstances]; + Arrays.fill(gain, 0); + + for (int i = 0; i < numInstances; i++) { + if (!isMedoid(i)) { + + for (int j = 0; j < numInstances; j++) { + if (!isMedoid(j) && j != i) { + + // Dj is the mimimal distance of j to the centroids + double Dj = distancesMatrix[j][medoidIndices[0]]; + for (int c = 1; c < k; c++) + if (compare(Dj, distancesMatrix[j][c])) { + Dj = distancesMatrix[j][c]; + } + + if (!(compare(Dj, distancesMatrix[i][j]))) { + gain[i] += Math.abs(Dj - distancesMatrix[i][j]); + ; + } + + } // if !isMedoid(j) + } // for j + } // if !isMedoid(i) + } // for i + + // Select as medoid the instance i that maximizes gain + bestIndex = 0; + for (int i = 1; i < numInstances; i++) { + if (!isMedoid(i) && gain[i] > gain[bestIndex]) + bestIndex = i; + } + medoidIndices[k] = bestIndex; + + } // for k + + } + + @Override + public void buildClusterer(Instances data) throws Exception { + + numInstances = data.numInstances(); + if ((numClusters > numInstances)) { + // throw new Exception("\nThe number of clusters must be less or equal to the + // number of bags."); + System.out.println("The number of clusters must be less or equal to the number of bags. Setting nClusters=" + + numInstances); + numClusters = numInstances; + } + if (numClusters < 2) { + // throw new Exception("\nThe number of clusters must be at least 2."); + System.out.println("\nThe number of clusters must be at least 2. Setting numClusters=2"); + numClusters = 2; + } + + metric.setInstances(data); + + // Initialization of distance matrix + + distancesMatrix = new double[numInstances][numInstances]; + computeDistances(data); + + // BUILD STEP. Initialization of medoids. + medoidIndices = new int[numClusters]; + for (int k = 0; k < numClusters; k++) + medoidIndices[k] = -1; + + if (randomInitialization) + randomInitialization(); + else + buildInitialization(); + + clusterAssignment = assignInstancesToMedoids(medoidIndices); + double cost = computeCost(clusterAssignment); + + // SWAP STEP + boolean change = true; + int count = 0; + while (change && count < maxIterations) { + + change = false; + + // for each medoid k + for (int k = 0; k < medoidIndices.length; k++) { + + int oldMedoid = medoidIndices[k]; + + // for each instance i not medoid + for (int i = 0; i < data.numInstances(); i++) { + + if (!isMedoid(i)) { + + // Considers swaps the medoid and the instance + medoidIndices[k] = i; + int[] candidateAsignment = assignInstancesToMedoids(medoidIndices); + double candidateCost = computeCost(candidateAsignment); + + if (compare(candidateCost, cost)) { + // the configuration is better and the change is accepted + clusterAssignment = candidateAsignment.clone(); + cost = candidateCost; + change = true; + } else { + // the change is not accepted + medoidIndices[k] = oldMedoid; + } + } + + } // for each instance i not medoid + + } // for each medoid k + count++; + } + + // Sets the array with the medoid instances + medoidInstances = new Instance[numClusters]; + for (int k = 0; k < numClusters; k++) + medoidInstances[k] = data.instance(medoidIndices[k]); + + this.configurationCost = cost; + this.numIterations = count; + // System.out.println("\nFinal configuration cost: " + cost + " Iterations: " + + // count); + } + + /** + * Computes distances between instances. + * + * @param data The dataset. + * @throws Exception To be handled in an upper level. + */ + protected void computeDistances(Instances data) throws Exception { + for (int i = 0; i < data.numInstances(); i++) { + // Diagonal elements have 0 value + distancesMatrix[i][i] = 0; + + Instance instanceA = data.instance(i); + + for (int j = i + 1; j < data.numInstances(); j++) { + Instance instanceB = data.instance(j); + double dist = metric.distance(instanceA, instanceB); + distancesMatrix[i][j] = dist; + distancesMatrix[j][i] = dist; + // System.out.println("\nDistance[" + i + "][" + j + "]:"+dist); + } + } + } + + /** + * Assign all instances from the data set to the medoids. + * + * @param medoidIndices Candidate medoids. + * @return An array with the best cluster number for each instance in the data + * set. + */ + protected int[] assignInstancesToMedoids(int[] medoidIndices) { + + // double cost = 0; + clusterAssignment = new int[numInstances]; + + for (int i = 0; i < numInstances; i++) { + + int index = medoidIndex(i); + if (index >= 0) { + // if i is medoid it is assigned to itself with 0 cost + clusterAssignment[i] = index; + } else { + + double bestDistance = distancesMatrix[i][medoidIndices[0]]; + int bestMedoidIndex = 0; + + for (int k = 1; k < medoidIndices.length; k++) { + + double auxDistance = distancesMatrix[i][medoidIndices[k]]; + if (compare(auxDistance, bestDistance)) { + // System.out.println("\n\t"+auxDistance+"<="+bestDistance); + bestDistance = auxDistance; + bestMedoidIndex = k; + } + + } + clusterAssignment[i] = bestMedoidIndex; + // cost += distances[i][medoidIndices[bestMedoidIndex]]; + // System.out.println("\nSumando: + // "+bestDistance+"=="+distances[i][medoidIndices[assignment[i]]]+"=="+distances[i][medoidIndices[bestMedoidIndex]]); + } + } + + // double cost2=computeCost(assignment); + // System.out.println("COST:"+cost+"=="+cost2); + return clusterAssignment; + } + + /** + * Computes the cost of a configuration. + * + * @param assignment Array containing in element i the index of the medoid + * assigned to instance i. + * @return The sum of the distances to medoids of all instances. + */ + protected double computeCost(int[] assignment) { + double cost = 0; + for (int i = 0; i < assignment.length; i++) { + cost += distancesMatrix[i][medoidIndices[assignment[i]]]; + } + return cost; + } + + /** + * Determines if an instance is being considered as medoid. + * + * @param instanceIndex The index of the instance. + * @return A true value if the instance is being considered as medoid. + */ + protected boolean isMedoid(int instanceIndex) { + + for (int k = 0; k < medoidIndices.length; k++) + if (medoidIndices[k] == instanceIndex) + return true; + + return false; + } + + /** + * Determines if an instance is being considered as medoid. If true, the index + * of the medoid is returned, a value in (0, nClusters-1) + * + * @param instanceIndex The index of the instance. + * @return A true value if the instance is being considered as medoid. + */ + protected int medoidIndex(int instanceIndex) { + for (int k = 0; k < medoidIndices.length; k++) + if (medoidIndices[k] == instanceIndex) + return k; + + return -1; + } + + /** + * Returns the distance of an instance to each medoid. + * + * @param instance An instance. It can be either an instance of the dataset or a + * new instance. + * @return The distance of the instance to each medoid. + * @throws Exception To be handled in an upper level. + */ + public double[] distanceToMedoids(Instance instance) throws Exception { + + metric.update(instance); + + double distances[] = new double[numClusters]; + + for (int k = 0; k < numClusters; k++) { + distances[k] = metric.distance(medoidInstances[k], instance); + } + return distances; + } + + /** + * Returns the distance of an instance in the training dataset referenced by its + * index to each medoid. + * + * @param index It must be a valid instance index in the dataset used for + * clustering. + * @return The distance of the instance to each medoid. + * @throws Exception To be handled in an upper level. + */ + public double[] distanceToMedoids(int index) throws Exception { + + if ((index < 0) || (index > numInstances)) + throw new Exception( + "The index must be >0 and Attributes) thr return new MIMLInstances(instances, this.getLabelsMetaData()); } - - /** - * Split MIML data train and test partition given a percentage and a partitioning method. + * Split MIML data train and test partition given a percentage and a + * partitioning method. * - * @param mimlDataSet The MIML dataset to be splited. - * @param percentageTrain The percentage (0-100) to be used for train. - * @param seed Seed use to randomize. + * @param mimlDataSet The MIML dataset to be splited. + * @param percentageTrain The percentage (0-100) to be used for train. + * @param seed Seed use to randomize. * @param partitioningMethod An integer with the partitioning method: - *
                              - *
                            • 1 random partitioning
                            • - *
                            • 2 powerset partitioning
                            • - *
                            • 3 iterative partitioning
                            • - *
                            + *
                              + *
                            • 1 random partitioning
                            • + *
                            • 2 powerset partitioning
                            • + *
                            • 3 iterative partitioning
                            • + *
                            * @return A list with the dataset splited. * @throws Exception To be handled in an upper level. */ - public static List splitData(MIMLInstances mimlDataSet, double percentageTrain, int seed, int partitioningMethod) - throws Exception { + public static MIMLInstances[] splitData(MIMLInstances mimlDataSet, double percentageTrain, int seed, + int partitioningMethod) throws Exception { // splits the data set into train and test // copy of original data - MultiLabelInstances[] partitions = null; - - switch (partitioningMethod) - { - case 1: - RandomTrainTest engineRandom = new RandomTrainTest(seed, mimlDataSet); - partitions = engineRandom.split(percentageTrain); - break; - case 2: - LabelPowersetTrainTest engineLP = new LabelPowersetTrainTest(seed, mimlDataSet); - partitions = engineLP.split(percentageTrain); - break; - case 3: - IterativeTrainTest engineIterative = new IterativeTrainTest(seed, mimlDataSet); - partitions = engineIterative.split(percentageTrain); - break; + MultiLabelInstances[] partitionsML = null; + + switch (partitioningMethod) { + case 1: + RandomTrainTest engineRandom = new RandomTrainTest(seed, mimlDataSet); + partitionsML = engineRandom.split(percentageTrain); + break; + case 2: + LabelPowersetTrainTest engineLP = new LabelPowersetTrainTest(seed, mimlDataSet); + partitionsML = engineLP.split(percentageTrain); + break; + case 3: + IterativeTrainTest engineIterative = new IterativeTrainTest(seed, mimlDataSet); + partitionsML = engineIterative.split(percentageTrain); + break; } + + MIMLInstances[] partitions = new MIMLInstances[2]; + partitions[0] = new MIMLInstances(partitionsML[0].getDataSet(), partitionsML[0].getLabelsMetaData()); + partitions[1] = new MIMLInstances(partitionsML[1].getDataSet(), partitionsML[1].getLabelsMetaData()); + + return partitions; + } + + + /** + * Generate tran/test partitions for CV cross validation. + * + * @param mimlDataSet The MIML dataset to be splited. + * @param nFolds The number of folds. + * @param seed Seed use to randomize. + * @param partitioningMethod An integer with the partitioning method: + *
                              + *
                            • 1 random partitioning
                            • + *
                            • 2 powerset partitioning
                            • + *
                            • 3 iterative partitioning
                            • + *
                            + * @return MIMLInstances[][] a nfolds x 2 matrix. Each row represents a + * fold being column 0 the train set and the column 1 the test set. + * @throws Exception To be handled in an upper level. + */ + public static MIMLInstances[][] roundsCV(MIMLInstances mimlDataSet, int nFolds, int seed, + int partitioningMethod) throws Exception { - List datasets = new ArrayList(); - datasets.add(new MIMLInstances(partitions[0].getDataSet(), partitions[0].getLabelsMetaData())); - datasets.add(new MIMLInstances(partitions[1].getDataSet(), partitions[1].getLabelsMetaData())); + MultiLabelInstances[][] roundsML = null; + MIMLInstances[][] rounds = null; + CrossValidationBase engine; + switch (partitioningMethod) { + case 1: + engine = new RandomCrossValidation(mimlDataSet); + roundsML = engine.getRounds(nFolds); + break; + case 2: + engine = new LabelPowersetCrossValidation(mimlDataSet); + roundsML = engine.getRounds(nFolds); + break; + case 3: + engine = new IterativeCrossValidation(mimlDataSet); + roundsML = engine.getRounds(nFolds); + break; + } - return datasets; + rounds = new MIMLInstances[nFolds][2]; + for (int i=0; i * MultiLabelInstances[0] is the train set.
                            * MultiLabelInstances[1] is the test set. @@ -60,4 +60,11 @@ public TrainTestBase(MultiLabelInstances mlDataSet) throws InvalidDataFormatExce */ public abstract MultiLabelInstances[] split(double percentageTrain) throws Exception; + protected void statsToString(MultiLabelInstances[] Partition) { + int currentTrain = Partition[0].getNumInstances(); + int currentTest = Partition[1].getNumInstances(); + System.out.println("\tTotal examples : " + totalExamples()); + System.out.println("\tCurrent: Train: " + currentTrain + " Test: " + currentTest + " Total: " + + (currentTrain + currentTest)); + } } diff --git a/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeCrossValidation.java b/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeCrossValidation.java old mode 100755 new mode 100644 index f9901dd..a7bb9b1 --- a/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeCrossValidation.java +++ b/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeCrossValidation.java @@ -91,6 +91,9 @@ public MultiLabelInstances[] getFolds(int nFolds) throws InvalidDataFormatExcept for (int i = 0; i < partition.length; i++) partition[i].getDataSet().setRelationName(relationName); + System.out.println("\nIterative CV partitioning:"); + statsToString(partition); + return partition; } } diff --git a/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeTrainTest.java b/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeTrainTest.java old mode 100755 new mode 100644 index 88d159f..3349834 --- a/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeTrainTest.java +++ b/mavenProject/src/main/java/miml/data/partitioning/iterative/IterativeTrainTest.java @@ -86,7 +86,8 @@ public MultiLabelInstances[] split(double percentageTrain) { splitRatio[0] = percentageTrain / 100; splitRatio[1] = 1.0 - splitRatio[0]; - Instances[] singleSegments = foldsCreation(workingSet.getDataSet(), new Random(seed), splitRatio, + //foldsCreation method empties the original dataset, that's why we work with a copy + Instances[] singleSegments = foldsCreation(new Instances(workingSet.getDataSet()), new Random(seed), splitRatio, workingSet.getNumLabels(), workingSet.getLabelIndices(), workingSet.getNumInstances()); for (int i = 0; i < folds; i++) { try { @@ -103,6 +104,8 @@ public MultiLabelInstances[] split(double percentageTrain) { segments[0].getDataSet().setRelationName(relationName); segments[1].getDataSet().setRelationName(relationName); + System.out.println("\nIterative train test partitioning:"); + statsToString(segments); return segments; } diff --git a/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetCrossValidation.java b/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetCrossValidation.java old mode 100755 new mode 100644 index 9c79af3..a901d1f --- a/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetCrossValidation.java +++ b/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetCrossValidation.java @@ -71,6 +71,9 @@ public MultiLabelInstances[] getFolds(int nFolds) throws InvalidDataFormatExcept for (int i = 0; i < partition.length; i++) partition[i].getDataSet().setRelationName(relationName); + System.out.println("\nLabel Powerset CV partitioning:"); + statsToString(partition); + return partition; } diff --git a/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetTrainTest.java b/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetTrainTest.java old mode 100755 new mode 100644 index 2fab685..5ab2a59 --- a/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetTrainTest.java +++ b/mavenProject/src/main/java/miml/data/partitioning/powerset/LabelPowersetTrainTest.java @@ -15,8 +15,6 @@ */ package miml.data.partitioning.powerset; -import java.util.Random; - import miml.data.partitioning.TrainTestBase; import mulan.data.InvalidDataFormatException; import mulan.data.MultiLabelInstances; @@ -73,8 +71,8 @@ public MultiLabelInstances[] split(double percentage) throws Exception { } transformed.setClassIndex(transformed.numAttributes() - 1); - // stratify - transformed.randomize(new Random(seed)); + // stratify - DELETED - the working set has been randomized by constructor + // transformed.randomize(new Random(seed)); // Resample supervised filter creates a stratified subsample of the // given dataset @@ -113,6 +111,9 @@ public MultiLabelInstances[] split(double percentage) throws Exception { Partition[0].getDataSet().setRelationName(relationName); Partition[1].getDataSet().setRelationName(relationName); + System.out.println("\nLabel powerset train test partitioning:"); + statsToString(Partition); + return Partition; } diff --git a/mavenProject/src/main/java/miml/data/partitioning/random/RandomCrossValidation.java b/mavenProject/src/main/java/miml/data/partitioning/random/RandomCrossValidation.java old mode 100755 new mode 100644 index 83d7a6e..31831b5 --- a/mavenProject/src/main/java/miml/data/partitioning/random/RandomCrossValidation.java +++ b/mavenProject/src/main/java/miml/data/partitioning/random/RandomCrossValidation.java @@ -17,8 +17,6 @@ package miml.data.partitioning.random; import java.util.ArrayList; -import java.util.Random; - import miml.data.partitioning.CrossValidationBase; import weka.core.Instance; import weka.core.Instances; @@ -33,7 +31,7 @@ * and with some duplicated instances. In these cases, using a lower number of * folds (eg. 3 folds) or another kind of partitioning (eg. iteratrive or * powerset) is recommended. Besides, the same instance could be included twice - * to guarantee instances of all labels in the resulte train set. + * to guarantee instances of all labels in the resulting train set. * * @author Eva Gibaja * @version 20201029 @@ -73,8 +71,8 @@ public MultiLabelInstances[] getFolds(int nFolds) throws InvalidDataFormatExcept // copy of original data Instances dataSet = new Instances(workingSet.getDataSet()); - // randomize dataset - dataSet.randomize(new Random(seed)); + // randomize dataset - DELETED - the working set has been randomized by constructor + //dataSet.randomize(new Random(seed)); // Initializations int numInstances = workingSet.getNumInstances(); @@ -158,7 +156,7 @@ public MultiLabelInstances[] getFolds(int nFolds) throws InvalidDataFormatExcept Folds[f].getDataSet().setRelationName(relationName); } - // Instance indexes to assing to any fold + // Instance indexes to assign to any fold ArrayList toAssign = new ArrayList(); for (int i = 0; i < numInstances; i++) toAssign.add(i); @@ -204,10 +202,11 @@ public MultiLabelInstances[] getFolds(int nFolds) throws InvalidDataFormatExcept } } + System.out.println("\nRandom CV partitioning:\n\tcurrentExamples/realExamples (may be duplicated): " + + totalAssigned + "/" + numInstances); + statsToString(Folds); + // Checking - System.out.println("\nRandom partitioning:\ncurrentInstances/realInstances (may be duplicated): " + totalAssigned + "/" + numInstances); - for (int f = 0; f < nFolds; f++) - System.out.println("Fold " + f + ": " + Folds[f].getDataSet().numInstances() + " patterns"); /* * System.out.print("["); for (int i = 0; i < choosen.length; i++) { if * (choosen[i] == -1) System.out.println("Instance " + i + " not choosen"); else diff --git a/mavenProject/src/main/java/miml/data/partitioning/random/RandomTrainTest.java b/mavenProject/src/main/java/miml/data/partitioning/random/RandomTrainTest.java old mode 100755 new mode 100644 index 29a6a9d..3cc66da --- a/mavenProject/src/main/java/miml/data/partitioning/random/RandomTrainTest.java +++ b/mavenProject/src/main/java/miml/data/partitioning/random/RandomTrainTest.java @@ -17,7 +17,6 @@ package miml.data.partitioning.random; import java.util.ArrayList; -import java.util.Random; import miml.data.partitioning.TrainTestBase; import weka.core.Instance; @@ -64,8 +63,8 @@ public MultiLabelInstances[] split(double percentageTrain) throws Exception { // copy of original data Instances dataSet = new Instances(workingSet.getDataSet()); - // randomize dataset - dataSet.randomize(new Random(seed)); + // randomize dataset - DELETED - the working set has been randomized by constructor + // dataSet.randomize(new Random(seed)); // Initializations int numInstances = workingSet.getNumInstances(); @@ -149,13 +148,10 @@ public MultiLabelInstances[] split(double percentageTrain) throws Exception { } } - System.out.println("\nRandom partitioning:\nnumLabels: " + numLabels + " Covered: " + nCoveredLabels); - int currentTrain = Partition[0].getNumInstances(); - int currentTest = Partition[1].getNumInstances(); - System.out.println("\nTotal instances: " + numInstances + " Expected train: " + nTrain); - System.out.println("\tCurrent: Train: " + currentTrain + " Test: " + currentTest + " Total: " - + (currentTrain + currentTest)); - + System.out.println( + "\nRandom train test partitioning:\n\tnumLabels: " + numLabels + " Covered: " + nCoveredLabels); + System.out.println("\tExpected train examples: " + nTrain); + statsToString(Partition); /* * System.out. * println("\nResult of partitioning (0 not selected, 1 initially selected for train, 2 selected for train, 3 selected for test): " diff --git a/mavenProject/src/main/java/miml/data/statistics/MIMLStatistics.java b/mavenProject/src/main/java/miml/data/statistics/MIMLStatistics.java old mode 100755 new mode 100644 index a51ab73..fcaf090 --- a/mavenProject/src/main/java/miml/data/statistics/MIMLStatistics.java +++ b/mavenProject/src/main/java/miml/data/statistics/MIMLStatistics.java @@ -387,11 +387,11 @@ protected String distributionBagsToCSV(HashMap skew) { /** * Returns cooCurrenceMatrix in textual representation. It requires the method - * calculateCooncurrence to be previously called. + * calculateCoocurrence to be previously called. * - * @return CooCurrenceMatrix in textual representation. + * @return CoocurrenceMatrix in textual representation. */ - public String cooncurrenceToString() { + public String coocurrenceToString() { return mlstatistics.coocurrenceToString(); } @@ -402,7 +402,7 @@ public String cooncurrenceToString() { * * @return CooCurrenceMatrix in CSV representation. */ - public String cooncurrenceToCSV() { + public String coocurrenceToCSV() { return mlstatistics.coocurrenceToCSV(); } diff --git a/mavenProject/src/main/java/miml/data/statistics/MIStatistics.java b/mavenProject/src/main/java/miml/data/statistics/MIStatistics.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/data/statistics/MLStatistics.java b/mavenProject/src/main/java/miml/data/statistics/MLStatistics.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/evaluation/EvaluatorCV.java b/mavenProject/src/main/java/miml/evaluation/EvaluatorCV.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldout.java b/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldout.java old mode 100755 new mode 100644 index 9fd8ce7..da23fcd --- a/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldout.java +++ b/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldout.java @@ -17,7 +17,6 @@ import java.io.File; import java.util.Date; -import java.util.List; import java.util.concurrent.TimeUnit; import org.apache.commons.configuration2.Configuration; @@ -83,20 +82,20 @@ public EvaluatorHoldout(MIMLInstances mimlDataSet, double percentageTrain) throw * * @param mimlDataSet The dataset to be used. * @param percentageTrain The percentage of train. - * @param seed Seed for randomization. - * @param method partitioning method. - *
                              - *
                            • 1 random partitioning
                            • - *
                            • 2 powerset partitioning
                            • - *
                            • 3 iterative partitioning
                            • - *
                            + * @param seed Seed for randomization. + * @param method partitioning method. + *
                              + *
                            • 1 random partitioning
                            • + *
                            • 2 powerset partitioning
                            • + *
                            • 3 iterative partitioning
                            • + *
                            * @throws Exception If occur an error during holdout experiment. */ public EvaluatorHoldout(MIMLInstances mimlDataSet, double percentageTrain, int seed, int method) throws Exception { - List list = MIMLInstances.splitData(mimlDataSet, percentageTrain, seed, method); - this.trainData = list.get(0); - this.testData = list.get(1); + MIMLInstances[] partitions = MIMLInstances.splitData(mimlDataSet, percentageTrain, seed, method); + this.trainData = partitions[0]; + this.testData = partitions[1]; } /** @@ -136,7 +135,6 @@ public void runExperiment(IMIMLClassifier classifier) { } } - /** * Gets the time spent in training. * @@ -174,7 +172,6 @@ public MIMLInstances getData() { return testData; } - /* * @see * core.IConfiguration#configure(org.apache.commons.configuration.Configuration) @@ -184,7 +181,7 @@ public void configure(Configuration configuration) { String arffFileTrain = configuration.subset("data").getString("trainFile"); String xmlFileName = configuration.subset("data").getString("xmlFile"); - String arffFileTest = configuration.subset("data").getString("testFile"); + String arffFileTest = configuration.subset("data").getString("testFile"); try { @@ -202,9 +199,10 @@ public void configure(Configuration configuration) { int seed = configuration.getInt("seed", 1); double percentageTrain = configuration.getDouble("percentageTrain", 80); - List list = MIMLInstances.splitData(new MIMLInstances(arffFileTrain, xmlFileName), percentageTrain, seed, method); - this.trainData = list.get(0); - this.testData = list.get(1); + MIMLInstances[] partitions = MIMLInstances.splitData(new MIMLInstances(arffFileTrain, xmlFileName), + percentageTrain, seed, method); + this.trainData = partitions[0]; + this.testData = partitions[1]; } else { trainData = new MIMLInstances(arffFileTrain, xmlFileName); diff --git a/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldoutClus.java b/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldoutClus.java new file mode 100644 index 0000000..0b943cb --- /dev/null +++ b/mavenProject/src/main/java/miml/evaluation/EvaluatorHoldoutClus.java @@ -0,0 +1,228 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ +package miml.evaluation; + +import java.io.File; +import java.util.ArrayList; +import java.util.Date; +import java.util.List; +import java.util.concurrent.TimeUnit; +import org.apache.commons.configuration2.Configuration; +import miml.classifiers.miml.IMIMLClassifier; +import miml.data.MIMLInstances; +import miml.transformation.mimlTOml.MIMLtoML; +import miml.classifiers.miml.mimlTOml.MIMLClassifierToML; +import mulan.classifier.clus.ClusWrapperClassification; +import mulan.data.InvalidDataFormatException; +import mulan.data.MultiLabelInstances; +import mulan.evaluation.Evaluator; +import mulan.evaluation.measure.AveragePrecision; +import mulan.evaluation.measure.Coverage; +import mulan.evaluation.measure.ErrorSetSize; +import mulan.evaluation.measure.ExampleBasedAccuracy; +import mulan.evaluation.measure.ExampleBasedFMeasure; +import mulan.evaluation.measure.ExampleBasedPrecision; +import mulan.evaluation.measure.ExampleBasedRecall; +import mulan.evaluation.measure.ExampleBasedSpecificity; +import mulan.evaluation.measure.GeometricMeanAverageInterpolatedPrecision; +import mulan.evaluation.measure.GeometricMeanAveragePrecision; +import mulan.evaluation.measure.HammingLoss; +import mulan.evaluation.measure.IsError; +import mulan.evaluation.measure.LogLoss; +import mulan.evaluation.measure.MacroFMeasure; +import mulan.evaluation.measure.MacroPrecision; +import mulan.evaluation.measure.MacroRecall; +import mulan.evaluation.measure.MacroSpecificity; +import mulan.evaluation.measure.MeanAverageInterpolatedPrecision; +import mulan.evaluation.measure.MeanAveragePrecision; +import mulan.evaluation.measure.Measure; +import mulan.evaluation.measure.MicroFMeasure; +import mulan.evaluation.measure.MicroPrecision; +import mulan.evaluation.measure.MicroRecall; +import mulan.evaluation.measure.MicroSpecificity; +import mulan.evaluation.measure.OneError; +import mulan.evaluation.measure.RankingLoss; +import mulan.evaluation.measure.SubsetAccuracy; +import weka.core.Instances; +import weka.filters.Filter; +import weka.filters.unsupervised.attribute.Remove; + +/** + * Class that allow evaluate a classifier applying a holdout method with the + * clus System. NOTE that that RFPCT calls clus library that performs, in a + * single call, train and test steps. Therefore: + * 1. Train time got by miml library is not relevant. + * 2. Test time got by miml libraryr really computes the train and test time + * required by the call to clus library. + * + * @author Eva Gibaja + * @version 20230117 + */ +public class EvaluatorHoldoutClus extends EvaluatorHoldout { + + /** + * The directory where all temporary files needed or generated by CLUS library + * are written. + */ + protected String clusWorkingDir; + + /** The dataset name that will be used for training, test and settings files. */ + protected String clusDatasetName; + + /** + * Instantiates a new holdout evaluator with provided train and test partitions. + * + * @param trainData The train data used in the experiment. + * @param testData The test data used in the experiment. + * @param clusDatasetName The dataset name that will be used for training, test + * and settings files. + * @param clusWorkingDir The directory where all temporary files needed or + * generated by CLUS library are written. + * @throws InvalidDataFormatException To be handled. + */ + public EvaluatorHoldoutClus(MIMLInstances trainData, MIMLInstances testData, String clusWorkingDir, + String clusDatasetName) throws InvalidDataFormatException { + super(trainData, testData); + this.clusWorkingDir = clusWorkingDir + File.separator; + this.clusDatasetName = clusDatasetName; + } + + /** + * No-argument constructor for xml configuration. + */ + public EvaluatorHoldoutClus() { + } + + /* + * (non-Javadoc) + * + * @see evaluation.IEvaluator#runExperiment(mimlclassifier.MIMLClassifier) + */ + @Override + public void runExperiment(IMIMLClassifier classifier) { + + System.out.println("" + new Date() + ": " + "Building model"); + try { + + /* + * Step 1. The build method on the MIMLClassifierToML transforms the MIML + * dataset into a ML dataset an calls the build method of RFPCT. The build + * method of RFPCT transforms the transformed ML data into an arff formated file + * (accepted by CLUS) and write the -train.arff file in the working directory + * with the appropriate name. Nevertheless the RFPCT model itself is not built + * as the clus library performs in the same step the train and test. For this + * reason train time is not representative. + */ + + long startTime = System.nanoTime(); + ((MIMLClassifierToML) classifier).build(trainData); + long estimatedTime = System.nanoTime() - startTime; + trainTime = TimeUnit.NANOSECONDS.toMillis(estimatedTime); + + /* Step 2. The MIML test data is transformed to ML. */ + + MIMLtoML transformationMethod = ((MIMLClassifierToML) classifier).getTransformationMethod(); + Remove removeFilter = ((MIMLClassifierToML) classifier).getRemoveFilter(); + MultiLabelInstances testDataML = transformationMethod.transformDataset(testData); + Instances newData = Filter.useFilter(testDataML.getDataSet(), removeFilter); + testData = new MIMLInstances(newData, testData.getLabelsMetaData()); + + /* + * Step 3. The call to eval.evaluate(ClusWrapperClassification learner, + * MultiLabelInstances testData, List measures) 1) writes the + * transformed ML test data in the -test.arff in the working directory and then + * the call to clus library performs both train and test stages. The test time + * computed corresponds to the time required by clus to perform train and test. + */ + System.out.println("" + new Date() + ": " + "Getting evaluation results"); + startTime = System.nanoTime(); + Evaluator eval = new Evaluator(); + List measures = this.prepareMeasuresClassification(trainData); + + // The evaluate method expects the clusWorkingDir with a final File.separator + // i.e. clusFolder\. Due to this reason, the constructor and configure methods + // add a File.separator to the clusWorkingDir + evaluation = eval.evaluate( + (ClusWrapperClassification) (((MIMLClassifierToML) classifier).getBaseClassifier()), testData, + measures); + + estimatedTime = System.nanoTime() - startTime; + testTime = TimeUnit.NANOSECONDS.toMillis(estimatedTime); + + } catch (Exception e) { + e.printStackTrace(); + } + } + + /* + * @see + * core.IConfiguration#configure(org.apache.commons.configuration.Configuration) + */ + @Override + public void configure(Configuration configuration) { + + super.configure(configuration); + + clusWorkingDir = configuration.getString("clusWorkingDir", "clusFolder") + File.separator; + clusDatasetName = configuration.getString("clusDataset", "dataset"); + + + } + + protected List prepareMeasuresClassification(MultiLabelInstances mlTrainData) { + List measures = new ArrayList(); + + int numOfLabels = mlTrainData.getNumLabels(); + + // add example-based measures + measures.add((Measure) new HammingLoss()); + // measures.add(new AdjHammingLoss()); + measures.add(new SubsetAccuracy()); + measures.add(new ExampleBasedPrecision()); + measures.add(new ExampleBasedRecall()); + measures.add(new ExampleBasedFMeasure()); + measures.add(new ExampleBasedAccuracy()); + measures.add(new ExampleBasedSpecificity()); + + // add label-based measures + measures.add(new MicroPrecision(numOfLabels)); + measures.add(new MicroRecall(numOfLabels)); + measures.add(new MicroFMeasure(numOfLabels)); + measures.add(new MicroSpecificity(numOfLabels)); + measures.add(new MacroPrecision(numOfLabels)); + measures.add(new MacroRecall(numOfLabels)); + measures.add(new MacroFMeasure(numOfLabels)); + measures.add(new MacroSpecificity(numOfLabels)); + + // add ranking based measures + measures.add(new AveragePrecision()); + measures.add(new Coverage()); + measures.add(new OneError()); + measures.add(new IsError()); + measures.add(new ErrorSetSize()); + measures.add(new RankingLoss()); + + // add confidence measures if applicable + measures.add(new MeanAveragePrecision(numOfLabels)); + measures.add(new GeometricMeanAveragePrecision(numOfLabels)); + measures.add(new MeanAverageInterpolatedPrecision(numOfLabels, 10)); + measures.add(new GeometricMeanAverageInterpolatedPrecision(numOfLabels, 10)); + // measures.add(new MicroAUC(numOfLabels)); + // measures.add(new MacroAUC(numOfLabels)); + measures.add(new LogLoss()); + + return measures; + } +} \ No newline at end of file diff --git a/mavenProject/src/main/java/miml/evaluation/IEvaluator.java b/mavenProject/src/main/java/miml/evaluation/IEvaluator.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/report/BaseMIMLReport.java b/mavenProject/src/main/java/miml/report/BaseMIMLReport.java old mode 100755 new mode 100644 index fe0e851..d1ca4ab --- a/mavenProject/src/main/java/miml/report/BaseMIMLReport.java +++ b/mavenProject/src/main/java/miml/report/BaseMIMLReport.java @@ -358,7 +358,7 @@ protected String holdoutToString(EvaluatorHoldout evaluator) throws Exception { if (this.std) { System.out.println( - "[WARNING]: standardDeviation is setted true, but in holdout evaluation is not possible to calculate std value"); + "[WARNING]: standardDeviation is setted true, but in holdout evaluation is not possible to calculate std value"); } Evaluation evaluationHoldout = evaluator.getEvaluation(); diff --git a/mavenProject/src/main/java/miml/report/IReport.java b/mavenProject/src/main/java/miml/report/IReport.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/report/MIMLReport.java b/mavenProject/src/main/java/miml/report/MIMLReport.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/run/RunAlgorithm.java b/mavenProject/src/main/java/miml/run/RunAlgorithm.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOmi/BRTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOmi/BRTransformation.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOmi/LPTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOmi/LPTransformation.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/ArithmeticTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/ArithmeticTransformation.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/GeometricTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/GeometricTransformation.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/KMeansTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/KMeansTransformation.java new file mode 100644 index 0000000..727b6dd --- /dev/null +++ b/mavenProject/src/main/java/miml/transformation/mimlTOml/KMeansTransformation.java @@ -0,0 +1,546 @@ +package miml.transformation.mimlTOml; +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + */ + +import java.util.ArrayList; + +import miml.data.MIMLBag; +import miml.data.MIMLInstances; +import mulan.data.MultiLabelInstances; +import weka.clusterers.SimpleKMeans; +import weka.core.Attribute; +import weka.core.DenseInstance; +import weka.core.EuclideanDistance; +import weka.core.Instance; +import weka.core.Instances; + +/** + * Class implementing the kmeans-based transformation described in [1] to + * transform an MIML problem to ML. + * + * [1] Li, Y. F., Hu, J. H., Jiang, Y., and Zhou, Z. H. (2012). Towards + * discovering what patterns trigger what labels. In Proceedings of the AAAI + * Conference on Artificial Intelligence (Vol. 26, No. 1, pp. 1012-1018). + * + * This class requires method transformDataset to have been executed before + * executing transformInstance method. + * + * @author Eva Gibaja + * @version 20231115 + */ + +public class KMeansTransformation extends MIMLtoML { + + /** For serialization. */ + private static final long serialVersionUID = 1L; + + /** Clusterer. */ + protected SimpleKMeans clusterer = null; + + /** + * If it is different to -1 this value represent that the number of clusters + * will be a percentage of the number of training bags in the dataset. For + * instance 0.2 represents that the number of clusters is the 20% of the number + * of training bags, 0.45 a 45%, and so on. If this value is -1 the number of + * clusters to consider is represented by numClusters property. If the number of + * clusters is not set neither by percentage nor by the numClusters property, it + * will be considered by default a 50% of the number of training bags in the + * dataset. If both the percentage and the numClusters are set, the percentage + * will be applied. + */ + protected double percentage = -1; + + /** The number of clusters. */ + protected int numClusters = -1; + + /** The seed for kmeans clustering. By default 1. */ + protected int seed = 1; + + /** Whether the clustering step has been executed or not. */ + protected boolean clusteringDone = false; + + /** + * Clustering prototypes obtained each one as the nearest instance to each + * centroid. + */ + protected Instances prototypes; + + /** + * The delta value for each cluster obtained as the average distance between + * instances in each cluster + */ + protected double[] delta; + + protected EuclideanDistance dfunc; + + /** + * Constructor. + * + * @param dataset MIMLInstances dataset. + * @param clusterer An instance of KMedoids. + * @throws Exception To be handled in an upper level. + */ + public KMeansTransformation(MIMLInstances dataset, SimpleKMeans clusterer) throws Exception { + + super(dataset); + this.clusterer = clusterer; + } + + /** + * Constructor. Uses the same default number of clusters as KiSar: 50% of number + * of bags + * + * @param dataset MIMLInstances dataset. + * @throws Exception To be handled in an upper level. + */ + public KMeansTransformation(MIMLInstances dataset) throws Exception { + + this(dataset, new SimpleKMeans()); + } + + /** + * Constructor. + */ + public KMeansTransformation() { + super(); + } + + @Override + public MultiLabelInstances transformDataset() throws Exception { + + // 1. CLUSTERING STEP + // prepares the single-instance dataset for clustering + double nBags = dataset.getNumBags(); + Instances singleInstances = new Instances(dataset.getBag(0).getBagAsInstances()); + for (int i = 1; i < nBags; i++) { + singleInstances.addAll(dataset.getBag(i).getBagAsInstances()); + } + + if (clusterer == null) { + clusterer = new SimpleKMeans(); + } + + configureClusterer(); + + // performs clustering + System.out.println("k-means Transformation.\n\tPerforming k-means clustering to transform the dataset"); + clusterer.buildClusterer(singleInstances); + clusteringDone = true; + System.out.println("\tnClusters=" + clusterer.getNumClusters()); + System.out.println("\tseed=" + clusterer.getSeed()); + prepareTemplate(); + template.setRelationName(dataset.getDataSet().relationName() + "_kmeans_transformation"); + + // prototypes are the instances closest to the cluster centroids + Instances centroids = clusterer.getClusterCentroids(); + dfunc = new EuclideanDistance(); + dfunc.setInstances(singleInstances); + for (int k = 0; k < centroids.numInstances(); k++) + dfunc.update(centroids.instance(k)); + double[][] distanceMatrix = computeDistanceMatrix(centroids, singleInstances); + int[] clusterAssignment = clusterAssignment(distanceMatrix); + int[] prototypesIndex = computeIndexPrototypes(distanceMatrix); + + int nClusters = distanceMatrix[0].length; + prototypes = new Instances(singleInstances, 0); // creates empty datasest + for (int k = 0; k < nClusters; k++) { + prototypes.add(singleInstances.instance(prototypesIndex[k])); + } + + // computes the value of delta as the average distance between instances in one + // cluster + double[] delta = computeDelta(clusterAssignment, singleInstances); + + // 2. TRANSFORMATION STEP + + Instances newData = new Instances(template); + int labelIndices[] = dataset.getLabelIndices(); + Instance newInst = new DenseInstance(newData.numAttributes()); + newInst.setDataset(newData); // Sets the reference to the dataset + + for (int i = 0; i < nBags; i++) { + + MIMLBag bag = dataset.getBag(i); + + // sets the bagLabel + newInst.setValue(0, bag.value(0)); + + for (int k = 0, attIdx = 1; k < nClusters; k++, attIdx++) { + double sim = similarity(singleInstances.instance(prototypesIndex[k]), bag, delta[k]); + newInst.setValue(attIdx, sim); + } + + // Copy label information into the dataset + for (int j = 0; j < labelIndices.length; j++) { + newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j])); + } + newData.add(newInst); + } + return new MultiLabelInstances(newData, dataset.getLabelsMetaData()); + + } + + @Override + public MultiLabelInstances transformDataset(MIMLInstances dataset) throws Exception { + MultiLabelInstances transformed = null; + if (!clusteringDone) { + this.dataset = dataset; + transformed = transformDataset(); + } else { + // To avoid a new clustering round if the clustering step was previously + // performed + Instances newData = new Instances(template); + for (int i = 0; i < dataset.getNumBags(); i++) { + MIMLBag bag = dataset.getBag(i); + Instance transfInst = transformInstance(bag); + newData.add(transfInst); + } + transformed = new MultiLabelInstances(newData, dataset.getLabelsMetaData()); + } + return transformed; + } + + @Override + public Instance transformInstance(MIMLBag bag) throws Exception { + if (!clusteringDone) + throw new Exception( + "The transformInstance method must be called after executing transformDataset that performs kmeans clustering required by this kind of transformation."); + + int labelIndices[] = dataset.getLabelIndices(); + Instance newInst = new DenseInstance(template.numAttributes()); + + // sets the bagLabel + newInst.setDataset(bag.dataset()); // Sets the reference to the dataset + newInst.setValue(0, bag.value(0)); + + // an attribute per centroid + int numClusters = clusterer.getNumClusters(); + for (int k = 0, attIdx = 1; k < numClusters; k++, attIdx++) { + double sim = similarity(prototypes.instance(k), bag, delta[k]); + newInst.setValue(attIdx, sim); + } + + // Insert label information into the instance + for (int j = 0; j < labelIndices.length; j++) { + newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j])); + } + + return newInst; + } + + @Override + protected void prepareTemplate() throws Exception { + int attrIndex = 0; + + ArrayList attributes = new ArrayList(); + + // insert a bag label attribute at the beginning + Attribute attr = dataset.getDataSet().attribute(0); + attributes.add(attr); + + // Adds attributes for prototypes + int numClusters = clusterer.getNumClusters(); + for (int k = 1; k <= numClusters; k++) { + attr = new Attribute("similarityToPrototype_" + k); + attributes.add(attr); + attrIndex++; + } + + // Insert labels as attributes in the dataset + int labelIndices[] = dataset.getLabelIndices(); + updatedLabelIndices = new int[labelIndices.length]; + ArrayList values = new ArrayList(2); + values.add("0"); + values.add("1"); + for (int i = 0; i < labelIndices.length; i++) { + attr = new Attribute(dataset.getDataSet().attribute(labelIndices[i]).name(), values); + attributes.add(attr); + attrIndex++; + updatedLabelIndices[i] = attrIndex; + } + + template = new Instances("templatePrototype", attributes, 0); + + } + + /** + * Computes the distance matrix between centroids and single instances used for + * clustering. + * + * @param centroids The centroids obtained by kmeans clustering. + * @param singleInstances The single-instance instances used for clustering. + * @return A matrix of double in which matrix[i][k] stores the distance from + * instance i to centroid k. + */ + protected double[][] computeDistanceMatrix(Instances centroids, Instances singleInstances) { + + int nInstances = singleInstances.numInstances(); + int nClusters = centroids.numInstances(); + double distanceMatrix[][] = new double[nInstances][nClusters]; + + for (int i = 0; i < nInstances; i++) { + for (int k = 0; k < nClusters; k++) { + double dist = dfunc.distance(centroids.instance(k), singleInstances.instance(i)); + distanceMatrix[i][k] = dist; + } + } + + return distanceMatrix; + + } + + /** + * Computes a vector of nClusters elements with the index of the prototypes + * obtained as the closest instance to each centroid. + * + * @param distanceMatrix A matrix of nInstancesxnClusters with the distance + * between centroids and single-instances used for + * clustering . Matrix[i][k] is the distance from instance + * i to centroid k. + * @return A vector with the index of the prototypes in the dataset of + * single-instances used for clustering. This vector is obtained as the + * index of the minimum row of each column. + * @throws Exception To be handled in an upper level. + */ + protected int[] computeIndexPrototypes(double distanceMatrix[][]) throws Exception { + + int nInstances = distanceMatrix.length; + int nClusters = distanceMatrix[0].length; + int minIndex[] = new int[nClusters]; + + for (int k = 0; k < nClusters; k++) { + minIndex[k] = 0; + for (int i = 1; i < nInstances; i++) { + + if (distanceMatrix[i][k] < distanceMatrix[minIndex[k]][k]) { + minIndex[k] = i; + } + } + } + return minIndex; + } + + /** + * Computes a vector of nInstances with the index of the cluster assigned to + * each instance. + * + * @param distanceMatrix A matrix of nInstancesxnClusters with the distance + * between centroids and single-instances used for + * clustering . Matrix[i][k] is the distance from instance + * i to centroid k. + * @return A vector with the index of the cluster assigned to each instance. + * This vector is obtained as the index of the minimum column of each + * row. + */ + protected int[] clusterAssignment(double distanceMatrix[][]) { + + int nInstances = distanceMatrix.length; + int nClusters = distanceMatrix[0].length; + int assignment[] = new int[nInstances]; + + for (int i = 0; i < nInstances; i++) { + assignment[i] = 0; + for (int k = 1; k < nClusters; k++) { + if (distanceMatrix[i][k] < distanceMatrix[i][assignment[i]]) + assignment[i] = k; + } + } + return assignment; + } + + /** + * Computes similarity between a centroid, represented by a single instance, and + * a bag. The value is computed as Gaussian distance. + * + * @param centroid A centroid. + * @param bag A bag. + * @param delta_k A vector with a delta value for each centroid. + * @return The similarity, a value normalized to [0,1]. + * @throws Exception To be handled in an upper level. + */ + protected double similarity(Instance centroid, MIMLBag bag, double delta_k) throws Exception { + double min_sim = 0; + + Instances instances = bag.getBagAsInstances(); + for (int j = 0; j < instances.numInstances(); j++) { + double dist = dfunc.distance(centroid, instances.instance(j)); + double sim = Math.exp(-((dist * dist) / delta_k)); + if (j == 0) + min_sim = sim; + if (sim < min_sim) + min_sim = sim; + } + + return min_sim; + } + + /** + * Computes the delta value for each cluster that is used for similarity + * computation. This value is computed as the average distance between all pair + * of instances in each cluster. + * + * @param clusterAssignment A vector of nInstances elements with the indices of + * the clusters assigned to each one. + * @param singleInstances The instances used for clustering. + * @return A vector of nClusters with the delta value for each cluster. + */ + protected double[] computeDelta(int clusterAssignment[], Instances singleInstances) { + + int nClusters = clusterAssignment.length; + int nInstances = singleInstances.numInstances(); + + delta = new double[nClusters]; + + for (int k = 0; k < nClusters; k++) { + double sumDistances_k = 0; + int instances_k = 0; + for (int i = 0; i < nInstances; i++) { + if (clusterAssignment[i] == k) { + for (int j = i + 1; j < nInstances; j++) { + if (clusterAssignment[j] == k) { + instances_k++; + sumDistances_k = dfunc.distance(singleInstances.instance(i), singleInstances.instance(j)); + } + } + + } + } + delta[k] = sumDistances_k / instances_k; + } + + return delta; + } + + /** + * Determines the number of cluster depending on the values of the properties + * percentage and numClusters. Sets the number of clusters and the seed for + * clustering. + * + * @throws Exception To be handled in an upper level. + */ + void configureClusterer() throws Exception { + int value = 0; + + System.out.println("Clusterer configuration"); + if (percentage == -1 && numClusters == -1) { + /* + * If the number of clusters is not set neither by percentage nor by the + * numClusters property, it will be considered by default a 50% of the training + * bags. + */ + value = (int) (dataset.getNumBags() * 0.5); + System.out.println("\tnumClusters is 50% of train bags (default configuration) -> " + value + " clusters"); + } else { + if (percentage != -1) { + + value = (int) (dataset.getNumBags() * percentage); + System.out.println("\tnumClusters is " + Math.round(percentage * 100) + "% of train bags -> " + value + + " clusters"); + } else { + if (numClusters != -1) { + value = numClusters; + System.out.println("\tnumClusters is: " + numClusters); + } + } + } + + if (value > dataset.getNumBags()) { + // throw new Exception("\nThe number of clusters must be less or equal to the + // number of bags."); + value = dataset.getNumBags(); + System.out + .println("\tThe number of clusters must be less or equal to the number of bags. Setting nClusters=" + + dataset.getNumBags()); + + } + if (value < 2) { + // throw new Exception("\nThe number of clusters must be at least 2."); + value = 2; + System.out.println("\tThe number of clusters must be at least 2. Setting numClusters=2"); + } + + // Sets number of clusters in both the transformer and in the clusterer. + setNumClusters(value); + + // Sets the seed in both the transformer and in the clusterer. + System.out.println("\tSeed for clustering: " + seed); + setSeed(seed); + + } + + // -------------------- + // GETTERS AND SETTERS + // -------------------- + + /** + * Returns the value of the seed of the clusterer. + * + * @return int + */ + public int getSeed() { + return seed; + } + + /** + * Sets the value of the seed used for clustering in both the transformer and in + * the clusterer. If the clusterer is null the value of the property is only set + * in the transformer and the transformDataset method will establish this seed + * value in the clusterer after creating it. + * + * @param seed The seed + */ + public void setSeed(int seed) { + + if (this.clusterer != null) { + clusterer.setSeed(seed); + } + + this.seed = seed; + } + + /** + * Returns the number of clusters. + * + * @return Returns the number of clusters to perform clustering. + * @throws Exception To be handled in an upper level. + */ + public int getNumClusters() throws Exception { + return numClusters; + } + + /** + * Sets the number of clusters to perform clustering in both the transformer and + * in the clusterer. If the clusterer is null the value of the property is only + * set in the transformer and the transformDataset method will establish this + * numClusters value in the clusterer after creating it. + * + * @param numClusters A number of clusters. + * @throws Exception To be handled in an upper level. + */ + public void setNumClusters(int numClusters) throws Exception { + if (clusterer != null) + clusterer.setNumClusters(numClusters); + this.numClusters = numClusters; + } + + public double getPercentage() { + return percentage; + } + + public void setPercentage(double percentage) { + this.percentage = percentage; + } +} diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/MIMLtoML.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/MIMLtoML.java old mode 100755 new mode 100644 index ccde5ca..5eaaa56 --- a/mavenProject/src/main/java/miml/transformation/mimlTOml/MIMLtoML.java +++ b/mavenProject/src/main/java/miml/transformation/mimlTOml/MIMLtoML.java @@ -48,7 +48,24 @@ public abstract class MIMLtoML implements Serializable { protected MIMLInstances dataset = null; /** - * Transforms {@link MIMLInstances} into MultiLabelInstances. + * Constructor that sets the dataset + * + * @param dataset The dataset to be transformed. + */ + + public MIMLtoML(MIMLInstances dataset) { + super(); + this.dataset = dataset; + } + + /** Constructor that does not sets the dataset */ + public MIMLtoML() { + super(); + } + + /** + * Transforms {@link MIMLInstances} into MultiLabelInstances. To call this + * method is the dataset must be previously set eg. in the constructor. * * @return MultiLabelInstances. * @throws Exception To be handled in an upper level. @@ -109,7 +126,7 @@ protected void prepareTemplate() throws Exception { Instances bags = dataset.getDataSet(); template = bags.attribute(1).relation().stringFreeStructure(); - // insert a bag label attribute at the begining + // insert a bag lab el attribute at the beginning Attribute bagLabel = bags.attribute(0); template.insertAttributeAt(bagLabel, 0); diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/MedoidTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/MedoidTransformation.java new file mode 100644 index 0000000..e6796f7 --- /dev/null +++ b/mavenProject/src/main/java/miml/transformation/mimlTOml/MedoidTransformation.java @@ -0,0 +1,548 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ +package miml.transformation.mimlTOml; + +import java.util.ArrayList; + +import miml.clusterers.KMedoids; +import miml.core.distance.IDistance; +import miml.data.MIMLBag; +import miml.data.MIMLInstances; +import mulan.data.MultiLabelInstances; +import weka.core.Attribute; +import weka.core.DenseInstance; +import weka.core.Instance; +import weka.core.Instances; + +/** + * Class implementing the medoid-based transformation described in [1] to + * transform an MIML problem to ML. + * + * [1] Zhou, Z. H., Zhang, M. L., Huang, S. J., & Li, Y. F. (2012). + * Multi-instance multi-label learning. Artificial Intelligence, 176(1), + * 2291-2320. + * + * This class requires method transformDataset to have been executed before + * executing transformInstance method. + * + * @author Eva Gibaja + * @version 20230412 + */ +public class MedoidTransformation extends MIMLtoML { + + /** For serialization */ + private static final long serialVersionUID = 94921720184805609L; + + /** Clusterer. */ + protected KMedoids clusterer = null; + + /** + * True if the resulting transformed dataset will be normalized to (0,1) with + * min-max normalization. By default False. If a learning algorithm that uses a + * NormalizableDistance is going to be used after transformation, normalization + * is not needed. + */ + protected Boolean normalize = false; + + /** + * If it is different to -1 this value represent that the number of clusters + * will be a percentage of the number of bags of the dataset. For instance 0.2 + * represents that the number of clusters is the 20% of the training bags, 0.45 + * a 45%, and so on. If this value is -1 the number of clusters to consider is + * represented by numClusters property. If the number of clusters is not set + * neither by percentage nor by the numClusters property, it will be considered + * by default a 20% of the number of training bags in the dataset. If both the + * percentage and the numClusters are set, the percentage will be applied. + */ + protected double percentage = -1; + + /** The number of clusters for kmedoids. */ + protected int numClusters = -1; + + /** Whether the clustering step has been executed or not. */ + protected boolean clusteringDone = false; + + /** The seed for kmedoids clustering. By default 1. */ + protected int seed = 1; + + /** + * Constructor. Uses the same default number of clusters as MIMLSVM: 20% of + * number of bags + * + * @param dataset MIMLInstances dataset. + * @throws Exception To be handled in an upper level. + */ + public MedoidTransformation(MIMLInstances dataset) throws Exception { + + this(dataset, new KMedoids(), false); + } + + /** + * Constructor. + * + * @param dataset MIMLInstances dataset. + * @param kmedoids An instance of kmedoids. + * @param normalize If true, the resulting transformed dataset will be + * normalized to (0,1) with min-max normalization. If a + * learning algorithm that uses a NormalizableDistance is going + * to be used, normalization is not needed. + * @throws Exception To be handled in an upper level. + */ + public MedoidTransformation(MIMLInstances dataset, KMedoids kmedoids, boolean normalize) throws Exception { + + super(dataset); + this.clusterer = kmedoids; + this.normalize = normalize; + } + + /** + * Constructor. + * + * @param dataset MIMLInstances dataset. + * @param numClusters The number of clusters for kmedoids. + * @param metric The distance function to be used by kmedoids. + * @throws Exception To be handled in an upper level. + */ + public MedoidTransformation(MIMLInstances dataset, IDistance metric, int numClusters) throws Exception { + this(dataset, new KMedoids(numClusters, metric), false); + setNumClusters(numClusters); + } + + /** + * Constructor. + * + * @param dataset MIMLInstances dataset. + * @param numClusters number of clusters for kmedoids. + * @throws Exception To be handled in an upper level. + */ + public MedoidTransformation(MIMLInstances dataset, int numClusters) throws Exception { + this(dataset, new KMedoids(numClusters), false); + setNumClusters(numClusters); + } + + /** + * Constructor. + * + * @param dataset MIMLInstances dataset. + * @param percentage The number of clusters for kmedoids as a percentage of the + * number of bags. It is a value in (0,1). For instance, 0.2 + * is 20%. + * @throws Exception To be handled in an upper level. + */ + public MedoidTransformation(MIMLInstances dataset, double percentage) throws Exception { + this(dataset, new KMedoids((int) (percentage * dataset.getNumBags())), false); + this.percentage = percentage; + } + + /** + * Constructor. + */ + public MedoidTransformation() { + super(); + } + + protected void clusteringStep() throws Exception { + if (clusterer == null) { + clusterer = new KMedoids(); + } + + configureClusterer(); + + System.out.println("Medoid Transformation\n\tPerforming kmedoids clustering to transform the dataset"); + clusterer.buildClusterer(dataset.getDataSet()); + clusteringDone = true; + System.out.println( + "\t" + clusterer.numberOfClusters() + " clusters in " + clusterer.getNumIterations() + " iterations"); + prepareTemplate(); + template.setRelationName(dataset.getDataSet().relationName() + "_medoid_transformation"); + } + + @Override + public MultiLabelInstances transformDataset() throws Exception { + + // Clustering with kmedoids step + clusteringStep(); + + // Transformation step + Instances newData = new Instances(template); + int labelIndices[] = dataset.getLabelIndices(); + Instance newInst = new DenseInstance(newData.numAttributes()); + newInst.setDataset(newData); // Sets the reference to the dataset + + // For all bags in the dataset + double nBags = dataset.getNumBags(); + int numClusters = clusterer.numberOfClusters(); + for (int i = 0; i < nBags; i++) { + + // retrieves a bag + MIMLBag bag = dataset.getBag(i); + + // sets the bagLabel + newInst.setValue(0, bag.value(0)); + + // computes distances to medoids + // double[] distances = kmedoids.distanceToMedoids(bag); + double[] distances = clusterer.distanceToMedoids(i); + + // an attribute for medoid + for (int k = 0, attIdx = 1; k < numClusters; k++, attIdx++) { + newInst.setValue(attIdx, distances[k]); + } + + // Copy label information into the dataset + for (int j = 0; j < labelIndices.length; j++) { + newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j])); + } + newData.add(newInst); + + } + + if (normalize == true) { + System.out.println("\t Performing min-max normalization on the transformed dataset."); + return normalize(new MultiLabelInstances(newData, dataset.getLabelsMetaData())); + } else + return new MultiLabelInstances(newData, dataset.getLabelsMetaData()); + + } + + @Override + public MultiLabelInstances transformDataset(MIMLInstances dataset) throws Exception { + + MultiLabelInstances transformed = null; + if (!clusteringDone) { + this.dataset = dataset; + transformed = transformDataset(); + } else { + // To avoid a new clustering round if the clustering step was previously + // performed + Instances newData = new Instances(template); + for (int i = 0; i < dataset.getNumBags(); i++) { + MIMLBag bag = dataset.getBag(i); + Instance transfInst = transformInstance(bag); + newData.add(transfInst); + } + transformed = new MultiLabelInstances(newData, dataset.getLabelsMetaData()); + } + return transformed; + + } + + /** + * Normalizes a multi-label dataset performing min-max normalization. + * + * @param dataset The dataset to be normalized. + * @return Returns the normalized dataset as MultiLabelInstances. + * @throws Exception To be handled in an upper level. + */ + protected MultiLabelInstances normalize(MultiLabelInstances dataset) throws Exception { + + // 1. Computes statistics to perform normalization + + // number of attributes including the bagID attribute + int nFeatures = dataset.getFeatureAttributes().size(); + double Max[] = new double[nFeatures]; + double Min[] = new double[nFeatures]; + double Range[] = new double[nFeatures]; + + for (int i = 0; i < nFeatures; i++) { + Max[i] = Double.NEGATIVE_INFINITY; + Min[i] = Double.POSITIVE_INFINITY; + Range[i] = 0; + } + + boolean isNormalized = true; + for (int i = 0; i < dataset.getNumInstances(); i++) { + Instance instance = dataset.getDataSet().instance(i); + // j=1 to ignore the bagId attribute + for (int j = 1; j < nFeatures; j++) { + + if (instance.attribute(j).isNumeric()) { + if (instance.value(j) < 0 || instance.value(j) > 1) + isNormalized = false; + if (instance.value(j) < Min[j]) + Min[j] = instance.value(j); + if (instance.value(j) > Max[j]) + Max[j] = instance.value(j); + } + } + + } + + // j=1 to ignore the bagId attribute + for (int i = 1; i < nFeatures; i++) { + Range[i] = Max[i] - Min[i]; + } + + // 2. Normalizes the dataset + if (isNormalized) + return dataset; + else { + + for (int i = 0; i < dataset.getNumInstances(); i++) { + Instance instance = dataset.getDataSet().instance(i); + + // j=1 to ignore the bagId attribute + for (int j = 1; j < nFeatures; j++) { + + double value = instance.value(j); + + // to avoid dividing by zero in case of a 0 range + if (Double.compare(Min[j], Max[j]) != 0) { + value = (value - Min[j]) / (Range[j]); + + } else { + + value = 1; + } + instance.setValue(j, value); + } + } + return dataset; + } + + } + + /** + * Returns the value of the property normalize. + * + * @return The value of the property normalize. + */ + public Boolean getNormalize() { + return normalize; + } + + /** + * Sets the property normalized. If true, the resulting transformed multi-label + * dataset will be normalized after transformation. + * + * @param normalize The value of the property to be set. + */ + public void setNormalize(Boolean normalize) { + this.normalize = normalize; + } + + @Override + + public Instance transformInstance(MIMLBag bag) throws Exception { + + if (!clusteringDone) + throw new Exception( + "The transformInstance method must be called after executing transformDataset that performs kmedoids clustering required by this kind of transformation."); + + int labelIndices[] = dataset.getLabelIndices(); + Instance newInst = new DenseInstance(template.numAttributes()); + + // sets the bagLabel + newInst.setDataset(bag.dataset()); // Sets the reference to the dataset + newInst.setValue(0, bag.value(0)); + + // computes distances to medoids, the bag could be either a bag in the clustered + // dataset or a new and previously unseen bag. + double[] distance = this.clusterer.distanceToMedoids(bag); + + // an attribute for medoid + int numClusters = clusterer.numberOfClusters(); + for (int k = 0, attIdx = 1; k < numClusters; k++, attIdx++) { + newInst.setValue(attIdx, distance[k]); + } + + // Insert label information into the instance + for (int j = 0; j < labelIndices.length; j++) { + newInst.setValue(updatedLabelIndices[j], bag.value(labelIndices[j])); + } + + return newInst; + } + + @Override + protected void prepareTemplate() throws Exception { + int attrIndex = 0; + + ArrayList attributes = new ArrayList(); + + // insert a bag label attribute at the beginning + Attribute attr = dataset.getDataSet().attribute(0); + attributes.add(attr); + + // Adds attributes for medoids + int numClusters = clusterer.numberOfClusters(); + for (int k = 1; k <= numClusters; k++) { + attr = new Attribute("distanceToMedoid_" + k); + attributes.add(attr); + attrIndex++; + } + + // Insert labels as attributes in the dataset + int labelIndices[] = dataset.getLabelIndices(); + updatedLabelIndices = new int[labelIndices.length]; + ArrayList values = new ArrayList(2); + values.add("0"); + values.add("1"); + for (int i = 0; i < labelIndices.length; i++) { + attr = new Attribute(dataset.getDataSet().attribute(labelIndices[i]).name(), values); + attributes.add(attr); + attrIndex++; + updatedLabelIndices[i] = attrIndex; + } + + template = new Instances("templateMedoid", attributes, 0); + } + + /** + * Determines the number of cluster depending on the values of the properties + * percentage and numClusters. + * + * @throws Exception To be handled in an upper level. + */ + void configureClusterer() throws Exception { + + int value = 0; + + System.out.println("Clusterer configuration"); + if (percentage == -1 && numClusters == -1) { + /* + * If the number of clusters is not set neither by percentage nor by the + * numClusters property, it will be considered by default a 20% of the training + * bags. + */ + value = (int) (dataset.getNumBags() * 0.2); + System.out.println("\tnumClusters is 20% of train bags (default configuration) -> " + value + " clusters"); + } else { + if (percentage != -1) { + + value = (int) (dataset.getNumBags() * percentage); + System.out.println("\tnumClusters is " + Math.round(percentage * 100) + "% of train bags -> " + value + + " clusters"); + } else { + if (numClusters != -1) { + value = numClusters; + System.out.println("\tnumClusters is: " + numClusters); + } + } + } + + // Sets number of clusters in both the transformer and in the clusterer. + setNumClusters(value); + + // Sets the seed in both the transformer and in the clusterer. + System.out.println("\tSeed for clustering: " + seed); + setSeed(seed); + + } + + // -------------------- + // GETTERS AND SETTERS + // -------------------- + + /** + * Returns the number of clusters. + * + * @return Returns the number of clusters to perform clustering. + * @throws Exception To be handled in an upper level. + */ + public int getNumClusters() throws Exception { + return numClusters; + } + + /** + * Sets the number of clusters to perform clustering in both the transformer and + * in the clusterer. If the clusterer is null the value of the property is only + * set in the transformer and the transformDataset method will establish this + * numClusters value in the clusterer after creating it. + * + * @param numClusters A number of clusters. + * @throws Exception To be handled in an upper level. + */ + public void setNumClusters(int numClusters) throws Exception { + if (clusterer != null) + clusterer.setNumClusters(numClusters); + this.numClusters = numClusters; + } + + /** + * Gets the value of the percentage property. + * + * @return The percentage of the train instances used as + */ + public double getPercentage() { + return percentage; + } + + /** + * Sets the value of the percentage property. + * + * @param percentage The percentage value in [0, 1], for instance 0.2 means that + * the number of clusters is 20% the number of bags. + */ + public void setPercentage(double percentage) { + this.percentage = percentage; + } + + /** + * Gets the maximum number of iterations used by the clusterer. + * + * @return The maximum number of iterations. + */ + public int getMaxIterations() { + return this.clusterer.getMaxIterations(); + } + + /** + * Sets the maximum number of iterations for clustering. This method must be + * called before clustering. + * + * @param maxIterations The maximum number of iterations for clustering. + */ + public void setMaxIterations(int maxIterations) { + this.clusterer.setMaxIterations(maxIterations); + } + + /** + * Returns the distance function used for clustering. + * + * @return The distance function used for clustering. + */ + public IDistance getDistanceFunction() { + return this.clusterer.getDistanceFunction(); + } + + /** + * Sets the distance function to use for clustering. This method must be called + * before clustering. + * + * @param distanceFunction The distance function used for clustering. + */ + public void setDistanceFunction(IDistance distanceFunction) { + this.clusterer.setDistanceFunction(distanceFunction); + } + + /** + * Sets the value of the seed used for clustering in both the transformer and in + * the clusterer. If the clusterer is null the value of the property is only set + * in the transformer and the transformDataset method will establish this seed + * value in the clusterer after creating it. + * + * @param seed The seed + */ + public void setSeed(int seed) { + + if (this.clusterer != null) { + clusterer.setSeed(seed); + } + + this.seed = seed; + } + +} diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/MinMaxTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/MinMaxTransformation.java old mode 100755 new mode 100644 index e53b2e7..511d627 --- a/mavenProject/src/main/java/miml/transformation/mimlTOml/MinMaxTransformation.java +++ b/mavenProject/src/main/java/miml/transformation/mimlTOml/MinMaxTransformation.java @@ -105,9 +105,8 @@ public MultiLabelInstances transformDataset() throws Exception { // For all attributes in bag for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) { double[] minimax = minimax(instances, j); - newInst.setValue(attIdx, minimax[0]);// minima value - newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maxima - // value); + newInst.setValue(attIdx, minimax[0]);// minimal value + newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maximal value); } // Copy label information into the dataset for (int j = 0; j < labelIndices.length; j++) { @@ -143,8 +142,8 @@ public Instance transformInstance(MIMLBag bag) throws Exception { // For all attributes in bag for (int j = 0, attIdx = 1; j < instances.numAttributes(); j++, attIdx++) { double[] minimax = minimax(instances, j); - newInst.setValue(attIdx, minimax[0]);// minima value - newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maxima + newInst.setValue(attIdx, minimax[0]);// minimal value + newInst.setValue(attIdx + instances.numAttributes(), minimax[1]);// maximal // value); } diff --git a/mavenProject/src/main/java/miml/transformation/mimlTOml/PropositionalTransformation.java b/mavenProject/src/main/java/miml/transformation/mimlTOml/PropositionalTransformation.java old mode 100755 new mode 100644 index 5180d5e..714acac --- a/mavenProject/src/main/java/miml/transformation/mimlTOml/PropositionalTransformation.java +++ b/mavenProject/src/main/java/miml/transformation/mimlTOml/PropositionalTransformation.java @@ -14,6 +14,8 @@ */ package miml.transformation.mimlTOml; +import java.io.Serializable; + import miml.data.MIMLBag; import miml.data.MIMLInstances; import mulan.data.MultiLabelInstances; @@ -35,7 +37,10 @@ * @version 20210614 * */ -public class PropositionalTransformation { +public class PropositionalTransformation implements Serializable { + + /** For serialization. */ + private static final long serialVersionUID = 1L; /** Array of updated label indices. */ protected int updatedLabelIndices[]; @@ -159,7 +164,7 @@ public MultiLabelInstances transformInstance(MIMLBag bag) throws Exception { for (int i = 0; i < bagAsInstances.numInstances(); i++) { Instance newInst = new DenseInstance(template.numAttributes()); - // Sets the reference to the datas + // Sets the reference to the dataset newInst.setDataset(bag.dataset()); // sets the bagLabel diff --git a/mavenProject/src/main/java/miml/tutorial/Clustering.java b/mavenProject/src/main/java/miml/tutorial/Clustering.java new file mode 100644 index 0000000..415a6f2 --- /dev/null +++ b/mavenProject/src/main/java/miml/tutorial/Clustering.java @@ -0,0 +1,86 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +package miml.tutorial; + +import java.io.File; +import miml.clusterers.KMedoids; +import miml.data.MIMLInstances; +import weka.core.Instance; +import weka.core.Instances; + +/** + * + * Class to show an example of clustering of a MIML Dataset. + * + * @author Eva Gibaja + * @version 20230412 + * + */ +public class Clustering { + + public static void main(String[] args) { + + try { + System.out.println("Loading dataset..."); + MIMLInstances mimlDataSet1 = new MIMLInstances("data" + File.separator + "miml_birds_random_80train.arff", + "data" + File.separator + "miml_birds.xml"); + MIMLInstances mimlDataSet2 = new MIMLInstances("data" + File.separator + "miml_birds_random_20test.arff", + "data" + File.separator + "miml_birds.xml"); + + KMedoids kmedoids = new KMedoids(); + kmedoids.buildClusterer(mimlDataSet1.getDataSet()); + System.out.println("\nSummary of clustering performed:"); + System.out.println("\tNumber of clusters: " + kmedoids.numberOfClusters()); + System.out.println("\tCost of clustering: " + kmedoids.getConfigurationCost()); + System.out.println("\tNumber of iterations: " + kmedoids.getNumIterations()); + + // Checking a train instance + System.out.println("\n\nChecking a train instance:"); + Instances dataTrain = mimlDataSet1.getDataSet(); + Instance instance = dataTrain.instance(5); + + double[] distances = kmedoids.distanceToMedoids(instance); + System.out.println("\tDistance to medoids: \n" + weka.core.Utils.arrayToString(distances)); + + double[] distribution = kmedoids.distributionForInstance(instance); + System.out.println("\tDistribution: \n" + weka.core.Utils.arrayToString(distribution)); + + System.out.println("\tInstance assigned to Cluster (0, " + (kmedoids.numberOfClusters() - 1) + "): " + + kmedoids.clusterInstance(instance)); + + // Checking a test instance + System.out.println("\n\nChecking a test instance:"); + Instances dataTest = mimlDataSet2.getDataSet(); + instance = dataTest.instance(6); + + distances = kmedoids.distanceToMedoids(instance); + System.out.println("\tDistance to medoids: \n" + weka.core.Utils.arrayToString(distances)); + + distribution = kmedoids.distributionForInstance(instance); + System.out.println("\tDistribution: \n" + weka.core.Utils.arrayToString(distribution)); + + System.out.println("\tInstance assigned to Cluster (0, " + (kmedoids.numberOfClusters() - 1) + "): " + + kmedoids.clusterInstance(instance)); + + } catch (Exception e) { + + e.printStackTrace(); + } + System.out.println("\nThe program finished normally."); + + } + +} diff --git a/mavenProject/src/main/java/miml/tutorial/CrossValidationExperiment.java b/mavenProject/src/main/java/miml/tutorial/CrossValidationExperiment.java old mode 100755 new mode 100644 index 13fede0..04ffebf --- a/mavenProject/src/main/java/miml/tutorial/CrossValidationExperiment.java +++ b/mavenProject/src/main/java/miml/tutorial/CrossValidationExperiment.java @@ -32,7 +32,9 @@ import miml.evaluation.EvaluatorCV; import miml.report.BaseMIMLReport; import miml.transformation.mimlTOml.GeometricTransformation; +import miml.transformation.mimlTOml.MedoidTransformation; import miml.transformation.mimlTOml.MinMaxTransformation; +import mulan.classifier.lazy.BRkNN; import mulan.classifier.lazy.DMLkNN; import mulan.classifier.transformation.LabelPowerset; import weka.classifiers.mi.SimpleMI; @@ -91,6 +93,11 @@ public static void main(String[] args) throws Exception { MIMLkNN mimlknn = new MIMLkNN(new MaximalHausdorff(mimlDataSet)); MIMLClassifierToMI mimltomi = new MIMLClassifierToMI(new MIMLLabelPowerset(new SimpleMI())); MIMLClassifierToML mimltoml = new MIMLClassifierToML(new DMLkNN(), new GeometricTransformation()); + + MedoidTransformation medoid = new MedoidTransformation(); + medoid.setPercentage(0.25); + MIMLClassifierToML mimltoml_medoid = new MIMLClassifierToML(new BRkNN(), medoid); + MIMLBRkNN miml_brknn = new MIMLBRkNN(new MIMLDistanceFunction(new AverageHausdorff())); MIMLBagging mimlbagging = new MIMLBagging( new MIMLClassifierToML(new LabelPowerset(new J48()), new MinMaxTransformation()), 10); @@ -136,6 +143,13 @@ public static void main(String[] args) throws Exception { System.out.println(report.toString(cv)); report.saveReport(report.toCSV(cv)); + System.out.println( + "-Seventh example cross-validation using MIMLtoML transformation with medoidTransformation:\n"); + ConfigParameters.setAlgorithmName("toML_MDT_BRkNN"); // value for Algorithm column in the csv report + cv.runExperiment(mimltoml_medoid); + System.out.println(report.toString(cv)); + report.saveReport(report.toCSV(cv)); + System.out.println("The program has finished."); } } diff --git a/mavenProject/src/main/java/miml/tutorial/GeneratePartitions.java b/mavenProject/src/main/java/miml/tutorial/GeneratePartitions.java old mode 100755 new mode 100644 index 1b41c1f..5e8d7ea --- a/mavenProject/src/main/java/miml/tutorial/GeneratePartitions.java +++ b/mavenProject/src/main/java/miml/tutorial/GeneratePartitions.java @@ -58,7 +58,6 @@ public static void showUse() { System.out.println("\t\t -s 1 -> random stratification. For classification and regression (by default)"); System.out.println("\t\t -s 2 -> label powerset stratification. Just for classification"); System.out.println("\t\t -s 3 -> iterative stratification. Just for classification"); - // Output System.out.println("\t -o OutputFile (without extension)"); @@ -165,7 +164,8 @@ public static void main(String[] args) throws Exception { partitions = engine.split(percentageValue); } else if (stratification.contentEquals("2")) { // Labelpowerset stratification - System.out.println("\nPerforming label powerset train-test partitioning (" + percentageTrain + " train)..."); + System.out.println( + "\nPerforming label powerset train-test partitioning (" + percentageTrain + " train)..."); LabelPowersetTrainTest engine = new LabelPowersetTrainTest(mlDataSet); partitions = engine.split(percentageValue); } else { diff --git a/mavenProject/src/main/java/miml/tutorial/HoldoutExperiment.java b/mavenProject/src/main/java/miml/tutorial/HoldoutExperiment.java old mode 100755 new mode 100644 index 9cf7ff5..a080d75 --- a/mavenProject/src/main/java/miml/tutorial/HoldoutExperiment.java +++ b/mavenProject/src/main/java/miml/tutorial/HoldoutExperiment.java @@ -18,7 +18,6 @@ import java.io.File; import miml.classifiers.miml.lazy.MIMLkNN; -import miml.core.ConfigParameters; import miml.core.distance.MaximalHausdorff; import miml.data.MIMLInstances; import miml.evaluation.EvaluatorHoldout; @@ -66,7 +65,7 @@ public static void main(String[] args) throws Exception { // MIML report String reportFileName = Utils.getOption("r", args); BaseMIMLReport report = new BaseMIMLReport(null, reportFileName, false, false, false); - + // Loads classifier System.out.println("Loading MIMLkNN classifier..."); MIMLkNN mimlknn = new MIMLkNN(new MaximalHausdorff()); diff --git a/mavenProject/src/main/java/miml/tutorial/HoldoutToML_RFPCT.java b/mavenProject/src/main/java/miml/tutorial/HoldoutToML_RFPCT.java new file mode 100644 index 0000000..a994ab8 --- /dev/null +++ b/mavenProject/src/main/java/miml/tutorial/HoldoutToML_RFPCT.java @@ -0,0 +1,89 @@ +/* This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ +package miml.tutorial; + +import miml.classifiers.miml.mimlTOml.MIMLClassifierToML; +import miml.classifiers.ml.RFPCT; +import miml.core.ConfigParameters; +import miml.data.MIMLInstances; +import miml.evaluation.EvaluatorHoldoutClus; +import miml.report.BaseMIMLReport; +import miml.transformation.mimlTOml.ArithmeticTransformation; +import weka.core.Utils; + +/** + * + * Class implementing an example of using holdout with train/test dataset and a + * toML classifier with RFPCT as base classifier. + * + * @author Eva Gibaja + * @version 20230306 + * + */ +public class HoldoutToML_RFPCT { + public static void main(String[] args) throws Exception { + + // Example=> -x data/miml_birds.xml -t data/miml_birds_random_80train.arff -y + // data/miml_birds_random_20test.arff -r results/report.csv + + String reportFileName = Utils.getOption("r", args); + String xmlFileName = Utils.getOption("x", args); + String arffFileNameTrain = Utils.getOption("t", args); + String arffFileNameTest = Utils.getOption("y", args); + + System.out.println("Example using Arithmetic transformation and RFPCT with train/test datasets.\n "); + + // MIML report + BaseMIMLReport report = new BaseMIMLReport(null, reportFileName, false, false, false); + ConfigParameters.setAlgorithmName("ToML_AT_RFPCT"); // value for Algorithm column in the csv report + ConfigParameters.setConfigFileName("Java app"); // value for ConfigurationFile column in the csv report. As the + // experiment does not use any configuration file, "Java app" + // has been set to avoid an empty column + ConfigParameters.setDataFileName(arffFileNameTrain); // value for Dataset column in the csv report + + // Loads classifier + String clusWorkingDir = new String("clusFolder"); + String clusDatasetName = new String("datasetName"); + System.out.println("Loading classifier..."); + MIMLClassifierToML mimltoml = new MIMLClassifierToML(new RFPCT(clusWorkingDir, clusDatasetName, 10, 1), + new ArithmeticTransformation()); + + // Loads datasets + System.out.println("Loading datasets..."); + MIMLInstances mimlDataSetTrain = new MIMLInstances(arffFileNameTrain, xmlFileName); + MIMLInstances mimlDataSetTest = new MIMLInstances(arffFileNameTest, xmlFileName); + + // Evaluator with train and test partitions + EvaluatorHoldoutClus holdoutTT = new EvaluatorHoldoutClus(mimlDataSetTrain, mimlDataSetTest, clusWorkingDir, + clusDatasetName); + + System.out.println("\n"); + + holdoutTT.runExperiment(mimltoml); + + System.out.println("\nThe clus library execution has finished.\n"); + + System.out.println( + "NOTE that that RFPCT calls clus library that performs, in a single call, train and test steps. Therefore:"); + System.out.println("\t1. Train time got by miml library is not relevant."); + System.out.println( + "\t2. Test time got by miml libraryr really computes the train and test time required by the call to clus library.\n\n"); + System.out.println(report.toString(holdoutTT) + "\n\n"); + report.saveReport(report.toCSV(holdoutTT)); + + System.out.println("The program has finished."); + + } +} diff --git a/mavenProject/src/main/java/miml/tutorial/InsertingAttributeToBag.java b/mavenProject/src/main/java/miml/tutorial/InsertingAttributeToBag.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/tutorial/InsertingAttributesToBags.java b/mavenProject/src/main/java/miml/tutorial/InsertingAttributesToBags.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/tutorial/MIMLtoMITransformation.java b/mavenProject/src/main/java/miml/tutorial/MIMLtoMITransformation.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/tutorial/MIMLtoMLTransformation.java b/mavenProject/src/main/java/miml/tutorial/MIMLtoMLTransformation.java old mode 100755 new mode 100644 index 33b48cb..0b2bec3 --- a/mavenProject/src/main/java/miml/tutorial/MIMLtoMLTransformation.java +++ b/mavenProject/src/main/java/miml/tutorial/MIMLtoMLTransformation.java @@ -20,6 +20,8 @@ import miml.data.MLSave; import miml.transformation.mimlTOml.ArithmeticTransformation; import miml.transformation.mimlTOml.GeometricTransformation; +import miml.transformation.mimlTOml.KMeansTransformation; +import miml.transformation.mimlTOml.MedoidTransformation; import miml.transformation.mimlTOml.MinMaxTransformation; import miml.transformation.mimlTOml.PropositionalTransformation; import mulan.data.MultiLabelInstances; @@ -118,7 +120,7 @@ public static void main(String[] args) throws Exception { String xmlFileResultPropositional = "data" + File.separator + "resultPropositional.xml"; PropositionalTransformation propositional = new PropositionalTransformation(mimlDataSet); - propositional.setIncludeBagId(true); //by default the bagID attribute is not included + propositional.setIncludeBagId(true); // by default the bagID attribute is not included // Transforms a single instance result = propositional.transformInstance(mimlDataSet.getBag(0)); @@ -127,6 +129,38 @@ public static void main(String[] args) throws Exception { MLSave.saveArff(result, arffFileResultPropositional); MLSave.saveXml(result, xmlFileResultPropositional); + System.out.println("=============Medoid====================="); + String arffFileResultMedoid = "data" + File.separator + "resultMedoid.arff"; + String xmlFileResultMedoid = "data" + File.separator + "resultMedoid.xml"; + + MedoidTransformation medoid = new MedoidTransformation(mimlDataSet); + + // Transforms a complete dataset + result = medoid.transformDataset(); + MLSave.saveArff(result, arffFileResultMedoid); + MLSave.saveXml(result, xmlFileResultMedoid); + + // Transforms a single instance. This method must be called after + // transformDataset as it performs kmedoid clustering required by this kind of + // transformation. + instance = medoid.transformInstance(mimlDataSet.getBag(0)); + + System.out.println("=============kMeans====================="); + String arffFileResultkMeans = "data" + File.separator + "resultkMeans.arff"; + String xmlFileResultkMeans = "data" + File.separator + "resultkMeans.xml"; + + KMeansTransformation kmeans = new KMeansTransformation(mimlDataSet); + + // Transforms a complete dataset + result = kmeans.transformDataset(); + MLSave.saveArff(result, arffFileResultkMeans); + MLSave.saveXml(result, xmlFileResultkMeans); + + // Transforms a single instance. This method must be called after + // transformDataset as it performs kmeans clustering required by this kind of + // transformation. + instance = kmeans.transformInstance(mimlDataSet.getBag(0)); + } } diff --git a/mavenProject/src/main/java/miml/tutorial/ManagingMIMLInstances.java b/mavenProject/src/main/java/miml/tutorial/ManagingMIMLInstances.java old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/java/miml/tutorial/NormalizingDataset.java b/mavenProject/src/main/java/miml/tutorial/NormalizingDataset.java old mode 100755 new mode 100644 index 87184c3..a2fa179 --- a/mavenProject/src/main/java/miml/tutorial/NormalizingDataset.java +++ b/mavenProject/src/main/java/miml/tutorial/NormalizingDataset.java @@ -35,14 +35,16 @@ public static void main(String[] args) { MIMLInstances mimlDataSet2; try { System.out.println("Loading datasets"); - mimlDataSet1 = new MIMLInstances("data" + File.separator +"miml_birds_random_80train.arff", "data" + File.separator +"miml_birds.xml"); - mimlDataSet2 = new MIMLInstances("data" + File.separator +"miml_birds_random_20test.arff", "data" + File.separator +"miml_birds.xml"); + mimlDataSet1 = new MIMLInstances("data" + File.separator + "miml_birds_random_80train.arff", + "data" + File.separator + "miml_birds.xml"); + mimlDataSet2 = new MIMLInstances("data" + File.separator + "miml_birds_random_20test.arff", + "data" + File.separator + "miml_birds.xml"); /* * updateStats must be called before call normalize method. If several datasets * with the same structure are normalized at once (e.g. train and test or folds * partitioned files), this method will be called for each dataset before * normalization. Besides, if the method method detects that all the attributes - * are jet normalized, it sets the "normalized" property as true. + * are yet normalized, it sets the "normalized" property as true. */ norm.updateStats(mimlDataSet1); norm.updateStats(mimlDataSet2); diff --git a/mavenProject/src/main/java/miml/tutorial/Resampling.java b/mavenProject/src/main/java/miml/tutorial/Resampling.java old mode 100755 new mode 100644 index 22cd10a..649e2d0 --- a/mavenProject/src/main/java/miml/tutorial/Resampling.java +++ b/mavenProject/src/main/java/miml/tutorial/Resampling.java @@ -34,12 +34,11 @@ public class Resampling { public static void main(String[] args) throws Exception { - MIMLInstances mimlDataSet1 = new MIMLInstances("data" + File.separator + "miml_birds_random_80train.arff", "data" + File.separator + "miml_birds.xml"); - System.out.println("Loading original dataset with "+mimlDataSet1.getNumBags() + " bags"); - + System.out.println("Loading original dataset with " + mimlDataSet1.getNumBags() + " bags"); + int seed = 1; boolean sampleWithReplacement = true; double samplePercentage = 80; @@ -48,7 +47,8 @@ public static void main(String[] args) throws Exception { MIMLInstances mimlDataSet2 = new MIMLInstances(sample, mimlDataSet1.getLabelsMetaData()); - System.out.println("Resampled dataset with " + mimlDataSet2.getNumBags() + "/" + mimlDataSet1.getNumBags() + " bags"); + System.out.println( + "Resampled dataset with " + mimlDataSet2.getNumBags() + "/" + mimlDataSet1.getNumBags() + " bags"); } diff --git a/mavenProject/src/main/resources/Clus.jar b/mavenProject/src/main/resources/Clus.jar new file mode 100644 index 0000000..e842c2e Binary files /dev/null and b/mavenProject/src/main/resources/Clus.jar differ diff --git a/mavenProject/src/main/resources/MWAlgorithms.jar b/mavenProject/src/main/resources/MWAlgorithms.jar old mode 100755 new mode 100644 index 87c195a..9038855 Binary files a/mavenProject/src/main/resources/MWAlgorithms.jar and b/mavenProject/src/main/resources/MWAlgorithms.jar differ diff --git a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.jar b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.jar old mode 100755 new mode 100644 index 87c195a..9038855 Binary files a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.jar and b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.jar differ diff --git a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.pom b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.pom old mode 100755 new mode 100644 index de8df5d..9d8af76 --- a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.pom +++ b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/MWAlgorithms-1.0.pom @@ -1,11 +1,9 @@ - - 4.0.0 - MWAlgorithms - MWAlgorithms - 1.0 - POM was created from install:install-file + + 4.0.0 + MWAlgorithms + MWAlgorithms + 1.0 + POM was created from install:install-file diff --git a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/_remote.repositories b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/_remote.repositories new file mode 100644 index 0000000..056b5c7 --- /dev/null +++ b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/1.0/_remote.repositories @@ -0,0 +1,4 @@ +#NOTE: This is a Maven Resolver internal implementation file, its format can be changed without prior notice. +#Tue Sep 19 12:27:36 CEST 2023 +MWAlgorithms-1.0.jar>= +MWAlgorithms-1.0.pom>= diff --git a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/maven-metadata-local.xml b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/maven-metadata-local.xml old mode 100755 new mode 100644 index 477ceff..ab59d51 --- a/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/maven-metadata-local.xml +++ b/mavenProject/src/main/resources/MWAlgorithms/MWAlgorithms/maven-metadata-local.xml @@ -1,12 +1,12 @@ - MWAlgorithms - MWAlgorithms - - 1.0 - - 1.0 - - 20220202162904 - + MWAlgorithms + MWAlgorithms + + 1.0 + + 1.0 + + 20230919102736 + diff --git a/mavenProject/src/main/resources/clus/clus/2.12/_remote.repositories b/mavenProject/src/main/resources/clus/clus/2.12/_remote.repositories new file mode 100644 index 0000000..9a78651 --- /dev/null +++ b/mavenProject/src/main/resources/clus/clus/2.12/_remote.repositories @@ -0,0 +1,4 @@ +#NOTE: This is a Maven Resolver internal implementation file, its format can be changed without prior notice. +#Thu Jan 18 11:28:22 CET 2024 +clus-2.12.jar>= +clus-2.12.pom>= diff --git a/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.jar b/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.jar new file mode 100644 index 0000000..e842c2e Binary files /dev/null and b/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.jar differ diff --git a/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.pom b/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.pom new file mode 100644 index 0000000..b65eb15 --- /dev/null +++ b/mavenProject/src/main/resources/clus/clus/2.12/clus-2.12.pom @@ -0,0 +1,9 @@ + + + 4.0.0 + clus + clus + 2.12 + POM was created from install:install-file + diff --git a/mavenProject/src/main/resources/clus/clus/maven-metadata-local.xml b/mavenProject/src/main/resources/clus/clus/maven-metadata-local.xml new file mode 100644 index 0000000..01a83ca --- /dev/null +++ b/mavenProject/src/main/resources/clus/clus/maven-metadata-local.xml @@ -0,0 +1,12 @@ + + + clus + clus + + 2.12 + + 2.12 + + 20240118102822 + + diff --git a/mavenProject/src/main/resources/javabuilder.jar b/mavenProject/src/main/resources/javabuilder.jar old mode 100755 new mode 100644 index a25dd35..fc36ed8 Binary files a/mavenProject/src/main/resources/javabuilder.jar and b/mavenProject/src/main/resources/javabuilder.jar differ diff --git a/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/_remote.repositories b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/_remote.repositories new file mode 100644 index 0000000..cdc7cea --- /dev/null +++ b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/_remote.repositories @@ -0,0 +1,4 @@ +#NOTE: This is a Maven Resolver internal implementation file, its format can be changed without prior notice. +#Tue Sep 19 12:27:25 CEST 2023 +javabuilder-1.0.jar>= +javabuilder-1.0.pom>= diff --git a/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.jar b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.jar old mode 100755 new mode 100644 index a25dd35..fc36ed8 Binary files a/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.jar and b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.jar differ diff --git a/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.pom b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.pom old mode 100755 new mode 100644 index fb5ca43..eb454e6 --- a/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.pom +++ b/mavenProject/src/main/resources/javabuilder/javabuilder/1.0/javabuilder-1.0.pom @@ -1,11 +1,9 @@ - - 4.0.0 - javabuilder - javabuilder - 1.0 - POM was created from install:install-file + + 4.0.0 + javabuilder + javabuilder + 1.0 + POM was created from install:install-file diff --git a/mavenProject/src/main/resources/javabuilder/javabuilder/maven-metadata-local.xml b/mavenProject/src/main/resources/javabuilder/javabuilder/maven-metadata-local.xml old mode 100755 new mode 100644 index 6afccf4..8b6a2a3 --- a/mavenProject/src/main/resources/javabuilder/javabuilder/maven-metadata-local.xml +++ b/mavenProject/src/main/resources/javabuilder/javabuilder/maven-metadata-local.xml @@ -1,12 +1,12 @@ - javabuilder - javabuilder - - 1.0 - - 1.0 - - 20220202162748 - + javabuilder + javabuilder + + 1.0 + + 1.0 + + 20230919102725 + diff --git a/mavenProject/src/main/resources/mulan-1-5-0-sources.jar b/mavenProject/src/main/resources/mulan-1-5-0-sources.jar old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/resources/mulan-1-5-0.jar b/mavenProject/src/main/resources/mulan-1-5-0.jar old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/resources/mulan/mulan/1.5.0/mulan-1.5.0.jar b/mavenProject/src/main/resources/mulan/mulan/1.5.0/mulan-1.5.0.jar old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/resources/mulan/mulan/1.5.0/mulan-1.5.0.pom b/mavenProject/src/main/resources/mulan/mulan/1.5.0/mulan-1.5.0.pom old mode 100755 new mode 100644 diff --git a/mavenProject/src/main/resources/mulan/mulan/maven-metadata-local.xml b/mavenProject/src/main/resources/mulan/mulan/maven-metadata-local.xml old mode 100755 new mode 100644 diff --git a/mavenProject/src/test/java/miml/AppTest.java b/mavenProject/src/test/java/miml/AppTest.java old mode 100755 new mode 100644