-
Notifications
You must be signed in to change notification settings - Fork 0
/
lr_utils.py
22 lines (15 loc) · 971 Bytes
/
lr_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import numpy as np
import h5py
import os
current_path = os.getcwd()
def load_dataset():
train_dataset = h5py.File(os.path.join(current_path, 'datasets/train_catvnoncat.h5'), "r")
train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
test_dataset = h5py.File(os.path.join(current_path, 'datasets/test_catvnoncat.h5'), "r")
test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
classes = np.array(test_dataset["list_classes"][:]) # the list of classes
train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes